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Abstract. A firm issues a convertible bond. At each subsequent time, the bondholder must
decide whether to continue to hold the bond, thereby collecting coupons, or to convert it to stock.
The firm may at any time call the bond. Because calls and conversions often occur far from maturity,
it is not unreasonable to model this situation with a perpetual convertible bond, i.e., a convertible
coupon-paying bond without maturity. This model admits a relatively simple solution, under which
the value of the perpetual convertible bond, as a function of the value of the underlying firm, is
determined by a nonlinear ordinary differential equation.
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1. Introduction. Firms raise capital by issuing debt (bonds) and equity (shares
of stock). The convertible bond is intermediate between these two instruments. A
convertible is a bond in the sense that it entitles its owner to receive coupons plus
the return of the principle at maturity. However, prior to maturity, the holder may
“convert” the bond, surrendering it for a preset number of shares of stock. The price
of the bond is thus dependent on the price of the firm’s stock. Finally, prior to
maturity, the firm may “call” the bond, forcing the bondholder to either surrender it
to the firm for a previously agreed price or else convert it for stock as above.

After issuing a convertible bond, the firm’s objective is to exercise its call option
in order to maximize the value of shareholder equity. The bondholder’s objective is
to exercise his conversion option in order to maximize the value of the bond. If stock
and convertible bonds are the only assets issued by a firm, then the value of the firm
is the sum of the value of these two types of assets. In idealized markets where the
Miller–Modigliani [17], [18] assumptions hold, changes in corporate capital structure
do not affect firm value. In particular, the value of the firm does not change at the
time of conversion, and the only change in the value of the firm at the time of call
is a reduction by the call price paid to the bondholder if the bondholder surrenders
rather than converts the bond. By acting to maximize the value of equity, the firm is
in fact minimizing the value of the convertible bond. By acting to maximize the value
of the bond, the bondholder is in fact minimizing the value of equity. This creates a
two-person, zero-sum game.

Brennan and Schwartz [5] and Ingersoll [11] address the convertible bond pricing
problem via the arbitrage pricing theory developed by Merton [16] and underlying the
option pricing formula of Black and Scholes [4]. This leads to the conclusion that the
firm should call as soon as the conversion value of the bond (the value the bondholder
would receive if he converts the bond to stock) rises to the call price. There has been
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considerable discussion whether firms call bonds at this time; see, e.g., [1], [2], [8],
[12].

In the Brennan and Schwartz [5] model, dividends and coupons are paid at discrete
dates. Between these dates the value of the firm is a geometric Brownian motion
and the price of the convertible bond is governed by the linear second-order partial
differential equation developed by Black and Scholes [4]. Brennan and Schwartz [6]
generalize that model to allow random interest rates and debt senior to the convertible
bond. In Ingersoll [11], coupons are paid out continuously, and for most of the results
obtained, dividends are zero. Again, the bond price is governed by a linear second-
order partial differential equation. In [5] the bond should not be converted except
possibly immediately prior to a dividend payment; in [11] the bond should not be
converted except possibly at maturity. Therefore, neither of these papers needs to
address the free boundary problem which would arise if early conversion were optimal.

The present paper assumes that a firm’s value comprises equity and convertible
bonds. To simplify the discussion, we assume the equity is in the form of a single
share of stock, and there is a single convertible bond. We assume the value of the
issuing firm has constant volatility, the bond continuously pays a coupon at a fixed
rate, and the firm equity pays a dividend at a rate which is a fixed fraction of the
equity value. In particular, payments are always up to date and there is no issue of
accrued interest at the time of a call, default, or conversion. Default occurs if the
coupon payments cause the firm value to fall to zero, in which case the bond has zero
recovery. In this model, both the bond price and the stock price are functions of the
underlying firm value. As pointed out by [3], this means that the stock price does
not have constant volatility. Furthermore, because the stock price is the difference
between firm value and bond price and because dividends are paid proportionally to
the stock price, the differential equation characterizing the bond price as a function
of the firm value is nonlinear. The development of a mathematical methodology to
treat this nonlinearity is the rationale for this paper.

To simplify the analysis, we assume the bond is perpetual, i.e., it never matures.
This removes the time parameter from the problem, and the free boundary problems
associated with optimal call and optimal conversion become “free point” problems.
Perpetual bonds are the asymptotic case of finite-maturity bonds; work along the
lines of this paper on these bonds is forthcoming. Also, as noted by Ingersoll [11],
perpetual convertible bonds are unknown in the market, but they are close relatives
of preferred stock, which does trade. Preferred stock does not mature, it can often be
called by the issuing firm, and it can be converted to common stock by its owner.

In the time-independent setting of this paper, it is possible to place the convertible
bond pricing problem on a firm theoretical foundation. Indeed, the price we obtain
is shown to be the only arbitrage-free price in a perfectly liquid market in which
the bond, the stock, and a constant-interest-rate money market can be traded. To
establish this we first make the assumption that the respective parties adopt not
necessarily optimal call and conversion strategies and derive the corresponding no-
arbitrage bond price (Theorem 2.1). We then pose the determination of optimal call
and conversion strategies as a two-person, zero-sum game and show that the game
has a value (Theorem 2.4). We give a full description of the bond price as a function
of the firm value in Theorem 2.5. One of the conclusions of that theorem is that it
can be optimal to call the bond before the conversion price has reached the call price.

2. The model. We consider a firm whose value at time t ≥ 0 is denoted by X(t).
We assume that prior to call or conversion of the convertible bond, the evolution of
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X(t) is governed by the stochastic differential equation

dX(t) = h(X(t)) dt− c dt + σX(t) dW (t),(2.1)

where W is a one-dimensional Brownian motion on some probability space (Ω,F ,P),
h is a Lipschitz continuous function satisfying h(0) = 0, and c and σ are positive
constants. We denote by {F(t); t ≥ 0} the filtration generated by the Brownian
motion W , augmented by the null sets in F .

At time t, the firm has a debt D(t), and so the equity value is

S(t) = X(t) −D(t).(2.2)

The debt is in the nature of a convertible bond, which pays coupons at the constant
rate c. The bond never matures. The firm’s dividend policy is to pay continuously to
shareholders at a rate δ times the equity, where δ > 0.

At any time, the owner of the convertible bond may convert it for stock. Upon
conversion the bondholder will be issued new stock so that his share of the total
equity of the company is the conversion factor γ, where 0 < γ < 1. To simplify
the discussion, let us assume that before conversion the firm has one share of stock
outstanding. We are denoting by X(t) the value of the firm and by D(t) the size of
the debt before conversion. Therefore, (2.2) gives the price of firm’s single share of
stock before conversion. Upon conversion, the firm issues new stock and the former
bondholder becomes a stockholder. The total value of the firm’s outstanding stock is
X(t), and the value of the stock owned by the former bondholder is γX(t). Therefore,
the price of the share of the stock outstanding before conversion is now (1 − γ)X(t).

At any time, the firm may call the bond, which requires the bondholder to either
immediately surrender it for the fixed conversion price K > 0 or else immediately
convert it as described above. If the bond is surrendered, no new stock is issued and
the price of the firm’s single outstanding share becomes X(t)−K. In this model the
firm may not call the bond if X(t) < K; i.e., there is no provision for reissuing debt.

Equation (2.1) describes the evolution of X(t) only before call or conversion. Prior
to conversion or call, the firm value X(t) may drop to zero, in which case the firm
declares bankruptcy and coupons and dividends cease.

There is a constant interest rate r, and we assume δ < r. Prior to call or conversion
of the bond, there are three tradable assets: the firm’s stock, the convertible bond, and
a money market paying interest r. We assume that all these are infinitely divisible and
there are no transaction costs. Thus, the value V (t) of a portfolio which holds ∆1(t)
shares of stock and ∆2(t) convertible bonds at time t and finances this by investing or
borrowing at interest rate r evolves according to the stochastic differential equation

dV (t) = ∆1(t)
(
dS(t) + δS(t)

)
+ ∆2(t)

(
dD(t) + cdt

)
(2.3)

+r
(
V (t) − ∆1(t)S(t) − ∆2(t)D(t)

)
dt.

An arbitrage arises if one can begin with V (0) = 0 and use {F(t)}-adapted processes
∆1 and ∆2 so that at some bounded stopping time τ at or before the minimum of the
time of call, the time of conversion and the time of bankruptcy, V (τ) ≥ 0 almost surely
and V (τ) > 0 with positive probability. We restrict ourselves to trading strategies
∆1(t), ∆2(t) which cause V (t) to be uniformly bounded from below for 0 ≤ t ≤ τ .
Our goal is to price the convertible bond, under the assumption that the firm issuing
the bond and the bondholder behave optimally, in a way which precludes arbitrage.
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If the bond is called, the bondholder surrenders it for the call price K if K
exceeds the conversion value γX(t) and converts it if γX(t) > K. If γX(t) = K,
the bondholder is indifferent between surrender and conversion. Thus, if the bond is
called when the firm value is X(t), then the value of the bond is max{K, γX(t)}. If
the bond has not been called, we assume the bondholder adopts a rule of the form:
“convert as soon as the value of the firm equals or exceeds Co.” For the firm, we
consider call strategies of the form “call the first time the value of the firm equals or
exceeds Ca.” The firm must choose Ca ≥ K; if Ca < K, the firm would call when the
firm value was insufficient to pay the call price. The firm and bondholder each choose
a strategy, characterized by positive constants Ca ≥ K and Co > 0. Once Ca, Co are
chosen, we want to find the price of the bond as a smooth function of the value of the
firm such that no arbitrage can occur.

To set the notation, for an arbitrary number a > 0 we define the nonlinear
differential operator acting on functions f ∈ C[0, a] ∩ C2(0, a) by

N f(x) � rf(x) − (rx− c)f ′(x) + δ(x− f(x))f ′(x) − 1

2
σ2x2f ′′(x).(2.4)

We shall see that this differential operator corresponds to the stochastic differential
equation for the firm value

dX(t) =
(
rX(t) − c

)
dt− δ

(
X(t) − f(X(t))

)
dt + σX(t) dW (t),(2.5)

rather than (2.1) posited above. This turns out to be the so-called risk-neutral evo-
lution of the value of the firm. Under the risk-neutral evolution, the firm value has
mean rate of change r reduced by the coupon and dividend payments. The volatility
σ is the same as in (2.1). An interesting feature of this model is that the function
f appearing in (2.5), which determines the evolution of the “state” under the risk
neutral measure for this problem, must be determined by optimality considerations.
It is not known a priori.

Theorem 2.1. Suppose Ca ≥ K and Co > 0 are chosen (not necessarily opti-
mally) by the firm and bondholder, respectively, and set

a∗ � min{Ca, Co}, τ∗ � inf{t ≥ 0;X(t) /∈ (0, a∗)}.(2.6)

Assume X(0) ∈ (0, a∗) and

D(t) = f(X(t)), 0 ≤ t ≤ τ∗,(2.7)

for a function f ∈ C[0, a∗] ∩ C2(0, a∗) satisfying the boundary conditions

f(0) = 0, f(a∗) =

{
γa∗ if 0 < Co < Ca,
max{K, γa∗} if K ≤ Ca ≤ Co.

(2.8)

If there is no arbitrage, then

N f(x) = c for 0 < x < a∗.(2.9)

Conversely, if the function f satisfies (2.8) and (2.9) and the derivative f ′ is bounded
on (0, a∗), then there is no arbitrage.

Proof. Assume that the price of the bond is D(t) = f(X(t)) for a function
f ∈ C[0, a∗] ∩ C2(0, a∗) satisfying (2.8). In particular, the value of the equity is
S(t) = X(t)−f(X(t)) for 0 ≤ t ≤ τ∗. Taking (2.3) into account, we see that the value
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V (t) of a self-financing portfolio starting with initial capital V (0) = 0 and containing
∆1(t) shares of stock and ∆2(t) units of convertible bond evolves according to

dV (t) = ∆1(t)
[
d
(
X(t) − f(X(t))

)
+ δ

(
X(t) − f(X(t))

)
dt
]

+ ∆2(t)
[
df(X(t)) + c dt

]
+ r

[
V (t) − ∆1(t)

(
X(t) − f(X(t))

)
− ∆2(t)f(X(t))

]
dt.

Therefore,

d(e−rtV (t))(2.10)

= e−rt
[
∆1(t)

(
1 − f ′(X(t))

)
+ ∆2(t)f

′(X(t))
]
dX(t)

+ e−rt∆1(t)

[
−1

2
σ2X2(t)f ′′(X(t)) − (r − δ)X(t) + (r − δ)f(X(t))

]
dt

+ e−rt∆2(t)

[
1

2
σ2X2(t)f ′′(X(t)) + c− rf(X(t))

]
dt.

We choose ∆1(t) = f ′(X(t))sgn(N f(X(t)) − c) and ∆2(t) = −(1 − f ′(X(t))) sgn
(N f(X(t))− c), so that ∆1(t)(1− f ′(X(t)))+∆2(t)f

′(X(t)) = 0. With these choices
(2.10) becomes d(e−rtV (t)) = |N f(X(t)) − c| dt. This equation shows that the port-
folio value V (t) is bounded from below by V (0) = 0 and provides an arbitrage unless
N f(x) = c for 0 < x < a∗.

We now prove the converse. Assume D(t) = f(X(t)) for 0 ≤ t ≤ τ∗, and f

satisfies (2.8) and (2.9). Let τ ≤ τ∗ be a bounded stopping time. Since h(X(t))
X(t) and

f(X(t))
X(t) are bounded for 0 ≤ t ≤ τ∗, we can use Girsanov’s theorem to construct an

equivalent probability measure P̃ such that∫ t

0

h(X(s))

X(s)
ds + σW (t) = rt− δ

∫ t

0

(
1 − f(X(s))

X(s)

)
ds + σW̃ (t)(2.11)

for 0 ≤ t ≤ τ , where W̃ is a Brownian motion under P̃. The differential of the value
of the firm may be rewritten as

dX(t) = rX(t)dt− δ(X(t) − f(X(t)))dt− cdt + σX(t)dW̃ (t), 0 ≤ t ≤ τ.(2.12)

Let us consider the value V (t) starting with initial capital V (0) = 0 corresponding
to a self-financing trading strategy ∆1(t), ∆2(t) for 0 ≤ t ≤ τ . We can write the
evolution of V (t) as

d(e−rtV (t)) = ∆1(t)
(
d(e−rtS(t)) + δe−rtS(t)dt

)
(2.13)

+ ∆2(t)
(
d(e−rtD(t)) + ce−rtdt

)
.

Since D(t) = f(X(t)), S(t) = X(t) − f(X(t)), and the function f is smooth, we can
apply Itô’s formula to obtain

d(e−rtS(t)) + δe−rtS(t)dt(2.14)

= e−rt (N f(X(t)) − c) dt + e−rt(1 − f ′(X(t)))σX(t)dW̃ (t),

d(e−rtD(t)) + ce−rtdt(2.15)

= −e−rt (N f(X(t)) − c) + e−rtf ′(X(t))σX(t)dW̃ (t).
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We assume N f(x) − c = 0 for 0 < x < a∗, and taking into account (2.14), (2.15),

and (2.13), we conclude that e−r(t∧τ)V (t∧ τ) is a local martingale under P̃. But V is

uniformly bounded below, and Fatou’s lemma implies Ẽ [e−rτV (τ)] ≤ V (0) = 0. This

means it is impossible to have P̃{V (τ) ≥ 0} = 1 and P̃{V (τ) > 0} > 0. Since P̃ is
equivalent to the probability measure P, no arbitrage exists.

In the remainder of this section we state the principal results of the paper. Their
proofs are provided in section 7.

To compute the “no arbitrage” price of the convertible bond for some (not neces-
sarily optimal) call and conversion levels, we need an existence and uniqueness result
for boundary value problems associated with (2.9).

Theorem 2.2. Let y1 be a positive number and 0 < y1 ≤ x1. Then there exists
a unique solution f ∈ C[0, x1] ∩ C2(0, x1) of the boundary value problem{

N f(x) = c for x ∈ (0, x1),
f(0) = 0, f(x1) = y1.

(2.16)

Furthermore, the derivative f ′ is bounded on (0, x1). If y1 < x1, then f ′(x) < 1 for
all x ∈ (0, x1).

Taking into account Theorem 2.1, Theorem 2.2, and the discussion regarding the
price of the bond at call or conversion time, we see that once the call and conversion
levels have been set, the “no-arbitrage” price of the convertible bond is

D(t) = f(X(t), Ca, Co),(2.17)

where the function f(x,Ca, Co) is given in the next definition.
Definition 2.3.

(i) If 0 < Co < Ca, define f(x,Ca, Co) for 0 ≤ x ≤ Co to be the unique solution
of the equation N f = c on (0, Co) satisfying the boundary conditions f(0) = 0,
f(Co) = γCo. For x ≥ Co, define

f(x,Ca, Co) =

{
γx, Co ≤ x < Ca,
max{K, γx}, x ≥ Ca.

(ii) If K ≤ Ca ≤ Co, define f(x,Ca, Co) for 0 ≤ x ≤ Ca to be the unique solution
of the equation N f = c on (0, Ca) satisfying the boundary conditions f(0) = 0,
f(Ca) = max{K, γCa}. For x ≥ Ca, define f(x,Ca, Co) = max{K, γx}.

Equation (2.17) provides a bond price once the call and conversion levels Ca and
Co have been chosen. The firm wishes to minimize the value of the bond (in order to
maximize the value of equity), and the bondholder wishes to maximize the value of
the bond. This creates a two-person game, and according to the next theorem, this
game has a value.

Theorem 2.4. There exist C∗
a ≥ K and C∗

o > 0 such that for each x ≥ 0, we
have

f(x,C∗
a , C

∗
o ) = inf

Ca≥K
f(x,Ca, C

∗
o ) = sup

Co>0
f(x,C∗

a , Co).(2.18)

Equation (2.18) implies the following equalities, so we can define

f∗(x) � f(x,C∗
a , C

∗
o ) = sup

Co>0
inf

Ca≥K
f(x,Ca, Co) = inf

Ca≥K
sup
Co>0

f(x,Ca, Co).(2.19)
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This is the price of the bond as a function of the underlying firm value x, and C∗
a and

C∗
o are the optimal call and optimal conversion levels, respectively.

Theorem 2.5. The function f∗ is in C[0,∞) and is described by one of three
cases. There are two constants 0 ≤ K1 < K2 depending on r, δ, σ, c, and γ.

(i) If K > K2, then f∗ ∈ C1(0,∞) and satisfies

0 < f ′
∗(x) < 1 for x > 0.(2.20)

In this case,

C∗
o = min {x > 0; f∗(x) = γx} =

K2

γ
,

f∗ restricted to (0, C∗
o ) is the unique classical solution of N f∗ = c on (0, C∗

o ) with
boundary conditions f∗(0) = 0 and f∗(C

∗
o ) = γC∗

o ,

f∗(x) = γx for x ≥ C∗
o ,(2.21)

and C∗
a = K

γ > C∗
o = K2

γ .

(ii) If K1 ≤ K ≤ K2, then f∗ restricted to (0,K/γ) is the unique classical solution
of N f∗ = c on (0,K/γ) with the boundary conditions f∗(0) = 0 and f∗ (K/γ) = K.
We have

0 < f ′
∗(x) < 1 for 0 < x <

K

γ
,(2.22)

f∗(x) = γx for x ≥ K

γ
.(2.23)

In this case, C∗
o = C∗

a = K
γ .

(iii) If K1 > 0, there is a third case. A sufficient condition for K1 > 0 is 0 <
γ < 1

2 . In the third case, 0 < K < K1, f∗ restricted to (0,K/γ) is continuously
differentiable, C∗

a ∈ (K,K/γ), and f∗ restricted to (0, C∗
a) is the unique solution of

N f∗ = c on (0, C∗
a) with the boundary conditions f∗(0) = 0, f∗(Ca) = K. We have

0 < f ′
∗(x) < 1 for 0 < x < C∗

a ,(2.24)

f∗(x) =

{
K, C∗

a ≤ x ≤ K
γ ,

γx, x ≥ K
γ .

(2.25)

In particular, f ′
∗(C

∗
a−) = 0 and K < C∗

a < C∗
o = K

γ .

From Theorem 2.5 we see that the firm debt at time t is D(t) = f∗(X(t)), and
(2.2) becomes

S(t) = X(t) − f∗(X(t)).(2.26)

So long as x ∈ (0, C∗
a∧C∗

o ), the function F (x) � x−f∗(x) is strictly increasing because
of (2.20), (2.22), and (2.24) and hence has an inverse F−1. We may invert (2.26) to
obtain X(t) = F−1(S(t)), and thereby obtain a formula for the market price of the
convertible bond in terms of the equity of the firm: D(t) = f∗(F

−1(S(t))). In all
three cases of Theorem 2.5, the firm should call as soon as D(t) rises to the call price
K. In cases (i) and (ii), this is the first time the conversion value of the bond rises to
the call price. In case (iii), the call should occur before the conversion value rises to
the call price. The owner of the bond should convert as soon as D(t) − γF−1(S(t))
falls to zero, i.e., as soon as the difference between the bond price and the bond’s
conversion value falls to zero.
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3. Generation of candidate functions. Theorem 2.5 asserts that for small
values of x, the value f∗(x) of the convertible bond satisfies the second-order ordinary
differential equation N f(x) = c. Not only is this equation nonlinear, it is also singular
at x = 0. Rather than solving the differential equation N f(x) = c directly, we
generate a one-parameter family of solutions to the variational inequality

min{N f(x) − c, f(x) − γx} = 0.(3.1)

To do this, we first construct for a fixed function g ∈ C[0, a], a solution to the
variational inequality

min{Lgf(x) − c, f(x) − γx} = 0,(3.2)

subject to boundary conditions f(0) = 0, f(a) = γa. Here, the linear differential
operator Lg is defined by

Lgf(x) � rf(x) − (rx− c)f ′(x) + δ(x− g(x))f ′(x) − 1

2
σ2x2f ′′(x).(3.3)

In section 6 we prove existence of a function g for which the solution to this equation
is g itself.

Definition 3.1. Let a ∈ (0,∞) be given. Denote Da = [0, a] and let Ga be the
set of continuous functions g : Da → R which are continuously differentiable on (0, a)
and satisfy

g(0) = 0, g(a) = γa,

g(x) ≥ γx, −Ma ≤ g′(x) < 1 ∀x ∈ (0, a),

where Ma will be defined in Proposition 5.6. We denote by Ga the closure of Ga with
respect to the supremum norm in C[0, a].

Denote D∞ = [0,∞) and let G∞ be the set of continuous functions g : D∞ → R

which are continuously differentiable on (0,∞) and satisfy

g(0) = 0, g(x) = γx ∀x ∈ [bg,∞),

g(x) ≥ γx, 0 ≤ g′(x) < 1 ∀x ∈ (0,∞),

where bg is a finite number depending on the function g. Let (Cγ , d) be the complete
metric space of continuous functions on D∞ which satisfy limx→∞[g(x) − γx] = 0,
and d is the supremum metric. We denote by G∞ the closure of G∞ in (Cγ , d).

For a ∈ (0,∞], g ∈ Ga, and x ∈ Da, we define Xx(t) by Xx(0) = x and

dXx(t) = rXx(t) dt− δ
(
Xx(t) − g(Xx(t))

)
dt− c dt + σXx(t) dW (t)(3.4)

for 0 ≤ t ≤ τx0 ∧ τxa , where τxy � inf {t ≥ 0;Xx(t) = y}. We then set

Tag(x) � sup
0≤τ≤τx

0 ∧τx
a

E

[∫ τ

0

e−ruc du + I{τ<∞}e
−rτγXx(τ)

]
,(3.5)

where the supremum is over stopping times τ which satisfy 0 ≤ τ ≤ τx0 ∧ τxa .
We interpret the objects in Definition 3.1 as follows. Suppose we have a function

g which maps the value of the firm into the value of convertible bond. Then S(t)
in (2.2) is given by S(t) = X(t) − g(X(t)). As we have already seen in the proof of
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Theorem 2.1 (see (2.12)), under a “risk-neutral” measure, we expect the value of the
firm to have mean rate of growth equal to the interest rate r, reduced by the dividend
and coupon payments. In other words, if g(x) is the value of the bond when x is the
value of the firm, then the evolution of the value of the firm should be given by (3.4).

The fortunes of the firm, which depend on the function g and the initial condition
x, may result in bankruptcy at time τx0 . If bankruptcy never occurs, then τx0 = ∞. The
bondholder collects dividends at rate c until bankruptcy occurs or until he converts the
bond to stock. He may convert at any stopping time τ ≤ τxa ; if he has not converted
by the time τa, he must do so at this time. The parameter a in this restriction on
the stopping time τ will allow us to construct a one-parameter family of solutions
to (2.4), and we shall later see that the correct choice of the parameter a depends
on the call price K. However, in this interpretation of the function Tag, we do not
permit the firm to call. Since the conversion option is worthless after bankruptcy, we
assume without loss of generality that 0 ≤ τ ≤ τx0 . Upon conversion, the bondholder
receives stock valued at γXx(τ). It follows that the risk-neutral value of a conversion
strategy τ is E

[∫ τ

0
e−ruc du + I{τ<∞}e

−rτγXx(τ)
]
, and Tag(x) is the value of the

optimal conversion strategy, if it exists.
We began this discussion with the supposition that g(x) is the value of the con-

vertible bond when x is the value of the firm. But the value of the convertible bond
should be the risk-neutral discounted value of coupons collected plus the risk-neutral
discounted value of the stock received upon conversion. In other words, we seek a
function f ∈ Ga such that Taf = f . Such a function will satisfy (2.9), at least for
small values of x.

In section 4 we prove continuity of the function Tag. In section 5 we show that,
like g, the function Tag is in Ga, and we state the Hamilton–Jacobi–Bellman equation
(3.2) satisfied by Tag. In section 6, we show that the mapping Ta : Ga → Ga has a
unique fixed point, which we call fa. Section 7 shows that for each call price K, there
is a value of a so that fa is a part of the function described in Theorem 2.5. This
enables us to prove Theorems 2.4 and 2.5. Finally, at the end of section 7 we also
prove Theorem 2.2.

4. Continuity of candidate functions. Let a ∈ (0,∞] and g ∈ Ga be given,
and define Tag by (3.5). If a is finite, we extend g to be constant on (−∞, 0] and
on [a,∞). Since the extended g is Lipschitz, we may use (3.4) to define Xx(t) for
all t ≥ 0. The assumptions on g ensure that for some η > 0, δ(x − g(x)) + c ≥ ηx
for all x ≥ 0. We now set Z(t) = exp

{
−σW (t) − 1

2σ
2t
}
, so that d(Z(t)Xx(t)) ≤

(r − σ2 − η)Z(t)Xx(t) dt for all 0 ≤ t ≤ τx0 . Integration yields

Z(t)Xx(t) ≤ x +
(
r − σ2 − η

) ∫ t

0

Z(u)Xx(u) du, 0 ≤ t ≤ τx0 ,

and an application of Gronwall’s inequality gives the bound

Xx(t) ≤ x

Z(t)
e(r−σ2−η)t = x exp

{
σW (t) +

(
r − 1

2
σ2 − η

)
t

}
, 0 ≤ t ≤ τx0 .(4.1)

Lemma 4.1. The function Tag satisfies the bounds

γx ≤ Tag(x) ≤ c

r
+ γx ∀x ∈ Da.(4.2)

Proof. The lower bound in (4.2) follows from taking τ ≡ 0 in (3.5). For the upper
bound, we apply the optional sampling theorem and Fatou’s lemma to the martingale
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exp
{
σW (t) − 1

2σ
2t
}

and use (4.1) to obtain for any stopping time τ satisfying 0 ≤
τ ≤ τx0

Ee−rτXx(τ) ≤ xE exp

{
σW (τ) − 1

2
σ2τ

}
(4.3)

≤ x lim inf
t→∞

E exp

{
σW (t ∧ τ) − 1

2
σ2(t ∧ τ)

}
= x.

Therefore,

Tag(x) ≤
∫ ∞

0

e−ruc du + γ sup
0≤τ≤τx

0

Ee−rτXx(τ) ≤ c

r
+ γx.

Lemma 4.2. For all y ≥ 0, τxy is almost surely continuous in x at all x ≥ 0.
Proof. It is possible to choose for each initial condition a version of the process

Xx(t), t ≥ 0, such that Xx(t) is jointly continuous in (t, x), almost surely (see [15,
Theorem 4.2.5]). Because of the uniqueness of the solution to (3.4), we have for
0 ≤ ξ < x ≤ y that Xξ(t) ≤ Xx(t), 0 ≤ t < ∞, almost surely; if these processes
ever coalesce, they would henceforth coincide. This implies that limξ↑x τ

ξ
y ≥ τxy .

On the other hand, τxy = inf {t ≥ 0;Xx(t) > y}, which implies that limξ↑x τ
ξ
y ≤ τxy .

Therefore,

lim
ξ↑x

τ ξy = τxy .(4.4)

By a similar argument, we conclude

lim
ξ↓x

τ ξy = τxy .(4.5)

Combining (4.4) and (4.5), we see that, almost surely, limξ→x τ
ξ
y = τxy , 0 ≤ x < y,

and (4.4) holds for x = y. A similar argument shows that limξ→x τ
ξ
y = τxy , 0 ≤ y < x,

and (4.5) holds for x = y.
Using (4.1) to bound e−rtXx(t), limt→∞ exp{σW (t)− 1

2σ
2t} = 0, joint continuity

of Xx(t) in (t, x), and Lemma 4.2, we conclude that the process

Y x(t) �
∫ t∧τx

0 ∧τx
a

0

e−ruc du + I{t∧τx
0 ∧τx

a<∞}e
−r(t∧τx

0 ∧τx
a )γXx(t ∧ τx0 ∧ τxa )(4.6)

is jointly continuous in (t, x) ∈ [0,∞] × Da, almost surely. In particular, we have
continuity at time t = ∞, where

Y x(∞) �
∫ τx

0 ∧τx
a

0

e−ruc du + I{τx
0 ∧τx

a<∞}e
−r(τx

0 ∧τx
a )γXx(τx0 ∧ τxa ).

Lemma 4.3. The function Tag is lower semicontinuous on Da.
Let τ be any nonnegative stopping time. Lemma 4.2 implies that τ ∧ τx0 ∧ τxa is

almost surely continuous in x. The function

hτ,a = E

[∫ τ∧τx
0 ∧τx

a

0

e−ruc du + I{τ∧τx
0 ∧x

a<∞}e
−r(τ∧τx

0 ∧τx
a )γXx(τ ∧ τx0 ∧ τxa )

]

is thus lower semicontinuous (Fatou’s lemma), and Tag(x) = supτ hτ,a(x), the supre-
mum of lower semicontinuous functions, is lower semicontinuous.
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We know from inequality (4.1) that

sup
0≤t≤∞

Y x(t) ≤ c

r
+ γx sup

t≥0
exp

{
σW (t) −

(
η +

1

2
σ2

)
t

}
=

c

r
+ γxeσW

∗
,(4.7)

where W ∗ = supt≥0

[
W (t) −

(
σ
2 + η

σ

)
t
]
. According to [13, Exercise 5.9, Chapter 3],

W ∗ has density

P{W ∗ ∈ db} = 2
(σ

2
+

η

σ

)
exp

{
−2

(σ
2

+
η

σ

)
b
}
db, b > 0.(4.8)

This means that EeσW
∗
< ∞, so we obtain

E sup
0≤t≤∞

Y x(t) < ∞.(4.9)

In light of Lemmas 4.1 and 4.3, the set

Sg � {x ∈ Da;Tag(x) = γx} = {x ∈ Da : Tag(x) ≤ γx}

is closed, contains the origin, and contains a if a is finite. We define

τx∗ � inf {t ≥ 0;Xx(t) ∈ Sg} ,(4.10)

a stopping time satisfying τx∗ ≤ τx0 ∧ τxa . Since inequality (4.9) holds, it is known from
the general theory of optimal stopping that the process

Zx(t) �
∫ t∧τx

0 ∧τx
a

0

e−ruc du + I{t∧τx
0 ∧τx

a<∞}e
−r(t∧τx

0 ∧τx
a )Tag(X

x(t ∧ τx0 ∧ τxa ))(4.11)

is a supermartingale for 0 ≤ t ≤ ∞; the stopped process Zx(t ∧ τx∗ ), 0 ≤ t ≤ ∞, is a
martingale; and τx∗ is an optimal stopping time, i.e.,

Tag(x) = E

[∫ τx
∗

0

e−rucdu + I{τx
∗ <∞}e

−rτx
∗ γXx(τx∗ )

]
= EY x(τx∗ ).(4.12)

To prove this, one can first show, using the Markov property, that the process
{Zx(t)}0≤t≤∞ is the Snell envelope of {Y x(t)}0≤t≤∞, i.e.,

Zx(t) = ess supτ≥tE [Y x(τ)|Ft] ,(4.13)

and then appeal to [14, Appendix D] . Another way to prove it is to combine Theorem
1, page 124, and Theorem 3, page 127, from [20].

Lemma 4.4. Assume a = ∞. We have

γx ≤ T∞g(x) ≤ x ∀x ∈ D∞,(4.14)

and there is a number b > 0 such that

T∞g(x) = γx ∀x ∈ [b,∞).(4.15)

If a ∈ (0,∞), we have

γx ≤ Tag(x) ≤ x ∀x ∈ Da.(4.16)
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Proof. We shall construct a number b > 0 and a function ϕ : [0,∞) 
→ R such
that

γx ≤ ϕ(x) ≤ x ∀x ∈ [0, b], ϕ(x) = γx ∀x ∈ [b,∞);(4.17)

ϕ′′ is defined and continuous on [0,∞), except at
√
b and b, but has one-sided deriva-

tives at these points; ϕ′ is defined, bounded, and continuous on [0,∞) except at
√
b,

but has one-sided derivatives at this point which satisfy

D−ϕ(
√
b) −D+ϕ(

√
b) > 0,(4.18)

Lgϕ(x) ≥ c ∀x ∈ [0,∞) \
{√

b, b
}
.(4.19)

Once b and ϕ are constructed, we choose an arbitrary x ≥ 0. With X(t) =
Xx(t), the extension of Itô’s rule to continuous, piecewise C2 functions [13, Chapter
3, Theorem 7.1 and Corollary 7.2] implies that

d
(
e−rtϕ(X(t))

)
= −e−rtLgϕ(X(t)) dt− e−rt

(
D−ϕ(

√
b)−D+ϕ(

√
b)
)
dΛ(t)

+ e−rtσX(t)ϕ′(X(t)) dW (t),

where Λ(t) is the (nondecreasing) local time of X at
√
b. From (4.18) and (4.19), we

see that

d
(
e−rtϕ(X(t))

)
≤ −e−rtc dt + e−rtσX(t)ϕ′(X(t)) dW (t).

Hence, for any stopping time τ ≤ τx0 and any deterministic time T , we have

Ee−r(τ∧T )ϕ(X(τ ∧ T )) ≤ ϕ(x) − E

∫ τ∧T

0

e−rtc dt,

where we have used the boundedness of ϕ′ and (4.1) to ensure that the expectation
of the Itô integral is zero. This last inequality implies

ϕ(x) ≥ E

[∫ τ∧T

0

e−rtc dt + I{τ<∞}e
−r(τ∧T )γX(τ ∧ T )

]
.

Letting T → ∞ and using Fatou’s lemma, then maximizing over τ , we obtain ϕ(x) ≥
Tag(x). Relations (4.14), (4.15) follow from (4.2) and (4.17).

If a ∈ (0,∞), then the function h(x) = x on [0, a] is two times continuously
differentiable on (0, a) and satisfies Lgh(x) ≥ c. Since h(x) ≥ γx for each 0 ≤ x ≤ a,
we can do the same computation as above for the function h instead of ϕ and obtain
(4.16).

The remainder of the proof is the construction of b and ϕ. For b > e2, define the
positive function η(b) � (1 − γ)/

(
1
2 log b + 1√

b
− 1

)
. Consider the function

k(b) � c [γ − η(b) − 1] +
1

2
δ
√
b(1 − γ) (γ − η(b)) − 1

2
σ2η(b)

√
b.

Since limb→∞ η(b) = 0, we have limb→∞ k(b) = ∞. We fix a value b > e2 for which
k(b) > 0, η(b) < γ. For any g ∈ Ga we know that limx→∞[g(x) − γx] = 0, so for b
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sufficiently large, we also have

x− g(x) ≥ 1

2
(1 − γ)

√
b ∀x ∈ [

√
b,∞),(4.20)

δ(x− g(x)) ≥ (1 − γ)c

γ
∀x ∈ [b,∞).(4.21)

With b chosen to satisfy all the above properties, we set

ϕ(x) =

⎧⎨⎩
x, 0 ≤ x ≤

√
b,

γx + η(b)
√
b
(
x
b − log x

b − 1
)
,

√
b < x < b,

γx, x ≥ b.

(4.22)

A straightforward computation verifies that ϕ has the desired properties.

Corollary 4.5. The function Tag is continuous on Da.

Proof. Recall from the proof of Lemma 4.3 that for each y ≥ 0, the stopping time
τxy is a continuous function of x. The complement of the closed set Sg,

Cg � {x ∈ Da;Tag(x) > γx},

is a countable union of disjoint open intervals, and on each of these intervals (α, β),
we have τx∗ = τxα ∧ τxβ , which is a continuous function of x ∈ [α, β]. On the set Sg,
τx∗ ≡ 0. Hence, τx∗ is continuous on both Sg and its complement Cg. To show that τx∗
is continuous on Da = Cg ∪ Sg, it remains only to show that if {xn}∞n=1 is a sequence
in Cg converging to x ∈ Sg, then τxn

∗ → τx∗ = 0. But τxn
∗ ≤ τxn

x and τxn
x → τxx = 0,

almost surely (Lemma 4.2), so the desired result holds.

For a < ∞ we have 0 ≤ Xx(t ∧ τx∗ ) ≤ a. For a = ∞, Lemma 4.4 implies there
exists b > 0 such that [b,∞) ⊂ Sg. In this case, 0 ≤ Xx(t ∧ τx∗ ) ≤ max{x, b}. The
continuity of Tag follows from the representation (4.12), the continuity of τx∗ , the joint
continuity of Y x(t) on [0,∞] ×Da, and the dominated convergence theorem.

Proposition 4.6. The function Tag is twice continuously differentiable on Cg
and satisfies the equation

LgTag = c on Cg.(4.23)

If g ∈ Ga, then Tag is three times continuously differentiable on Cg.
Proof. Let x ∈ Cg be given, and choose 0 < α < x < β such that (α, β) ⊂ Cg.

Consider the linear, second-order ordinary differential equation

Lgh(x) = c ∀x ∈ (α, β),(4.24)

with the boundary conditions h(α) = Tag(α), h(β) = Tag(β). Because the coefficients
of (4.24) are continuous, the equation has a twice continuously differentiable solution
h satisfying these boundary conditions. If g ∈ Ga, so that the coefficients of (4.24)
are continuously differentiable, then h is three times continuously differentiable. Itô’s
formula implies that

d
[
e−rth(Xx(t))

]
= e−rt [−Lgh(Xx(t)) dt + σXx(t)h′(Xx(t)) dW (t)]

= −e−rtc dt + e−rtσXx(t)h′(Xx(t)) dW (t).
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Integrating this equation from t = 0 to t = τxα ∧τxβ and taking expectations, we obtain

h(x) = E

[∫ τx
α∧τx

β

0

e−rtc dt + e−r(τx
α∧τx

β )h(Xx(τxα ∧ τxβ ))

]

= E

[∫ τx
α∧τx

β

0

e−rtc dt + e−r(τx
α∧τx

β )Tag(X
x(τxα ∧ τxβ ))

]
= EZx(τxα ∧ τxβ ) = Zx(0) = Tag(x),

where we have used the fact that Zx(t ∧ τxα ∧ τxβ ) is a bounded martingale, since
τxα ∧ τxβ ≤ τx∗ .

Remark 4.7. Let us denote by D±Tag the derivatives from the right and left of
Tag, when these one-sided derivatives exist. We likewise denote by DTag the derivative
of Tag, when the derivative exists. Because it is open, the set Cg is a countable union of
disjoint open intervals, which we call the components of Cg. Let (α, β) be one of these
components. The second-order differential operator Lg does not degenerate to a first-
order operator at any point in [α, β], except at α when α = 0. Therefore, the function
h in the proof of Proposition 4.6 is twice continuously differentiable at the endpoint
β and also at α provided that α > 0. We conclude that D−Tag(β) = limx↑β DTag(x)
exists. If α > 0, then D+Tag(α) = limx↓α DTag(x) also exists.

5. The invariance property of Ta. As in the previous section, let a ∈ (0,∞]
and g ∈ Ga be given, and define Tag by (3.5). In this section we show that Ta

maps Ga into itself. For this we use the theory of viscosity solutions of Hamilton–
Jacobi–Bellman equations developed by Crandall and Lions (see [7], [9]). The proof
of Proposition 5.1 below is standard, so we omit it. See [19] for a similar proof.

Proposition 5.1. The function Tag is a viscosity solution of the Hamilton–
Jacobi–Bellman equation

min{Lgh(x) − c, h(x) − γx} = 0 ∀x ∈ Da.(5.1)

We use Proposition 5.1 to deduce other information about Tag.
Corollary 5.2. Given any b ∈ (0, a), the set Cg ∩ (0, b) is nonempty.
Proof. Suppose Tag(x) = γx for all x ∈ [0, b]. Then

LgTag(x) − c = (γ − 1)c + δγ(x− g(x)),

which is strictly negative for x > 0 sufficiently small. This violates the viscosity
supersolution property of Tag.

Lemma 5.3. If (0, a) ∩ Sg contains a point b, then [b,∞) ∩ Da ⊂ Sg.
Proof. Assume b ∈ (0, a) ∩ Sg and denote ϕ(x) = γx. Because Tag(b) = ϕ(b) and

Tag ≥ ϕ, the viscosity supersolution property for Tag implies

c ≤ Lgϕ(b) = cγ + δγ(b− g(b)).

But the function x → x− g(x) is nondecreasing on Da. Therefore

c ≤ cγ + δγ(x− g(x)) ∀x ∈ [b,∞) ∩ Da.

We must show that Tag(x) ≤ ϕ(x) for all x ∈ [b,∞) ∩ Da. Assume on the
contrary that η � sup

{
Tag(x) − ϕ(x);x ∈ [b,∞) ∩ Da

}
is positive and let x0 attain
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the supremum in the definition of η. (The supremum is attained because both Tag
and ϕ are continuous, and if a = ∞, then Tag(x) = ϕ(x) for all sufficiently large x.)

We take ϕ(x) = ϕ(x) + η for x ∈ [b,∞) ∩ Da, so that ϕ(x) ≥ Tag(x) for x ∈
[b,∞) ∩ Da and ϕ(x0) = Tag(x0). We have ϕ(b) > Tag(b) and can choose ϕ on
(0, b) so that it is twice continuously differentiable and dominates Tag on all of (0, a).
Because Tag is a viscosity subsolution of (5.1) and ϕ(x0) = Tag(x0) > γx0, we obtain

Lgϕ(x0) = rTag(x0) − γ(rx0 − c) + δγ(x0 − g(x0)) ≤ c ≤ γc + δγ(x0 − g(x0)),

and hence Tag(x0) ≤ γx0, a contradiction to the choice of x0. We conclude that
Tag(x) ≤ ϕ(x) for x ∈ [b,∞) ∩ Da.

From Corollary 5.2 and Lemmas 5.3 and 4.4, we have the following.

Proposition 5.4. If a is finite, then Cg = (0, b) for some b ∈ (0, a] and Sg =
{0} ∪ [b, a]. If a = ∞, then Cg = (0, b) for some b ∈ (0,∞) and Sg = {0} ∪ [b,∞).

Let b be as in Proposition 5.4. We have already seen that Tag is twice continuously
differentiable on Cg = (0, b) with a one-sided derivative D−Tag(b) at b. Since Tag(x) =
γx on Sg, this function is clearly differentiable on the set (b, a) if b < a, with one-sided
derivative D+Tag(b) = γ. It remains to examine the differentiability of Tag at the
point b.

Proposition 5.5 (smooth pasting). The function Tag is continuously differen-
tiable on (0, a).

Proof. It suffices to show in the case that b < a that D−Tag(b) = D+Tag(b).
Because Tag(x) ≥ γx for all x ∈ Da and Tag(b) = γb, we must have D−Tag(b) ≤
γ. If D−Tag(b) < γ, we choose m ∈ (D−Tag(b), D

+Tag(b)), k > 0, and define
ϕ(x) = γb + m(x − b) + k(x − b)2 for x in an open interval containing b. Note that
ϕ(b) = Tag(b) and ϕ′(b) = m. Therefore, ϕ(x) < Tag(x) for x �= b in a sufficiently
small neighborhood of b (whose size depends on k). We construct ϕ outside this
neighborhood so that ϕ is twice continuously differentiable on (0, a) and ϕ(x) ≤ Tag(x)
for all x ∈ (0, a). Because Tag is a viscosity supersolution of (5.1), the inequality

0 ≤ Lgϕ(b) − c = rγb− (rb− c)m + δ(b− g(b))m− σ2b2k − c

must hold. Since k > 0 is arbitrary, this is impossible.

We have proved so far the following properties of the value function Tag: for any
g ∈ Ga, Tag is a continuous function on Da and it has a continuous derivative on
(0, a), Tag(0) = 0 and Tag(x) ≥ γx for all x ∈ Da. If a is finite, then Tag(x) = γa; if
a = ∞, then T∞g(x) = γx for x sufficiently large.

We now need to prove an invariance property for the operator Ta. Up to this
point, we have taken g to be an arbitrary function in Ga. For the next proposition,
we must restrict our attention to g ∈ Ga.

Proposition 5.6. Let a ∈ (0,∞] be given. Then Ta maps Ga into Ga.

Proof. Assume that g ∈ Ga. By the above remark, it remains only to show that
−Ma ≤ DTag < 1 on (0, a) if a is finite and 0 ≤ DTag < 1 if a = ∞.

First we claim that the function ψ = DTag (defined on (0, a)) cannot attain a
positive local maximum or a negative local minimum in Cg. By Proposition 4.6, ψ is
C2 on Cg. Assume that ψ has a positive local maximum at x∗ ∈ Cg. Thus, we have
ψ′(x∗) = 0. In particular,

d

dx
(Tag(x) − xψ(x))

∣∣∣
x=x∗

= −x∗ψ
′(x∗) = 0.
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Equation (4.23) implies for x ∈ Cg that

c = LgTag(x)

= r(Tag(x) − xψ(x)) + cψ(x) + δ(x− g(x))ψ(x) − 1

2
σ2x2ψ′(x),

and thus

0 =
d

dx
LgTag(x)

∣∣∣
x=x∗

= δ(1 − g′(x∗))ψ(x∗) −
1

2
σ2x2

∗ψ
′′(x∗).

Because ψ has a local maximum at x∗, ψ
′′(x∗) ≤ 0. But 1 − g′(x∗) is positive, and

ψ(x∗) > 0. We have a contradiction, and hence ψ cannot have a positive local maxi-
mum in Cg. If ψ has a negative local minimum at x∗, we likewise have a contradiction.

We consider now the case that a = ∞. For x < y we have Xx(t) ≤ Xy(t) almost
surely and τx0 ≤ τy0 almost surely. It follows from (3.5) that T∞g is nondecreasing.
The lower bound DT∞g ≥ 0 is established. For the upper bound, DT∞g(x) < 1, we
recall that Cg = (0, b) for some b ∈ (0,∞). Assume there were a point x0 ∈ (0, b)
where DT∞g(x0) ≥ 1. We know that DT∞g(b) = γ < 1. Now consider a point
x1 ∈ (0, x0). If DT∞g(x1) < 1, then DT∞g would have a positive local maximum
in the interval (x1, b), which is impossible. We conclude that DT∞g(x1) ≥ 1. In
other words, if there were a point x0 ∈ (0, b) where DT∞g(x0) ≥ 1, then DT∞g ≥ 1
on the whole interval (0, x0). The upper bound in (4.14) would immediately imply
that T∞g(x) = x for 0 ≤ x ≤ x0, and once again DT∞g would have a positive local
maximum in (0, b). We conclude that DT∞g(x0) < 1 for all x0 ∈ (0, b).

If a is finite, we can modify the above argument, using (4.16) in place of (4.14)
and D−Tag(b) ≤ γ (in case Cg = (0, a)), to obtain the upper bound DTag < 1 on
(0, a).

The proof of the lower bound DTag(x) ≥ −Ma for the case a < ∞ is more
involved. Again using the notation Cg = (0, b), we assume there is x0 ∈ (0, b) such
that DTag(x0) < 0. Let x1 ∈ (0, x0). The continuous function DTag attains its
minimum on [x1, b] at x1 or b, since it cannot attain a negative interior minimum. In
case the minimum is attained at x1, this means that DTag(x1) < DTa(x0) < 0. For
any 0 < x2 < x1, DTg cannot attain a negative interior minimum on [x2, x0], so we
can conclude that DTag(x2) < DTag(x1) < 0. This should hold for any 0 < x2 < x1,
which is in contradiction to Tag(0) = 0, Tag(x) ≥ γx. So if DTag(x0) < 0, then for
any x1 ∈ (0, x0), DTag attains its negative minimum on [x1, b] at b. This means that

D−Tag(b) ≤ inf
0<x≤b

DaTg(x) < 0.(5.2)

In other words, the derivative DaTg either is nonnegative or, if it has negative values,
is bounded below by DT−

a g(b). Of course, the latter case can only happen for b = a.
The first case satisfies the conclusion, so we assume

D−Tag(a) = min
x∈(0,a]

DTag(x) < 0.(5.3)

This means that Cg = (0, a) and hence LgTag(x) = c for all x ∈ (0, a). Let h satisfy
Lgh(x) = c for x ∈ (γa, a) and h(γa) = γa, h(a) = γa. Since Tag(γa) ≤ γa = h(γa),
Tag(a) = γa = h(a) and LgTag(x) = Lgh(x) for all x ∈ (0, a), the usual comparison
argument based on the maximum principle yields Tag(x) ≤ h(x) for all x ∈ [γa, a].
But Tag(a) = h(a), and this implies

D−Tag(a) ≥ D−h(a).(5.4)
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It suffices to find a lower bound on D−h(a). We have 0 ≤ γx ≤ Tag(x) ≤ h(x)
for x ∈ [γa, a]. In order to find an upper bound on h, we let x∗ ∈ [γa, a] be such that
h(x∗) = maxx∈[γa,a] h(x). If x∗ is an interior point of [γa, a], then h′(x∗) = 0 and
h′′(x∗) ≤ 0. But Lgh(x∗) = c from which we conclude that maxx∈[γa,a] h(x) = h(x∗) ≤
c
r . If x∗ is not an interior point of [γa, a], then maxx∈[γa,a] h(x) ≤ h(γa) = h(a) = γa.
In either case, we have

0 ≤ h(x) ≤ max
{
γa,

c

r

}
∀x ∈ [γa, a].(5.5)

We know that

0 ≤ g(x) ≤ a ∀ x ∈ [γa, a].(5.6)

Neither (5.5) nor (5.6) depends on the lower bound −Ma ≤ g′(x) satisfied by functions
g in Ca when a is finite.

Since h(γa) = h(a), there exists x0 ∈ (γa, a) such that h′(x0) = 0. We solve the
equation Lgh = c on (γa, a) for h′′ and then integrate to obtain

h′(x) =

∫ x

x0

2

σ2y2

[
rh(y) − (ry − c)h′(y) + δ(y − g(y))h′(y) − c

]
dy(5.7)

for all x ∈ [x0, a]. Taking into account the bounds (5.5) and (5.6), we may use
Gronwall’s inequality to obtain |h′(a)| ≤ Ma for some constant Ma depending only
on the bounds max{γa, c

r

}
and a appearing in (5.5) and (5.6) and also depending

on the interval [γa, a]. From (5.3), (5.4) we conclude that DTag(x) ≥ −Ma for all
x ∈ (0, a).

Remark 5.7. Ma is bounded in a as long as a is bounded away from 0.

6. The fixed point property. For a = ∞ we recall that G∞ is a closed subset
of the complete metric space (Cγ , d) (see Definition 3.1). For a < ∞, the set Ga is a
closed convex subset of the Banach space C[0, a] endowed with the supremum norm.
We denote by d(f, g) the metric associated with the supremum norm. We have proved
that T∞(G∞) ⊂ Cγ and Ta(Ga) ⊂ C[0, a] for a < ∞. We also know (in both cases
a = ∞ and a < ∞) that Ta(Ga) ⊂ Ga. In this section we prove that Ta(Ga) ⊂ Ga and
the operator Ta has a unique fixed point in Ga. Many of the arguments in the rest of
the paper are based on the following lemma.

Lemma 6.1 (comparison). Let 0 ≤ α < β and f, g ∈ C(α, β) be given. Consider
ϕ ∈ C1(α, β) a viscosity subsolution of Lfϕ(x) ≤ c on (α, β) and ψ ∈ C1(α, β) a
viscosity supersolution of Lgψ(x) ≥ c on (α, β). Assume that at least one of the
functions is a classical (C2(α, β)) solution of the corresponding differential inequality
and that the function ϕ− ψ attains a local maximum at x∗ ∈ (α, β). Then

r(ϕ(x∗) − ψ(x∗)) ≤ δ(f(x∗) − g(x∗))ϕ
′(x∗) = δ(f(x∗) − g(x∗))ψ

′(x∗).

Proof. Let us assume that ϕ ∈ C2(α, β) is a classical solution of Lfϕ(x) ≤ c.
(The argument in the other case is identical.) This means that

rϕ(x∗) − (rx∗ − c)ϕ′(x∗) + δ(x∗ − f(x∗))ϕ
′(x∗) −

1

2
σ2x2

∗ϕ
′′(x∗) ≤ c.

The function ψ−ϕ attains a local minimum at x∗, and since ϕ is C2 in a neighborhood
of x∗, we can consider ϕ as a test function when we apply the definition of the viscosity
supersolution ψ. We obtain the inequality

rψ(x∗) − (rx∗ − c)ϕ′(x∗) + δ(x∗ − g(x∗))ϕ
′(x∗) −

1

2
σ2x2

∗ϕ
′′(x∗) ≥ c.
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Comparing the above results, we conclude that

r(ϕ(x∗) − ψ(x∗)) ≤ δ(f(x∗) − g(x∗))ϕ
′(x∗).

Since x∗ is a point of interior maximum for ϕ−ψ, and both ϕ and ψ have continuous
derivatives on (0, α), we have that ϕ′(x∗) = ψ′(x∗).

Proposition 6.2. For 0 < a ≤ ∞, we have Ta(Ga) ⊂ Ga, and the mapping Ta

has a unique fixed point in Ga.
Proof. Let f, g ∈ Ga be given. We denote ϕ = Taf and ψ = Tag. Since ϕ(0) =

ψ(0) = 0, we know that supx∈Da
(ϕ(x)−ψ(x)) ≥ 0. We recall that ϕ, ψ are continuous

on [0, a] for finite a (or they are continuous on [0,∞) and equal to γx for x large enough
if a = ∞). Thus there exists x∗ such that ϕ(x∗) − ψ(x∗) = maxx∈[0,a](ϕ(x) − ψ(x)).
If ϕ(x∗) − ψ(x∗) = 0, then

supx∈Da
(ϕ(x) − ψ(x)) ≤ ϕ(x∗) − ψ(x∗) = 0 ≤ δ

r
max{Ma, 1}d(f, g).

Assume that ϕ(x∗)−ψ(x∗) > 0. Since ϕ(0) = ψ(0) and ϕ(a) = ψ(a) (or ϕ(x) = ψ(x)
for all x large enough if a = ∞), we see that 0 < x∗ < a. Moreover, since ϕ(x∗) >
ψ(x∗) ≥ γx∗, we know x∗ ∈ Cf = {x : ϕ(x) > γx}.

We remember that ϕ is a C2 function on the open set Cf , it is a classical solution
of Lfϕ = c on Cf , and ψ is a viscosity supersolution of Lgψ ≥ c. Lemma 6.1 implies
r(ϕ(x∗) − ψ(x∗)) ≤ δ(f(x∗) − g(x∗))ϕ

′(x∗). Therefore,

sup
x∈[0,a]

(
ϕ(x) − ψ(x)

)
≤ ϕ(x∗) − ψ(x∗) ≤

δ

r
|f(x∗) − g(x∗)||ϕ′(x∗)|.

Since ϕ′(x∗) = ψ′(x∗), it is enough to assume that at least one of the functions f
and g is an element of Ga to conclude that |ϕ′(x∗)| ≤ max{Ma, 1}, where Ma = 0 for
a = ∞. Consequently, we obtain

sup
x∈[0,a]

(
ϕ(x) − ψ(x)

)
≤ δ

r
max{Ma, 1}d(f, g).

We can switch ϕ and ψ in the argument above and obtain a similar inequality for
ψ − ϕ. In other words, we have proved that

d(Taf, Tag) ≤
δ

r
max{Ma, 1}d(f, g),(6.1)

provided that at least one of the functions f and g is an element of Ga.
We now choose f ∈ Ga, and let fn ∈ Ga be such that d(fn, f) → 0 as n → ∞.

Using (6.1) we immediately obtain d(Tafn, Taf) → 0 as n → ∞, and since Tafn ∈ Ga

for all n, we conclude that Taf ∈ Ga.
A similar approximation argument (fn → f, gn → g, fn, gn ∈ Ga), together with

d(Taf, Tag) ≤ d(Taf, Tafn) + d(Tafn, Tagn) + d(Tagn, Tag)

yields

d(Taf, Tag) ≤
δ

r
max{Ma, 1}d(f, g) ∀f, g ∈ Ga.
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We consider separately the two cases a = ∞ and a < ∞. If a = ∞, then M∞ = 0.
Since δ < r, Ta is a contraction on the complete metric space (G∞, d). Applying the
Banach fixed point theorem, we conclude that Ta has a unique fixed point in G∞.

If a < ∞, the Arzela–Ascoli theorem implies that Ga is a convex and compact
subset of the Banach space C[0, a]. Since Ta : Ga → Ga is a continuous mapping
with respect to the norm of C[0, a], Schauder’s fixed point theorem implies that there
exists a fixed point of Ta in Ga. Suppose there were two fixed points of Ta, namely f
and g. Assume without loss of generality that

f(x∗) − g(x∗) = max
x∈[0,a]

(
f(x) − g(x)

)
> 0,

so x∗ ∈ Cf . We apply Lemma 6.1 to conclude

r(f(x∗) − g(x∗)) ≤ δf ′(x∗)(f(x∗) − g(x∗)),

which is impossible since f(x∗) − g(x∗) > 0, δ < r, and f ′(x∗) ≤ 1. (We use here the
fact that f has a continuous derivative on (0, a) and f ∈ Ga to conclude f ′(x∗) ≤ 1.)
This means that f ≤ g on [0, a]. Interchanging f and g, we obtain f = g, so the fixed
point is unique.

We denote by fa the unique fixed point of Ta in Ga. The function fa is continuous
on Da and continuously differentiable on (0, a). Associated with the function fa is a
number ba ∈ (0, a] such that

Lfafa(x) = c, fa(x) > γx, 0 < x < ba,(6.2)

Lfafa(x) ≥ c, fa(x) = γx, ba < x ≤ a.(6.3)

Even if a = ∞, b∞ is finite.
Proposition 6.3. The number ba is given by

ba =

{
a if a ≤ b∞,
b∞ if a ≥ b∞.

(6.4)

Proof. The proof is based on the same comparison argument for viscosity solutions
that allowed us to conclude that the fixed point is unique in Proposition 6.2, namely
an application of Lemma 6.1.

Consider first the case a ≤ b∞, and suppose ba < a. The function fa is defined
only on [0, a], but we may extend it by the formula

fa(x) =

{
fa(x) if 0 ≤ x ≤ a,
γx if x ≥ a.

(6.5)

It is apparent from (6.3) that fa is continuous on [0,∞) and continuously differentiable
on (0,∞). Furthermore, for x ≥ a we have

c ≤ Lfa
fa(a) = cγ + δγ(1 − γ)a ≤ cγ + δγ(1 − γ)x = Lfa

fa(x).(6.6)

Using (6.6) we conclude that fa is a viscosity solution of the equation min{Lff(x)−
c, f(x) − γx} = 0 on (0,∞). Furthermore, fa has a continuous derivative on (0,∞)
and fa(x) = γx for large x. We can now compare fa and f∞. We know that either

sup
x∈[0,∞)

(fa(x) − f∞(x)) ≤ 0
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or there exists x∗ ∈ (0, b∞) such that

fa(x∗) − f∞(x∗) = sup
x∈[0,∞)

(fa(x) − f∞(x)) > 0.

In the latter case, x∗ ∈ Cfa
and Lemma 6.1 implies

r(fa(x∗) − f∞(x∗)) ≤ δf ′
∞(x∗)(fa(x∗) − f∞(x∗)),

which is impossible since r < δ and f ′
∞(x∗) ≤ 1. This means that the only possibility

is fa ≤ f∞. In the same way we prove that f∞ ≤ fa, so fa = f∞. This implies that
ba = b∞, which contradicts the hypothesis ba < a ≤ b∞.

The case a > b∞ is similar since fa(a) = γa = f∞(a), and the restriction of f∞
to [0, a] is a viscosity solution of (3.1) on (0, a). We can use the same comparison
argument to conclude that f∞|[0,a] = fa, which implies ba = b∞.

Corollary 6.4. For 0 < a ≤ ∞, the function fa is in Ga.
Proof. We have already seen that fa is continuously differentiable, and since

fa ∈ Ga, we conclude that −Ma ≤ f ′
a(x) ≤ 1 for 0 < x < a. It remains only to prove

that the derivative f ′
a cannot attain the value 1.

Assume, by contradiction, that f ′
a(x0) = 1 for some x0 ∈ (0, a). This means f ′

a

has a maximum at x0 and x0 ∈ Cfa , where fa is two times continuously differentiable.
Hence, f ′′

a (x0) = 0. Moreover, Lfafa(x0) = c, so (r − δ)(x0 − fa(x0)) = 0. Since
r − δ > 0 we see that fa(x0) = x0. The function fa is thus a solution of the ordinary
differential equation Lff(x) = c with initial conditions f(x0) = x0, f ′(x0) = 1 on
the interval [x0, ba]. However, the only such solution to this equation is f(x) = x,
and we conclude that fa(x) = x for x0 ≤ x ≤ ba. This contradicts the fact that
fa(ba) = γba < ba.

Corollary 6.5. For every 0 < a ≤ ∞, the function fa is concave for small
values of x, it has a right derivative at x = 0, and D+fa(0) ≤ 1.

Proof. Since fa = Tafa and we just proved that fa ∈ Ga, we know from the
first part of the proof of Proposition 5.6 that the derivative f ′

a = DTafa cannot
attain a positive local maximum in (0, ba). Since fa(0) = 0, fa(ba) = γba, and fa
is differentiable on (0, ba), we can conclude from the mean-value theorem that there
exists xγ ∈ (0, ba) with f ′

a(xγ) = γ. Since D−fa(ba) ≤ γ, we can argue that for any
x1 < x2 ≤ xγ we have f ′

a(x1) > f ′
a(x2). To do this, we first use the fact that f ′

a cannot
attain a positive interior maximum on [x2, ba] to conclude that f ′

a(x2) > f ′
a(xγ) = γ

and then use the fact that f ′
a cannot attain a positive interior maximum on [x1, xγ ]

to further conclude that f ′
a(x1) > f ′

a(x2). In other words, the derivative f ′
a is strictly

decreasing on (0, xγ). This means that the function fa is concave on [0, xγ ] and

D+fa(0) � lim
x→0

fa(x) − 0

x− 0
= lim

x→0
f ′
a(x)(6.7)

is well defined. It is obvious that D+fa(0) ≤ 1.

7. Proofs of Theorems 2.2, 2.4, and 2.5. For each call price K we construct
a function f∗ so that f∗(x) is the value of the convertible bond when the value
of the firm is x. For small values of x, the function f∗(x) agrees with fa(x) for
an appropriately chosen a, depending on K. In order to proceed, we must first
understand the dependence of fa on the parameter a. For this purpose, we define
m : (0,∞) → (0,∞) by

m(a) = max
x∈[0,a]

fa(x).(7.1)
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Because fa = f∞|[0,a] for a ≥ b∞ and f∞ is nondecreasing by virtue of its membership

in G∞, we have

m(a) = γa ∀a ≥ b∞.(7.2)

For a < b∞ and x ∈ (0, a), we have fa(x) > γx (Proposition 6.3 and the inequality in
(6.2)), and so it is possible that m(a) > γa for 0 < a < b∞. We shall in fact discover
that there is a number b0 ∈ [0, b∞) such that m(a) > γa for 0 < a < b0, whereas
m(a) = γa for a ≥ b0 (see Remark 7.3).

Lemma 7.1. The function m : (0,∞) → (0,∞) is strictly increasing and contin-
uous and satisfies lima↓0 m(a) = 0.

Proof. It is clear from (7.2) that m is strictly increasing on [b∞,∞). We first
show that m is nondecreasing on (0, b∞]. Let 0 < a1 < a2 ≤ b∞ be given. Since
fa1

(0) = 0 = fa2
(0) and fa1

(a1) = γa1 < fa2(a1), if the function fa1
− fa2

attains
a positive maximum over [0, a1] it must be at an interior point x∗ ∈ (0, a1). But
Lfa1

fa1(x) = c = Lfa2
fa2(x) for 0 < x < a1, and x ∈ Cfa1

, where fa1 is C2. Lemma
6.1 implies that

r
(
fa1

(x∗) − fa2
(x∗)

)
≤ δ

(
fa1

(x∗) − fa2
(x∗)

)
f ′
a1

(x∗),

which is impossible because δ < r and f ′
a1

(x∗) ≤ 1. We conclude that fa1(x) ≤ fa2(x)
for all x ∈ [0, a1]. Therefore m is nondecreasing on (0, b∞].

By the same comparison argument, the function fa2 −fa1 cannot attain a positive
maximum in (0, a1), so fa2(x)−fa1(x) ≤ fa2(a1)−γa1 for 0 ≤ x ≤ a1. It follows that

m(a2) −m(a1) = max
{

max
x∈[0,a1]

fa2(x), max
x∈[a1,a2]

fa2(x)
}
−m(a1)(7.3)

≤ max{ max
x∈[0,a1]

(
fa2(x) − fa1(x)

)
, max
x∈[a1,a2]

(
fa2(x) − γa1

)}
= max

{
fa2(a1) − γa1, max

x∈[a1,a2]

(
fa2(x) − γa1

)}
= −γa1 + max

x∈[a1,a2]
fa2

(x).

By virtue of its membership in Ga2
and Remark 5.7, the function fa2

satisfies f ′
a2

(x) ≥
−C for all x ∈ (0, a2) and some positive constant C which is bounded away from zero
so long as a2 is bounded away from zero. Thus, for x ∈ [a1, a2],

fa2(x) = fa2(a2) −
∫ a2

x

f ′
a2

(y) dy ≤ γa2 + C(a2 − x) ≤ γa2 + C(a2 − a1).

Substituting this into (7.3), we conclude that

0 ≤ m(a2) −m(a1) ≤ (C + γ)(a2 − a1),(7.4)

so long as a2 is bounded away from zero. The function m is thus continuous.
We now prove that m(a1) < m(a2). Assume, by contradiction, that m(a1) =

m(a2). Let x0 ∈ [0, a1] be such that fa1
(x0) = m(a1). We must actually have x0 ∈

(0, a1) because m(a1) = m(a2) ≥ γa2 > γa1 = fa1
(a1) > 0 = fa1

(0). We have already
shown that fa2 dominates fa1 on [0, a1], and hence we must have fa1(x0) = fa2(x0).
The comparison argument using Lemma 6.1 shows that neither fa2 −fa1 nor fa1 −fa2

can have a positive maximum in the open interval (0, x0); we conclude that

fa1(x) = fa2(x) ∀x ∈ [0, x0].(7.5)
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Both fa1 and fa2 are solutions of the ordinary differential equation Lff(x) = c on
[x0, a1] and have the same initial conditions fa1(x0) = fa2(x0), f

′
a1

(x0) = f ′
a2

(x0). It
follows that

fa1(x) = fa2
(x) ∀x ∈ [x0, a1].(7.6)

This implies that fa2(a1) = fa1(a1) = γa1, which contradicts Proposition 6.3. We
conclude that m is strictly increasing on (0, b∞].

Finally, since fa(x) ≤ x for 0 ≤ x ≤ a, we see that 0 ≤ m(a) ≤ a, and conse-
quently lima↓0 m(a) = 0.

Lemma 7.2.

(i) Assume m(a) > γa for some a > 0. Then a < c
rγ and m(a) > γa for all

a ∈ (0, a).
(ii) If m(a) > γa, the function fa attains its maximum over [0, a] at a unique

point xa ∈ (0, a).
Proof. (i) If a ≥ c

rγ , we define h(x) = γa ≥ c
r for x ∈ [0, a]. Then Lfah(x) ≥ c for

0 < x < a. Lemma 6.1 shows that fa − h cannot have a positive maximum in (0, a),
and since fa(0) = 0 ≤ h(0) and fa(a) = γa = h(x), we conclude that fa(x) ≤ h(a) for
all 0 ≤ x ≤ a. Consequently, the maximum of fa is m(a) = γa.

Assume now that m(a) > γa for some a > 0. We have just seen that a < c
rγ .

Let a ∈ (0, a) be given. Define � = a/a < 1 and rescale the function fa by setting
f(x) = �fa(

x
� ) for all x ∈ [0, a]. We compute f ′(x) = f ′

a(
x
� ) and f ′′(x) = 1

� f
′′
a (xl ),

from which we conclude that

Lff(x) = �Lfafa

(x
l

)
+ c(1 − l)f ′

a

(x
l

)
≤ �c + c(1 − �) = c ∀x ∈ (0, a).

Lemma 6.1 shows that f − fa cannot have a positive maximum over [0, a] at a point
in (0, a). But f(0) = fa(0) = 0 and f(a) = fa(a) = γa, and therefore fa(x) ≥ f(x)
for all x ∈ [0, a]. In particular,

m(a) = max
x∈[0,a]

fa(x) ≥ max
x∈[0,a]

f(x) = �m(a) > �γa = γa.(7.7)

(ii) Let us assume now that m(a) > γa and there exist 0 < x0 < y0 < a such
that fa(x0) = fa(y0) = m(a). Since fa(x) ≤ m(a) for x0 ≤ x ≤ y0 we see that fa
has a local minimum at some point x1 ∈ (x0, y0). Then f ′

a(x1) = 0, f ′′
a (x1) ≥ 0, and

we may use the equation Lfafa(x1) = c to obtain rfa(x1) ≥ c. This is impossible
because fa(x1) ≤ m(a) < m( c

γr ) = c
r .

Remark 7.3. We define b0 � sup{a > 0,m(a) > γa}, where we set b0 = 0 if
m(a) = γa for all a > 0. Lemma 7.2 shows that m(a) > γa for all a ∈ (0, b0). This
lemma further shows that b0 ≤ c

γr . Since for x ≥ b∞ we have f∞(x) = γx and

Lf∞f∞(x) ≥ c, we conclude that

rγb∞ − (rb∞ − c)γ + δ(b∞ − γb∞)γ ≥ c,

which implies δ(1 − γ)b∞γ ≥ c(1 − γ), and consequently b∞ ≥ c
γδ . In summary,

0 ≤ b0 ≤ c

γr
<

c

γδ
≤ b∞.(7.8)

Lemma 7.4. If 0 < γ < 1
2 , then b0 > 0.
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Proof. For small values of a, we construct a quadratic subsolution of{
Lgg(x) ≤ c for 0 < x < a,
g(0) = 0, g(a) = γa,

(7.9)

which satisfies maxx∈[0,a] g(x) > γa. According to Lemma 6.1, g − fa cannot have a
positive maximum over [0, a] in (0, a), and since g(0) = fa(0) = 0, g(a) = fa(a) = γa,
we see that fa ≥ g on [0, a]. It follows that m(a) > γa.

The remainder of the proof is the construction of g. We define

g(x) = −x2

2a
+

(
γ +

1

2

)
x,

so that g(0) = 0 and g(a) = γa. Direct computation results in

Lgg(x)

=
rx2

2a
− cx

a
+

(
γ +

1

2

)
c− δx3

2a2
+

3δγx2

2a
− δx2

4a
− δγ2x +

δx

4
+

σ2x2

2a

≤ ra

2
+

(
γ +

1

2

)
c +

3δγa

2
+

δa

4
+

σ2a

2
∀x ∈ [0, a].

Since
(
γ + 1

2

)
c < c, we have supx∈[0,a] Lgg(x) ≤ c for sufficiently small a.

We summarize what has so far been established.
(a) For a > b∞ we have fa = f∞|[0,a] and the maximum m(a) = γa of fa over

[0, a] is attained at the right endpoint a. We have fa(x) > γx for x ∈ (0, b∞) and
fa(x) = γx for x ∈ [b∞, a].

(b) For b0 ≤ a ≤ b∞, the maximum m(a) = γa of fa over [0, a] is attained at the
right endpoint a and fa(x) > γx for all x ∈ (0, a).

(c) If b0 > 0 (a sufficient condition for this is 0 < γ < 1
2 ), then for 0 < a < b0,

we have fa(x) > γx for all x ∈ (0, a) and the maximum m(a) > γa of fa over [0, a] is
attained at a unique point xa ∈ (0, a).

For a fixed call price K we want to define f∗(x) to be fa(x) for small values of x,
where a is the unique parameter such that m(a) = K. Denoting

K1 = γb0, K2 = γb∞,

we have the following three situations corresponding to the three cases of Theorem 2.5.
(i) If K > K2, we set a = K

γ . We define

f∗(x) =

{
fa(x) = f∞(x) if 0 ≤ x ≤ a,
γx if x ≥ a.

(7.10)

We see that f∗(x) = f(x,C∗
a , C

∗
o ) for C∗

a = K
γ and C∗

o = b∞ < C∗
a .

(ii) If K1 ≤ K ≤ K2, then again we set a = K
γ . We define

f∗(x) =

{
fa(x) if 0 ≤ x ≤ a,
γx if x ≥ a.

(7.11)

In this case, f∗(x) = f(x,C∗
a , C

∗
o ) for C∗

a = C∗
o = K

γ .

(iii) Assume K1 > 0 and 0 < K < K1. Because m(b0) = K1, there exists a
unique a = m−1(K) < b0 such that m(a) = K. Since K < K1, Lemma 7.2 implies
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that K = m(a) > γa and there exists a unique xa ∈ (0, a) such that fa(xa) = m(a).
Since f ′

a < 1, we obtain that K = m(a) = fa(xa) < xa, so K < xa < a < K
γ . We now

take C∗
a = xa, Co = K

γ and define

f∗(x) =

⎧⎨⎩
fa(x) for 0 ≤ x ≤ C∗

a ,
K for C∗

a ≤ x ≤ C∗
o ,

γx for x ≥ C∗
o .

(7.12)

Again we have f∗(x) = f(x,C∗
a , C

∗
o ). Since f ′

a(C
∗
a) = 0, f∗ is a C1 function on (0, K

γ ).

It is apparent that the function f∗ and the numbers C∗
o , C∗

a just defined have all
the properties set forth in Theorem 2.5. The uniqueness of solutions to N f = c in
that theorem follows from Lemma 6.1. We now accept Theorem 2.2, whose proof will
be given later in this section, and show that the function f∗ defined by (7.10)–(7.12)
is indeed the function f∗ given by (2.19), and the numbers C∗

o and C∗
a defined above

satisfy (2.18). Using f∗, C
∗
o , and C∗

a just defined in this way means that the proof of
Theorem 2.4 given below also completes the proof of Theorem 2.5.

Proof of Theorem 2.4. We need to prove that

f(x,C∗
a , C

∗
o ) ≤ f(x,Ca, C

∗
o ) for each Ca ≥ K, x ∈ (0,∞),(7.13)

f(x,C∗
a , C

∗
o ) ≥ f(x,C∗

a , Co) for each Co > 0, x ∈ (0,∞).(7.14)

Case (i). K > K2 = γb∞.

If Ca ≥ C∗
a = K

γ , then clearly f(x,C∗
a , C

∗
o ) = f(x,Ca, C

∗
o ) for x ∈ (0,∞).

If C∗
o < Ca ≤ K

γ , according to Definition 2.3(i) we have f(x,Ca, C
∗
o )=f(x,C∗

a , C
∗
o )

for 0 ≤ x < Ca, and f(x,Ca, C
∗
o ) = K ≥ f(x,C∗

a , C
∗
a) for Ca ≤ x ≤ K

γ . For x ≥ K
γ ,

we have f(x,C∗
a , C

∗
o ) = f(x,Ca, C

∗
o ) = γx.

Finally, consider the case K ≤ Ca ≤ C∗
o = b∞. Using the Case (i) assumption,

we have K > K2 = γb∞ = γC∗
o ≥ γCa. From Definition 2.3(ii),

f(Ca, Ca, C
∗
o ) = max{K, γCa} = K ≥ γCa = f∗(Ca).

Since f(·) = f(·, Ca, C
∗
o ) satisfies Lff(x) = c on (0, Ca) and Lf∗f∗(x) = c on (0, Ca),

an application of Lemma 6.1 yields

f(x,C∗
a , C

∗
o ) = f∗(x) ≤ f(x,Ca, C

∗
o ) for 0 ≤ x ≤ Ca.

For Ca ≤ x ≤ K
γ , we have

f(x,Ca, C
∗
o ) = max{K, γx} = K = f∗

(K
γ

)
≥ f∗(x) = f(x,C∗

a , C
∗
o ).

For x > K
γ , we have f(x,C∗

a , C
∗
o ) = γx = f(x,Ca, C

∗
o ). This completes the proof of

(7.13) in Case (i).

To establish (7.14), we let Co > 0 be given. If Co ≤ C∗
o , then f(Co, C

∗
a , Co) =

γCo ≤ f∗(Co). Applying Lemma 6.1, we get

f(x,C∗
a , Co) ≤ f∗(x) = f(x,C∗

a , C
∗
o ) for 0 ≤ x ≤ Co.(7.15)

The same inequality is easily verified for Co ≤ x < ∞.
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The case C∗
o < Co ≤ C∗

a is the most interesting. We know that the function
f(·) = f(·, C∗

a , Co) satisfies{
Lff(x) = c for 0 < x < Co,
f(0) = 0, f(Co) = γCo = f∗(Co) (since Co > C∗

o = b∞).

We recall that f∗ is a C1 viscosity supersolution of Lf∗f∗(x) = c on (0, Co), so
Lemma 6.1 can be again used to obtain

f(x,C∗
a , Co) = f(x) ≤ f∗(x) = f(x,C∗

a , C
∗
o ) for 0 ≤ x ≤ Co.

For Co ≤ x, we have

f(x,C∗
a , Co) = γx = f∗(x) = f(x,C∗

a , C
∗
o ).

If Co ≥ C∗
a = K

γ , we just observe that f(x,C∗
a , Co) = f(x,C∗

a ,
K
γ ), so we can

reduce this case to the case Co = C∗
a already considered. This completes the proof of

(7.14) in Case (i).
Case (ii). γb0 = K1 ≤ K ≤ K2 = γb∞.
This is the simplest case, all proofs being based on comparison arguments for C2

solutions of the equation Lff(x) = c. The details are left to the reader.
Case (iii). 0 < K < K1 = γbo.
If C∗

a < Co < ∞, there is no change:

f(x,C∗
a , Co) = f(x,C∗

a , C
∗
o ) for 0 ≤ x < ∞.

If 0 < Co ≤ C∗
a , then f(Co, C

∗
a , Co) = γCo ≤ f∗(Co). The Comparison Lemma 6.1

implies

f(x,C∗
a , Co) ≤ f(x,C∗

a , C
∗
o ) for 0 ≤ x ≤ Co.

For Co < x < C∗
a , we have f(x,C∗

a , Co) = γx ≤ f(x,C∗
a , C

∗
o ), and for C∗

a ≤ x we know
that f(x,C∗

a , Co) = f(x,C∗
a , C

∗
o ) = max{K, γx}. This completes the proof of (7.14)

in Case (iii).
We consider (7.13). If K ≤ Ca ≤ C∗

a , then f(Ca, Ca, C
∗
o ) = K ≥ f(Ca, C

∗
a , C

∗
o ).

The Comparison Lemma 6.1 implies f(x,Ca, C
∗
o ) ≥ f(x,C∗

a , C
∗
o ) for 0 ≤ x ≤ Ca. For

x ≥ Ca, we have f(x,Ca, C
∗
o ) = max{K, γx} ≥ f(x,C∗

a , C
∗
o ).

The case Ca ≥ C∗
o can be reduced to the case Ca = C∗

o since f(x,Ca, C
∗
o ) =

f(x,C∗
a , C

∗
o ) for all x ≥ 0 if Ca ≥ C∗

o . We do that case now.
Assume C∗

a < Ca ≤ C∗
o . First we claim that f∗(·) = f(·, C∗

a , C
∗
o ) is a C1 viscosity

subsolution of

Lf∗f∗(x) ≤ c on

(
0,

K

γ

)
,(7.16)

and then we use the Comparison Lemma 6.1 (the difference f∗(·)−f(·, Ca, C
∗
o ) cannot

have a positive maximum in (0, Ca)) to conclude that

f∗(x) ≤ f(x,Ca, C
∗
o ) for 0 ≤ x ≤ Ca.

In the comparison argument we also use the fact that f(·) = f(·, Ca, C
∗
o ) satisfies

Lff(x) = c for 0 < x < Ca, and

f∗(0) = 0 = f(0, Ca, C
∗
o ), f∗(Ca) = K = f(Ca, Ca, C

∗
o ).
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For Ca ≤ x ≤ K
γ , we have f∗(x) = K = f(x,Ca, C

∗
o ), and for x > K

γ we know that

f∗(x) = γx = f(x,Ca, C
∗
o ).

This means that the proof of (7.14) is complete, provided we can show that f∗
is a viscosity subsolution of (7.16). We know that Lf∗f∗(x) = c for 0 < x < C∗

a , f∗
being a C2 function on (0, C∗

a). From (7.8) and the Case (iii) assumption, we see that
rK ≤ c. Furthermore, f∗(x) = K for C∗

o ≤ x ≤ K
γ . We conclude that Lf∗f∗(x) ≤ c

on (C∗
a ,

K
γ ).

It remains to show that if ψ ∈ C2(0, C∗
o ) dominates f∗ on (0, C∗

o ) and agrees with
f∗ at C∗

a , then

rψ(C∗
a) − (rC∗

a − c)ψ′(C∗
a) + δ(C∗

a − ψ(C∗
a))ψ′(C∗

a) − 1

2
σ2(C∗

a)2ψ′′(C∗
a) ≤ c.(7.17)

Since f∗ ∈ C1(0, K
γ ) and f ′

∗(C
∗
a) = 0, we have ψ′(C∗

a) = 0. Since 0 < C∗
a < a, we

know Lfafa(C
∗
a) = c, and since fa(C

∗
a) = K and f ′

a(C
∗
a) = 0, we obtain

rK − 1

2
σ2(C∗

a)2f ′′
a (C∗

a) = c.(7.18)

However, since ψ(C∗
a) = fa(C

∗
a), ψ′(C∗

a) = f ′
a(C

∗
a) = 0, and ψ dominates fa on [0, C∗

a ]
(because f∗(x) = fa(x) on [0, C∗

a ]), we conclude that

f ′′
a (C∗

a) ≤ ψ′′(C∗
a).(7.19)

Substituting this into (7.18), we obtain (7.17).
Remark 7.5. The proof of the last claim is based on the elementary observation

that for a C2 function, a one-sided maximum is enough to conclude that the second
derivative is not positive, provided that the first derivative vanishes. Furthermore, we
have proved that f∗ is a viscosity solution of the variational inequality max{N f∗(x)−
c, f∗(x) −K} = 0 on (0, K

γ ).

Proof of Theorem 2.2. For y1 = x1, it is easily verified that f(x) = x is a solution
of (2.16), and the Comparison Lemma 6.1 establishes uniqueness.

For 0 < y1 < x1, uniqueness again follows from Lemma 6.1 once we have a solution
satisfying f ′ ≤ 1 on (0, x1). The proof of existence is based on a fixed point argument
similar to the proof of Proposition 6.2 with a < ∞. In fact, the argument here is
simpler, since we deal only with C2 solutions of the differential equation Lgf(x) = c
rather then viscosity solutions of the variational inequality min{Lgf(x) − c, f(x) −
γx} = 0.

For 0 < y1 < x1, we set A = x1 − y1 and define G to be the set of all functions
g ∈ C[0, x1] ∩ C2(0, x1) such that g(0) = 0, g(x1) = y1, and

g(x) ≥ max{x−A, 0}, −M(x1, y1) ≤ g′(x) < 1 ∀x ∈ (0, x1),

where M(x1, y1) is a constant to be determined later but depending on only x1 and y1.
We further define G to be the closure of G in C[0, x1] with respect to the supremum
norm ‖ · ‖. For g ∈ G, we set

Tg(x) = E

[∫ τx
0 ∧τx

x1

0

ce−rudu + I{τx
x1

<τx
0 }e

−r(τx
0 ∧τx

x1
)y1

]
,(7.20)

where Xx(t) is given by (3.4) with Xx(0) = x. It is clear from its definition that
Tg ≥ 0 for every g ∈ G. We use the argument in the proof of Proposition 4.6 to
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conclude that for g ∈ G the function Tg is of class C2 on (0, x1) and LgTg(x) = c for
0 < x < x1. The continuity of Tg at 0 and x1 follows from Lemma 4.2. The functions
max{x − A, 0} and x are respective sub- and supersolutions of Lgf = c which lie
respectively below and above Tg at the endpoints 0 and x1. Lemma 6.1 implies that
for all g, h ∈ G,

max{x−A, 0} ≤ Tg(x) ≤ x for 0 ≤ x ≤ x1,(7.21)

‖Tg − Th‖ ≤ sup
0<x<x1

|DTg(x)|‖g − h‖.(7.22)

We now prove that T (G) ⊂ G, the analogue of Proposition 5.6. For g ∈ G, the
first part of the proof of Theorem 5.6 shows that DTg cannot attain a positive local
maximum nor a negative local minimum in (0, x1). This implies that either DTg
is nonnegative on (0, x1) or else D−Tg(x1) ≤ DTg(x) for 0 < x < x1. To show
that DTg(x) ≥ −M(x1, y1), it suffices to find a lower bound on D−Tg(x1) which
may depend on x1 and y1 but not on g. For this purpose, we let h be the solution
on [y1, x1] of the equation Lgh = c with boundary conditions h(y1) = h(x1) = y1.
Lemma 6.1 shows that h is nonnegative and dominates Tg on [y1, x1], and hence
D−h(x1) ≤ D−Tg(x1). If h attains a maximum at some point x∗ ∈ (y1, x1), the
equation Lgh(x∗) = c implies h(x∗) ≤ c

r . If h does not attain a maximum in (y1, x1),
then h is dominated by its value y1 at the endpoints of this interval. In either case,
we obtain a bound on |h| which is independent of g. Furthermore, there must be
some point x0 ∈ (y1, x1) where h′ vanishes. We solve the equation Lgh = c for h′′

and integrate from x0 to obtain (5.7). We then use Gronwall’s inequality to obtain a
bound on |h′| independent of g.

We need also to obtain the upper bound DTg < 1. We observe first that since
Tg(x) ≥ max{x − A, 0} and these two functions agree at x = x1, we must have
D−Tg(x1) ≤ 1. We use the same arguments used to prove DTag < 1 if g ∈ Ga to
conclude that DTg < 1 on (0, x1). This completes the proof that T (G) ⊂ G. A relation
similar to (6.1) shows that the operator T is continuous on G, and hence T (G) ⊂ G.
Schauder’s fixed point theorem implies the existence of a function f ∈ G satisfying
Tf = f . This means, in particular, that f ∈ C[0, x1] ∩ C2(0, x1) and Lff = c, so f
is a solution of (2.16). Since f is differentiable and f ∈ G, we know that f ′ ≤ 1 on
(0, x1). In fact, f ′ < 1. The proof is identical to the proof of f ′

a < 1.
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