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STEFAN UNTERSCHÜTZ, Hamburg University of Technology

VOLKER TURAU, Hamburg University of Technology
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A sustainable, uniform, and utility-maximizing operation of energy-harvesting sensor networks requires methods for aligning

consumption with harvest. This paper presents a light-weight algorithm for online load adaptation of energy-harvesting

sensor nodes using supercapacitors as energy buffers. The algorithm capitalizes on the elementary relationship between state

of charge and voltage that is characteristic for supercapacitors. It is particularly designed to handle the non-linear system

model, and it is lightweight enough to run on low-power sensor node hardware. We define two energy policies, evaluate

their performance using real-world solar-harvesting traces, and analyze the influence of the supercapacitor’s capacity and

imprecisions in harvest forecasts. To show the practical merit of our algorithm, we devise a load adaptation scheme for

multi-hop data-collection sensor networks and run a four-week field test. The results show that (i) choosing a duty cycle a

priori is infeasible, (ii) our algorithm increases the achievable work load of a node when using forecasts, (iii) uniform and

steady operation is achieved, and (iv) depletion can be prevented in most cases.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Protocols; C.2.4 [Computer-

Communication Networks]: Distributed Systems

General Terms: Algorithms, Design, Performance, Measurement, Performance, Reliability, Experimentation

Additional Key Words and Phrases: Energy management, duty-cycle adaptation, energy harvesting, network protocols, data

collection
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1. INTRODUCTION

Sensor networks have been around for more than a decade. From the early stages of this emerg-
ing technology, one critical aspect has accompanied its presence and triggered continuous research
activity: the conservation of energy to prolong lifetime.

As with mobile devices and low-power electronic convenience products—such as home weather
stations—battery capacity is limited. Despite the low-power hardware, this bottleneck is further
tightened by the tiny dimensions of sensor nodes and their batteries, which are mandatory for achiev-
ing goals such as non-intrusive operation, space limitations, and low costs. With typical batteries,
lifetime of a sensor node is restricted to a few days, unless energy-saving strategies are applied. The
key term in this context is energy efficiency, which essentially translates to switching hardware com-
ponents off when they are not needed or, when this is not possible, duty-cycling their operation. The
latter usually implies a performance penalty, e.g., duty-cycling the radio decreases network perfor-
mance in terms of latency and throughput. However, energy efficiency can merely prolong lifetime
to a few months in most cases. To ensure the success of a sensor network application, reliable
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lifetime predictions prior to deployment are mandatory. This is a non-trivial task, because consump-
tion within a network is influenced by inaccessible factors such as wireless connectivity—which
constitutes a research area of its own. Improper or imprecise methods for battery state-of-charge
assessment, battery self-discharge, and consumption variation of cheap sensor node hardware ag-
gravate this problem. For low-power applications, lifetime assessment of sensor networks is hence
error-afflicted and vague. Since battery capacities are not expected to rise in orders of magnitude
within the near future, provided that larger-sized batteries are not an option, and since replacement
of batteries is usually infeasible, research has embarked on a different strategy.

To meet lifetime requirements, or even achieve sustained operation of wireless sensor nodes, the
potential of powering these devices with energy harvested from the environment has been explored.
Here, various harvesting solutions can be employed, e.g., sunlight, radio frequency, wind, vibration,
and temperature differences. Particularly sunlight is highly promising, since it is available in many
deployment scenarios. Moreover, it produces a sufficient amount of energy to supply wireless sen-
sor nodes, which draw currents between several microampere in their lowest power state and some
milliampere in fully operational mode. To maintain the miniature size of the sensor nodes, the di-
mensions of the harvesting sources are yet restriced. As a result, the amount of produced energy is
not large enough to dispense with energy-saving techniques such as radio duty-cycling. Morever, the
amount of harvested energy is usually neither constant nor continuous. In the instance of solar har-
vesting, energy can only be harvested during the day, while its amount depends heavily on weather
conditions, the time of the year, and the actual placement and orientation of the sensor node’s solar
cell. Moreover, hardware aging, dirt, and environmental changes may affect and decrease energy
production over time. This issue has two major implications. Firstly, energy must be buffered in
order to prevent nodes from temporal energy shortage and restricted periods of operation. Secondly,
nodes must align their consumption to the available harvest online, because the latter varies from
node to node, changes throughout node lifetime, and is difficult to determine prior to deployment.
A prospective option for buffering energy are supercapacitors. They are environmentally-friendly,
relatively small, can reliably supply a node for a few days, have a virtually unlimited number of
charge-discharge cycles and long shelf life. Moreover, the stored energy can be estimated from their
terminal voltage with low computational effort. This is indispensable for depletion-safe online load
adaptation.

One driver for maximizing the utility of harvestable energy are economic reasons—e.g., to
achieve the same work load with smaller and cheaper hardware. Another driver is to increase a
node’s utility (in the network) by reducing its use of energy-saving methods, hence relieving the
imposed performance penalty and improving, e.g., routing performance in terms of latency and
throughput. Here, greedy consumption is not an option: Many applications demand uniform and
reliable node operation to guarantee constant sampling rates, achieve low latency, ensure connectiv-
ity in large-scale multi-hop networks, and prevent depletion. Several solutions to this problem have
been presented. They usually require a linear system model or do not work well for low-capacity en-
ergy buffers. Thus, they are generally incompatible with many low-cost, energy-harvesting sensor
nodes that solely use supercapacitors as energy buffer. Moreover, existing load adaptation algo-
rithms tend to be rather intricate and overdeveloped when load adaptation boils down to finding
the maximum supported duty cycle for each sensor node in a data-collection network. Firstly, this
problem differs from traditional energy-aware scheduling, since a constant load—or uniform op-
eration, respectively—suffices for steady data collection in absence of hard delay limits. Secondly,
assigning individual loads to different times of a day may decrease predictability of sensor node be-
havior and lead to unsteady operation. For example, when nodes run a duty-cycled MAC protocol,
the energy consumption caused by waiting for the receiver to wake up depends on the duty cycle
of the receiver. If nodes change their duty cycles frequently, they affect the energy consumption of
their neighbors, requiring these to subsequently adapt their duty cycles or provoking unexpected
consumption, possibly leading to depletion. This might be overcome by exchanging information
of duty-cycle schedules among neighboring nodes at the cost of dramatically increased communi-
cation overhead, energy expenditure, and protocol complexity. Besides, the degree of complexity
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requires a thorough setup by the system maintainer or researcher, who is likely not to be a sensor
node, computer science, or electrical engineering expert. Simple approaches are hence desirable for
mass-market sensor network deployments.

1.1. Goal and Contributions

The goal of this paper is to enable perpetual and maintenance-free data collection for energy-
harvesting sensor networks. Unlike most existing methods, we (i) focus algorithmic simplicity and
manageability to support setup by non-experts, (ii) use local knowledge only to avoid communica-
tion and energy expenditure, and (iii) consider a non-linear energy-flow model.

Our approach is two-tiered. First, we devise a method for determing the maximum average cur-
rent consumption of a sensor node, such that its energy reserve never falls below a critical threshold.
Second, we show how the knowledge of the maximum average consumption can be utilized to set
up and maintain the duty cycle of a low-power data collection protocol without additional commu-
nication. We evaluate the proposed concept through simulation and a real-world experiment.

In particular, we make the following contributions:

— Based on existing research, the requirements of an energy-harvesting sensor node are formulated
for typical sensor node monitoring applications. A prototype using a solar cell as harvester and a
supercapacitor as energy buffer is built, and an energy-flow model is derived. The practical usabil-
ity and precision of this model has been evaluated and pointed out in our previous work [Renner
et al. 2012a; Renner and Turau 2012b].

— We introduce the method of predictive load adaptation and present an algorithm to predict a node’s
future state of charge. It is based on the energy-flow model and particularly considers the non-
linear charging and discharging characteristics of supercapacitors. We show that harvest forecasts
improve harvest utility—i.e., the ratio of consumed vs. harvestable energy—while achieving uni-
form operation—i.e., steady node activity and availability for packet forwarding.

— To achieve depletion-safe operation and to maximize the amount of harvested energy, we devise
the concept of energy policies. The latter define a set of energy reserve conditions that must be
satisfied within the prediction horizon of the load adaptation algorithm. We analyze the impact of
two energy policies w.r.t. supercapacitor capacities and harvest forecast errors.

— The developed concepts are finally implemented for real sensor node hardware and evaluated
in a real-world case study. To show their practical relevance and feasibility, a simple yet effec-
tive scheme for practical load adaptation for low-power duty-cycling routing protocols—such as
ORiNoCo [Unterschütz et al. 2012] and ORW [Landsiedel et al. 2012]—in multi-hop sensor net-
works is devised and analyzed. This scheme achieves automatic, energy-aware load balancing,
while it is based on local reckoning and does hence not infer overhead in terms of data and status
exchange in the network.

Hence, this article significantly contributes to the current state of research on energy-harvesting,
supercapacitor-powered, and load-adapting sensor networks.

The remainder of this paper is organized as follows. In Sect. 2 we briefly present and discuss
existing research. Sect. 3 presents the energy harvester prototype, the corresponding design consid-
erations, and the energy-flow model. The concept of predictive load adaptation with energy policies
is motivated and explained in detail in Sect. 4. Sect. 5 contains the evaluation. Our scheme for
practical load adaptation is motivated and discussed in Sect. 6. Sect. 7 describes and evaluates the
real-world case study. The paper is concluded in Sect. 8.

2. BACKGROUND AND RELATED WORK

This section presents related research in context of this paper. First, we review existing energy
harvesters for sensor nodes as basis for designing the prototype in Sect. 3. Second, we investigate
harvest forecasting techniques for use in our predictive load adaptation algorithm in Sects. 4 and 6.
Third, we discuss load adaptation algorithms and point out their deficiencies.
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Table I. Overview of energy-harvesting sensor node platforms in chronological order of publication

Platform Energy Source Energy Buffer Specifics

Prometheus
[Jiang et al. 2005]

solar (136mW) EDLC (22 F) and
Li-polymer

direct charging, two-tiered energy storage

Heliomote
[Raghunathan et al. 2005]

solar (∼ 220mW) NiMH static MPP direct charging

Everlast
[Simjee and Chou 2006]

solar (450mW) EDLC (100 F) open-circuit solar voltage MPPT

AmbiMax
[Park and Chou 2006]

solar (400mW),
wind (500mW)

Li-polymer and
EDLCs (10, 22 F)

open-circuit solar voltage MPPT, rotor-
speed-based MPPT for wind generator

Enviromote
[Kyriatzis et al. 2007]

solar (2 400mW) NiMH static max. power range, max. 500mW
usable charging power

Batteryless
[Brunelli et al. 2009]

solar (84mW) EDLC (50 F) open-circuit solar voltage MPPT with ad-
ditional solar cell

2.1. Energy-Harvesting Sensor Nodes

Powering sensor nodes from ambient, regenerative energy sources opens the door to unattended,
uninterrupted, and virtually unlimited operation. The process of converting ambient into electrical
power is frequently referred to as energy harvesting or energy scavenging; both terms are inter-
changeable. A power supply based on regenerative energy sources is called harvester. The output of
the harvester, e.g., power or current, is called harvest.

Since sensor nodes are low-power devices, energy harvesters rarely have to exceed the dimensions
of the nodes. Tiny system size is thus maintained. Energy harvesting mitigates the problems of
energy buffer self-discharge and capacity variation, since buffers are refilled timely. Several energy-
harvesting power supplies for sensor nodes have been designed and presented in the last decade.
They are introduced in this section, and Table I summarizes their main characteristics.

Prometheus [Jiang et al. 2005] uses a two-tiered energy storage system composed of a superca-
pacitor and a Li-polymer battery. The supercapacitor acts as primary energy buffer of the system
to reduce the number of recharge cycles of the Li-polymer battery, which acts as a back-up energy
buffer. The solar cell directly charges the supercapacitor. Near-perpetual operation is achieved by
Heliomote [Raghunathan et al. 2005], a solar-powered sensor node. To prevent power loss caused by
maximum-power-point tracking (MPPT) of the solar cell, the authors used a direct charging circuit.
Two AA type NiMH batteries serve as energy buffer. Pointing out that batteries are the lifetime-
limiting factor of energy-harvesting systems, the authors of the Everlast platform base their system
on a supercapacitor as sole energy buffer [Simjee and Chou 2006]. A solar panel harvests energy
from the environment with a software MPPT based on the open-circuit voltage of the solar cell.

A multi-source harvesting platform, called AmbiMax, is presented in [Park and Chou 2006]: It
scavenges energy with a solar cell and a wind generator. AmbiMax makes use of supercapacitors to
improve harvesting efficiency, but relies on a Li-polymer battery as energy buffer.

A solar cell serves as energy source and NiMH batteries buffer energy on the Enviromote plat-
form [Kyriatzis et al. 2007]. To reduce system overhead, no MPPT is employed. Brunelli et al.
presented a batteryless, i.e., supercapacitor-only, energy harvester for sensor nodes [Brunelli et al.
2009]. Their platform is solar-powered with a MPPT that employs the open-circuit voltage method,
where an additional light sensor is used for MPPT.

2.2. Harvest Forecasting

A sensor node can increase its duty cycle or, in general, its activity—e.g., in terms of sensing rates
or responsiveness—while keeping the risk of energy depletion at a low level, if the node is aware of
its expected future energy harvest:
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Fig. 1. Duty-cycle adaptation based on (a) energy reserve only and (b) an additional harvest forecast: The network traffic
jam in (a) is prevented by considering the forecast in (b), because node A is enabled to maintain a higher radio duty cycle,
since the low energy reserve does not pose a depletion-threat due to expected energy intake
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Fig. 2. Excerpt of a solar power density trace (red)—recorded at Elizabeth City State University (ECSU), NC, USA, [US
Department of Energy 2011]—and its slot representation (blue) with six slots per day

— Throttling the radio duty cycle is unnecessary, if the energy buffer is close to depletion, but energy
can be harvested in the near future. Figure 1 illustrates this point.

— Short periods of high harvest can be used for fast and high-volume data exchange or collection,
because there is no need for radio duty-cycling.

— More stable routing paths can be established, if perspective energy harvest is integrated into path
establishment.

— Delay-tolerant tasks can be deferred and sampling rates reduced, if energy reserves and expected
harvest are low.

The actual energy intake varies among equally equipped sensor nodes due to hardware variation
and aging, node placement, environmental impacts, seasonal changes, and dirt. In many outdoor sce-
narios, it is impossible to foresee the precise energy condition of each single node in a deployment
a priori. Generating forecasts based on local historical data is a remedy to this problem. It is gen-
erally feasible, if energy harvest exhibits a pattern, as is the case, e.g., for outdoor solar harvesting.
Figure 2 shows an excerpt of a real solar power density trace with diurnal harvest pattern.

Forecast techniques that exploit the quasi-cyclic harvest pattern have been introduced to wire-
less sensor nodes [Kansal et al. 2007; Recas Piorno et al. 2009; Ali et al. 2010; Bergonzini et al.
2010; Sharma et al. 2010]. Due to the restricted memory resources, the general idea behind these
approaches is to divide a cycle into a relatively small number of time slots with equal length, e.g.,
48 slots with a length of 30min for solar harvesting. For each time slot, the mean value of harvested
energy is calculated. To compensate for influences, such as seasonal effects and harvester aging,
the newly calculated value of a slot and its historic data are smoothed by applying an exponentially
weighted moving average (EWMA) filter. This filtering technique is frequently used in sensor net-
work protocols to reduce the memory footprint: no historic data has to be stored. The smoothed
values already serve as a harvest forecast; thus, no additional effort for creating a forecast is re-

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 12, Publication date: September 2014.



12:6 C. Renner et al.

quired [Kansal et al. 2007]. Figure 2 shows an example slot distribution. Here, the value stored for
one time slot is used as harvest forecast for the same time slot on the next day.

The weather-conditioned moving average (WCMA) forecast algorithm [Recas Piorno et al. 2009;
Bergonzini et al. 2010] was proposed to improve over simple EWMA filtering. The forecast for
the directly following slot is refined by taking the harvest trend of the current slot and the last few
days into consideration. WCMA has only been shown to elevate short-term forecasts of a single
slot [Ali et al. 2010]. It has no proven advantage over EWMA-based forecasts of a complete pattern
cycle (long-term forecast). We have carried out a detailled study about existing forecast techniques
in [Renner and Turau 2012a].

Other approaches on sunlight and solar forecasting exist. Machine learning for predicting solar
power was discussed in [Sharma et al. 2011]. SunCast predicts sunlight conditions through finding
the most similar historical sunlight trace [Lu and Whitehouse 2012]. Currently, sensor nodes cannot
profit from these promising results, since resource demands overshoot those offered by sensor nodes.

2.3. Online Load Adaptation

Load adaptation is an active research area in energy-harvesting sensor networks. This section moti-
vates their necessity and introduces existing approaches.

Energy-Reserve-Only Approaches. Nano-RK [Eswaran et al. 2005] is a real-time operating sys-
tem for sensor nodes. It supports preemptive multi-tasking and enforces task deadlines. Nano-RK
can record the energy consumption of each task (with a software tracking system) to enable modi-
fying execution periodicity and to meet lifetime goals. Energy-intake forecasts are not supported.

Vigorito et al. present a duty-cycle adaptation algorithm based on adaptive control theory for
energy-harvesting sensor nodes [Vigorito et al. 2007]. They employ an optimal linear quadratic
tracking solution, called LQ-Tracker, with the goal of achieving energy-neutral operation while min-
imizing the variance of a node’s duty cycle. The optimal duty cycle is smoothed with an EWMA
filter to enforce more uniform and predictable operation of each node in the network. The algo-
rithm aims at keeping the battery’s state of charge at near-constant level, so that this method is not
compatible with supercapacitors. Harvest forecasts cannot be combined with the LQ-Tracker, either.

In [Zhu et al. 2009], the authors present an algorithm to adjust the consumption—or activity level,
respectively—of an energy-harvesting sensor node that uses a supercapacitor as only energy buffer.
The algorithm determines the maximum (average) current consumption, such that a minimum life-
time (time before depletion) is achieved. The output of the algorithm is a conservative estimate,
since future harvest is not considered. Supercapacitor leakage is explicitly modeled.

Harvest-Aware Approaches. Assessing energy reserves exclusively is no optimal solution as ex-
plained in Sect. 2.2. Several solutions incorporating harvest forecasts have thus been devised.

Hsu et al. present a harvest-aware power management system [Hsu et al. 2006; Kansal et al. 2007]
that combines energy-neutral operation with optimal system performance. The concept of energy
neutrality defines that a node must not spend more energy than it harvests from the environment.
The authors suggest using energy-intake forecasts based on historical data and EWMA-filtering.
The authors formulate the optimal duty-cycle distribution (among time slots) as a linear program
(LP) and present a low-complexity solution approximation that assigns higher duty cycles to slots
with high energy intake. Uniform operation is hence not achieved.

Moser et al. investigate real-time scheduling in [Moser et al. 2007]. The authors devise a lazy
scheduling algorithm that handles energy constraints and task deadlines. Results are obtained
through simulation of a linear energy-flow system. In particular, the energy source is modeled to
produce power that is only affected by environmental conditions. Although the authors discuss the
potential use of supercapacitors in their system model, they do not consider non-linear effects on
the energy production of the harvesting source.

A hierarchical control algorithm for achieving low-complexity duty-cycle adaptation is presented
in [Moser et al. 2008; 2010]. Prediction of solar intake is split into one daily and one hourly estima-
tor. The intention is to feed the results to two different controllers, of which the first is responsible for
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achieving long-term operation while the second manages short-term adaptations. Both controllers
solve a linear program (LP), where computation and resource complexity are reduced by splitting
the problem into two sub-problems. However, the LP introduces notable computation complexity,
while uniform node operation is not preserved.

In [Fan et al. 2008], Fan et al. address the problem of allocating individual sensing rates to solar-
powered sensor nodes in a network. Their solution also considers the data flow in the network and
the corresponding energy consumption but assumes a linear energy model. A centralized algorithm
based on a linear program (LP) is presented. In addition, the authors propose a simplified, distributed
algorithm without the need of solving an LP but with the constraint that the routing paths in the
network must be known. Here, maximum rates are determined by an iterative process of sending
control packets on each path from a leaf node to the sink.

Zhang et al. suggest a set of Harvesting Aware Speed Selection (HASS) algorithms for energy
management in time-critical sensor networks [Zhang et al. 2010; 2011]. The algorithms aim at
maximizing the minimum energy reserve of a single node in the network to ensure operability in
emergency situations, when load is high and latency must be low. A linear program is formulated,
for which a centralized (optimal) and a distributed (approximate) solution algorithm are derived.

Conclusion. Energy-aware load adaptation is an active research field. To maximize the utility
of a sensor node in terms of using as much harvestable energy as possible, linear programs have
been formulated, and simplified algorithms, meeting the resource constraints of sensor node hard-
ware, have been proposed. While guaranteeing a high utility in case of perfectly predictable harvest,
these solutions are questionable in real-world deployments, in which energy intake is partly pre-
dictable only and with large errors. Moreover, steady and reliable operation—i.e., guaranteeing
gapless sensed data and continuous network operations—is favorable in traditional data-collection
sensor networks, the predominant use case as of today: Sacrificing utility, e.g., in terms of network
responsiveness or delay, prevents loss of data caused by energy depletion. Squeezing the last drop
of utility may lead to accidental and unexpected energy shortage. Steady network operation also
improves the predictability of network behavior, since duty cycles and routing paths require less
frequent changes.

Most algorithms are still computationally complex and overdeveloped for data-collection sensor
networks. The majority of the presented algorithms have been evaluated through simulation only.
It is unclear whether the simplified, linear system models used for system modeling are compatible
with supercapacitor-powered sensor nodes. There is a lack of simple and practical algorithms for
duty cycle adaptation in energy-harvesting sensor networks using supercapacitors as only energy
buffer. This lack is particularly unsatisfactory, since supercapacitors keep drawing attention due to
their advantages over alternative energy buffers.

3. ENERGY-HARVESTING PROTOTYPE

The desire for perpetually operating sensor nodes has lead to power supplies based on renewable
energy sources. The review of existing solutions in Sect. 2.1 produces the following insights:

— Solar energy is the most frequently used harvesting source. It meets the end of application-
agnostic, universal, and ubiquitous outdoor monitoring. Self-sustained operation of a sensor node
is supported by a relatively large amount and predictable pattern of energy intake.

— Supercapacitors offer a wide range of advantages. Particularly, they promise an outstanding ease
of state-of-charge assessment and come at capacities large enough to supply sensor nodes for
several days without recharge. They do not require a complex charging circuitry and offer a shelf
life of ten years and more.

— Improving harvesting efficiency with maximum-power-point tracking increases circuit complex-
ity and decreases system predictability, the core prerequisite for system modeling and algorithm
evaluation.
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Fig. 3. (a) Energy-harvesting power supply with 25 F supercapacitor and solar cell mounted on top of an Iris node with
removed battery pack, and (b) efficiency of the regulator (mean and extreme values) for typical sensor node consumption
profile (30 µA − 18mA)

Hence, a solar-harvesting power supply using a supercapacitor as its energy buffer is a generic,
representative prototype, that is well-suited for a wide range of sensor network applications. More-
over, it satisfies the requirements of energy-aware duty-cycle adaptation in sensor network applica-
tions as introduced in Sect. 2.3, because it particularly permits the assessment of the energy flow.
This will become evident in the following. An evaluation based on such a prototype promises re-
search results with a wide scope and practical merit. To perform a real-world analysis, we hence
built a solar-harvester prototype with a supercapacitor as energy buffer.

3.1. Hardware

The hardware realization of the energy-harvesting power supply, referred to as harvester throughout
the remainder of this paper, is introduced in the following. A fully functional energy-harvesting
sensor node with the prototype harvester is displayed in Fig. 3a. An equivalent circuit is presented
in Sect. 3.2.1. The prototype board is designed to comply with the dimensions of the Iris sensor
node and its extension connector, but it is generally usable with any sensor node hardware.

A solar cell with a size of 39×35mm2 serves as harvesting source. It has a maximum working
voltage of 4V at a maximum working current of 35mA [Conrad Electronics 2008]. Direct charg-
ing is preferred over maximum-power-point tracking (MPPT) to reduce circuit and system-model
complexity, costs, size, and energy consumption of the charging circuitry. The current produced by
the solar cell is almost unaffected by the cell’s terminal voltage (according to the datasheet), so that
equal intake can be expected under the same environmental circumstances. Forecasts of the intake
are therefore enabled. Current backflow is prevented with a diode. The harvester provides a sensor
for measuring the current produced by the solar cell.

The harvester is designed for supercapacitors with a maximum rated voltage of Vmax = 2.7V.
Supercapacitors with 25 to 100F give a good trade-off between size, capacity, and price; e.g., a 50F
supercapacitor can operate an Iris node at a 1% radio duty cycle for more than two days without
harvesting energy. The supercapacitor is connected to one of the node’s ADC ports, so that its
voltage can be measured by the sensor node. To protect the supercapacitor from overcharging, the
harvester automatically disconnects the supercapacitor from the solar cell using a switch Sh, if its
voltage exceeds Vmax. In this case, it is still possible to measure the current produced by the solar
cell with the current sensor.

Since the voltage range of the supercapacitor is below the minimum required voltage of the Iris
sensor node, a Texas Instruments TPS 61220 switching regulator [Texas Instruments 2009] is used
to produce a constant output voltage of Vn = 2.7V. It has a measured minimum input voltage of
Vcut = 0.5V (the cut-off voltage); i.e., the regulator stops operation when Vc < Vcut. We call this
instance depletion. After depletion, the regulator is kept disabled until Vc reaches the start-up voltage
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Fig. 4. Simplified, equivalent circuit serving as basis for system model equations

Von = 1.6V for the first time. The intention of this hysteresis is to avoid a node from frequently
resetting after depletion when Vc ≈ Vcut. Figure 3b portrays the overall conversion efficiency η for
the prototype. Efficiency ranges from 72% to 95% (with an average of 86%) and depends on the
input voltage, while the impact of the output current is negligible.

The prototype allows for estimating the actual capacity of the supercapacitor to cope with, e.g.,
manufacturing variation and aging. Details are omitted due to space constraints but are explained
in [Renner and Turau 2010].

3.2. Energy-Flow Model

In the following, a simplified circuit of the harvester prototype is presented, from which an energy-
flow model is derived.

3.2.1. Simplified, Equivalent Circuit. Figure 4 shows the simplified circuit that describes the fun-
damental energy flows of the hardware. While the presented circuit is derived from the prototype
introduced in Sect. 3.1, it is generally applicable to any harvesting sensor node architecture with the
following characteristics:

— The harvester produces a direct current (DC) that only depends on harvesting (i.e., environmen-
tal) conditions. There is, in particular, a negligible dependency of the produced current and the
terminal voltage. This constraint is met by most direct charging circuits using solar cells.

— A supercapacitor serves as energy buffer.
— A DC/DC converter converts input to output power with a known efficiency.

The current Ih ≥ 0 (the harvest) is produced by the solar cell, and the regulator current Ir > 0
is consumed by the regulator to supply the sensor node with In > 0 (the load or consumption) at
the constant output voltage Vn. The current Ic flows into the supercapacitor with capacity C. If Ic is
positive, harvest exceeds consumption and the supercapacitor is charged; otherwise, the supercapac-
itor acts as source and discharges to supply the sensor node. Vc is the voltage of the supercapacitor.
Note that due to overcharging protection, Vc cannot exceed Vmax and that the regulator will fail,
if Vc underruns the cut-off voltage Vcut. The power-conversion efficiency η of the regulator is a
function of In and Vc according to Sect. 3.1.

3.2.2. Analytic System Model. The current flowing into the buffer (supercapacitor) is the differ-
ence of the current harvested by the source (solar cell) and the current consumption of the regulator
(to supply the sensor node):

Ic = Ih − Ir . (1)

The regulator converts input power with efficiency η, so that

Ir · Vc · η(Vc, In) = In · Vn . (2)
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Motivated by previous research results in [Renner et al. 2012a; Renner and Turau 2012b], we use
an ideal capacitor model:

Ic = C · V̇c . (3)

The only parameter in this model is the capacity C. More accurate models of the charging and
discharging behavior of supercapacitors are based on multi-layer cascade circuits of ideal capacities
and resistors (cf. [Weddell et al. 2011]), and a piecewise linear model of leakage was presented
in [Zhu et al. 2009]. While these models are completely suitable for simulating realistic voltage
courses of supercapacitors, they require multi-parameter estimation not desirable for sensor node
hardware. Moreover, it is not clear whether these parameters could be determined with the required
precision on sensor node hardware.

Combing Eqs. (1) to (3) yields the final system model for normal operation:

C · V̇c = Ih −
In · Vn

Vc · η(Vc, In)
. (4)

This model is the foundation for predictive load adaptation.

3.3. Validation of Model Appropriateness

Even though we already used the assumption of an ideal capacitor model to derive a manageable
form for the energy-flow model, solving Eq. (4) analytically is infeasible due to the unknown func-
tions In and Ih. A fine-grained numeric evaluation is possible yet computationally impracticable
and futile. The precise temporal course of In and Ih would be required to achieve accurate re-
sults, whereas precision limitations—e.g., caused by consumption variation and imprecise harvest
forecasts—would lead to error-prone results. To meet this end we will additionally assume a con-
stant power-conversion efficiency η. As will be seen in Sect. 4.3, these assumptions will allow for
an analytical approach for solving Eq. (4). In this section we present justifications for these assump-
tions. In particular, we evaluate the impact of two assumptions, namely (i) the ideal capacitor model
and (ii) a constant power-conversion efficiency η. For a more detailed study, we point the reader to
[Renner et al. 2012a; Renner and Turau 2012b].

We conducted an experiment with five sensor nodes equipped with the harvester with superca-
pacitors of 25 and 50F nominal capacity. We used Samwha Green-Caps from the DS series with a
2.7V-rating. All nodes ran four discharge cycles in the voltage range from 2.6V to 1.0V for five
radio duty cycles φ ranging from 0.1% to 20%. The solar cell was disconnected. Supercapacitor
voltage Vc was measured with a periodicity of 30 s. In total, we recorded 20 traces for each node.

To compare the recorded traces with our model, we calculated voltage courses through Eq. (4)
with the following parameter sets: For each discharging trace, we derived the empirical capacity C
by minimizing the root-mean-square error (RMSE). We used the constant efficiency η = 86%,
which is the average value in the corresponding voltage range (cf. Fig. 3b). We set Ih = 0mA, and
we used a constant consumption In corresponding to the duty cycle φ. Here, we modeled the node
being active (radio enabled) for the percentile φ of the time and sleeping otherwise, cf. [Renner et al.
2012a].

The relative root-mean-square error (RMSE) and mean error (ME) of three variants of discharging
models versus the recorded traces are displayed in Fig. 5. The first model uses optimized values of
capacity C for each individual trace to identify the smallest possible model error. The RMSE does
not exceed 2% in this case, and the ME stays below 1%. The second model uses a single value of
capacity C—one for each node—that was obtained by averaging the optimal capacities. In the worst
case, the RMSE has a median of 2% and always remains below 5%. While the ME is unbiased—
i.e., errors with negative and positive signs cancel out—its deviation is as small as 5%. The third
model uses the nominal capacity (printed on the supercapacitors), giving an RMSE of up to 22%
and medians of 3 to 13%. The distribution of errors (both RMSE and ME) varies notably among
supercapacitors due to age, usage, and manufacturing deviation.
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Fig. 5. Discharging model errors using capacity values optimized for each discharge curve (blue/left), a single estimated
capacity value (yellow/center), and the nominal capacity (orange/right). The box plots show median, quartiles, and extreme
values using all discharging curves at a granularity of 30 s

The evaluation shows that the proposed model—with the assumptions of a constant efficiency and
ideal supercapacitor behavior—works in the field. Errors may be as large as 5%, but this number is
small when considering that sensor nodes have (slightly) different consumption, yet only the mean
consumption among all nodes was used for evaluation, and although a constant regulator efficiency
was employed. Despite different charging currents and duration, voltage range, and capacity, all
discharging traces exhibit an almost equal shape with high correlation between modeled behavior
and recorded trace.

4. PREDICTIVE ONLINE LOAD ADAPTATION

Next, we propose and explain a new method for load adaptation in data-collecting sensor networks.
First, we motivate the need for online load adapation in Sect. 4.1. It follows a description of the
general approach and its components in Sect. 4.2. Finally, we give technical details in Sects. 4.3
and 4.4.

4.1. Motivation and Objective

While energy harvesting offers perpetual and maintenance-free operation of sensor nodes, it de-
mands aligning a node’s consumption with the harvest. As discussed in Sect. 2.3, this problem is
non-trivial and has been addressed by many researchers. Choosing correct system parameters, such
as the radio duty cycle, prior to deployment is dicey due to uncertain and frequently misjudged
harvesting conditions.

In most multi-hop, delay-tolerant, sense-and-send sensor network applications, combining a low-
power MAC protocol with tree routing guarantees easy implementation with off-the-shelf sensor
network protocols. Here, opportunistic and greedy consumption (i.e., take what you get) is not an
option. Many harvesters, e.g., solar cells, show an unsteady and location-dependent harvest pattern.
Parts of the network may thus not be able to communicate—e.g., nodes on different sides of a build-
ing may only have non-overlapping periods of harvest. In addition, changing weather conditions
will lead to unstable duty cycles. In contrast, uniform operation—i.e., predictable network behavior
due to infrequent and small changes of duty cycles—proves beneficial, since a node’s consumption
is not only determined by its own duty cycle but is also affected by that of its parents in a routing
tree (cf. Sect. 6.4).

Therefore, a node should aim at achieving an enduring, constant duty cycle with an energy con-
sumption meeting two contradicting demands. On the one hand, energy consumption must be low
enough to guarantee depletion safety; on the other hand, a node should wake up as frequently as
possible—leading to a higher duty cycle and energy consumption—to prevent child nodes from high
energy expenditure due to long waiting times. For this purpose, a node must combine its knowledge
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Fig. 6. Simulated development of supercapacitor voltage Vc (upper plot) in a fully predictable solar environment with
constant consumption In = 0.65mA equal to the mean value of harvester current Ih in a day. Capacity is C = 50 F and
the regulator efficiency is η = 100%

about the present energy state with a forecast of the future harvest. We aim at providing a simple yet
effective method for this purpose. The method is simple due to dispensing with the formulation of
a linear program—an approach fancied in most existing solutions, cf. Sect. 2.3. Simplicity reduces
computational complexity, while it is less prone to producing overfitted results w.r.t. uncertain har-
vest and the resulting imprecise forecasts.

The proposed method is particularly designed to suit energy harvesters with a non-linear energy-
flow model, an aspect frequently ignored in the literature. In this context, linearity means that the
energy reserve after a time interval is a linear function of energy consumption and energy harvest.
In particular, consumption and harvest are independent of each other in this case. This implies that
different (power) consumption functions with the same integral value (in the same time interval)
lead to the same change in remaining energy. Finding the maximum average power consumption
can thus be performed with a small set of linear equations as in [Kansal et al. 2007].

Supercapacitor-powered, energy-harvesting sensor nodes generally exhibit a non-linear energy
flow (cf. Sect. 3.2). In particular, harvest may depend on the energy reserve. In case of the harvester
prototype, the solar current is only affected by the harvesting conditions while the produced power
linearly depends on supercapacitor voltage Vc; such a dependency is expected for similar harvesters
as discussed in Sect. 3.2.1. As a result, consumption does not only affect the state of charge at a
later point, but it also influences the power production in the future. We illustrate this issue with
an example consisting of two cases: In the first case, the sensor node’s current consumption is
chosen to perfectly match the (known) harvest, i.e., In(t) = Ih(t). Assuming η = 1 for simplicity
and an initial value of Vc = Vn (note that Vmax = Vn in our hardware setup), Eq. (4) yields

C · V̇c = 0. Supercapacitor voltage Vc is hence constant and we achieve perpetual operation. In the
second case, depicted in Fig. 6, current consumption is constant with the same integral value (energy

consumption). At night, this leads to C · V̇c < 0, so that Vc falls. As a result, the power Vc · Ih of
the solar cell is lower than in the first case, so that depletion occurs on the fourth day (Vc → Vcut).
The example hence shows that finding a maximal and depletion-safe, uniform consumption is a
non-trivial task. In the following, we derive a lightweight solution to this problem.

4.2. General Approach

In the following, we sketch our approach to online load adaptation. A detailed and technical expla-
nation is subsequently given in this section.

The abstract goal of our load adaptation algorithm is to determine the maximum average current
consumption I∗n of a sensor node, such that its energy reserve never falls below a user-defined
threshold. Here, the term load is an abstract placeholder for what the sensor node does, and we
assume that this load is linked (e.g., through application parameters) to the consumption In. We
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hence use both terms interchangeably. In [Renner et al. 2012a] we have shown that it suffices if the
consumption In is periodic with a period of up to a few minutes and a mean current consumption Īn
equal to I∗n .

The choice of the threshold and the procedure of turning the average current consumption into
system parameters are application-specific. For the example of a multi-hop sensor network using
a low-power MAC, the average current consumption can be translated into a radio duty cycle. We
propose such a concept in Sect. 6 and evaluate it in Sect. 7. For the same example, the threshold of
the energy-reserve could be chosen to ensure that a node may continue operation for a given amount
of time that enables all its neighbors to identify a different routing path.

To achieve its goal, our algorithm uses the energy-flow model presented in Sect. 3.2 to produce I∗n
based on forecasts of the harvest (cf. Sect. 2.2) and the state of the energy buffer (in terms of the
supercapacitor’s voltage Vc) at the time of algorithm execution. In addition, the algorithm has to con-
sider the (unknown) future course of Vc, e.g., to ensure that the energy reserve (i.e., supercapacitor
voltage) never falls below the user-defined threshold. To install a more general concept here—there
is more than one way to look at the course of Vc, cf. Sect. 4.4.1—we introduce energy policies. The
latter is a set of rules that the future course of Vc must fulfill.

Unfortunately, it is not possible to obtain I∗n directly from the functional equation defined by
Eq. (3). It is however possible to derive the supercapacitor voltage Vc at the end of a time interval
with a given harvest Ih and a given consumption In. Our algorithm uses this knowledge as follows:

(1) For the harvest forecast Ih (represented by a time series) of a time interval, the corresponding
future time series of Vc is calculated for a given average consumption In = Īn (see last step). To
achieve low-complexity computation and a small memory footprint, the concept of time slots
from Sect. 2.2 is adopted for harvest forecasts and the timing of algorithm execution. Details
are provided in Sect. 4.3.

(2) The time series of Vc is checked for compliance with the energy policy. If the policy is violated,
the value of Īn is too high and considered as an upper bound. Otherwise, Īn is considered as a
lower bound. Details about energy policies are provided in Sect. 4.4.1.

(3) A binary search on consumption Īn is employed to identify the maximum load I∗n complying
with the energy policy. For each value considered during the search, the node’s future energy
course is simulated (predicted) using a harvest forecast (step 1), and it is tested for policy com-
pliance (step 2). This method is called predictive load adaptation with energy policies. Finally,
the maximum load can be used to derive a node’s radio duty cycle. Such an approach is dis-
cussed in Sect. 6.

4.3. Simulating and Predicting Supercapacitor Voltage

This section introduces the method for simulating and predicting a node’s future energy course in
terms of its supercapacitor voltage Vc. A formal, mathematical solution is presented and a practical
realization using slot-based harvest forecasts, as discussed in Sect. 2.2, is derived. The general
validity of such an approach is backed by the evaluation Sect. 3.3 and [Renner et al. 2012a].

4.3.1. Simulating a Node’s Energy Course. The energy-flow model in Eq. (4) from Sect. 3.2 is an
ordinary differential equation of supercapacitor voltage Vc. Its solution gives access to the energy
course in terms of Vc(t) for a known current consumption In(t) and harvest Ih(t). Solving Eq. (4)
analytically is infeasible due to the unknown functions In(t) and Ih(t) and because the hardware
characteristics imply additional constraints: The overcharging protection prevents Vc from exceed-
ing Vmax, and the switching regulator fails if Vc < Vcut (cf. Sect. 3.1).

For these reasons, solving the differential equation is simplified—or rather enabled—by assuming
that Ih and In are piecewise constant functions. This simplification matches the actual consumption
of a sensor node, which consists of discrete consumption states. It also complies with the knowl-
edge about the harvest, for which only discrete samples exist. These samples can be converted into a
piecewise constant function of Ih. In addition, we assume a constant regulator efficiency η; Fig. 3b
shows that this assumption holds for small time intervals and, therefore, small changes of Vc. How-
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ever, such a degree of detail is not even required: Using the average consumption of a node and
the average harvest in time intervals of up to a few minutes usually suffices, as we have shown
in [Renner et al. 2012a]. The results in [Renner and Turau 2012b] indicate that the error of using a
constant η is low and can be neglected.

For Ih = const., η = const., In = const., Eq. (4) reduces to the ordinary, first-order differential
equation (ODE)

ẏ = b−
a

y

(

y = Vc , a =
Vn · In
η · C

≥ 0 , b =
Ih
C
≥ 0

)

. (5)

This equation has the implicit solution

0 = y − y0 +
a

b
· log

(

a− b · y

a− b · y0

)

− b ·∆t = f(y, y0,∆t) , (6)

in which the overcharging protection and regulator cut-off voltage are neglected for the moment.
Here, y = y(t) and y0 = y(t0) with t ≥ t0 are points in time with ∆t = t − t0. This equation can
be solved with, e.g., Newton’s Method:

yn+1 = yn −
f(yn, y0,∆t)

f ′(yn, y0,∆t)
= g(yn, y0,∆t) (7)

for a given number of iteration steps or until an absolute or relative error ǫ is achieved. Due to the
overcharging protection, the final result of the iteration must be reduced to Vmax, if it exceeds this
value. Moreover, the case Vc < Vcut has to be handled separately because it is equivalent to node
depletion.

In two cases Eq. (6) cannot be used due to mathematical and numerical reasons:

(1) If Ih = 0 and thus b = 0, the explicit solution y =
√

y20 − 2a ·∆t must be used.
(2) In steady state, i.e., y0 = a

b
, the solution is ẏ = 0⇒ y = y0.

4.3.2. Online Prediction of the Energy Future. The approach used for simulation is turned into
an algorithm that generates a prediction of the future supercapacitor voltage. For this purpose, a
forecast of the harvest Ih is required. This end is met by the time slot method introduced in Sect. 2.2.
Such a forecast provides the expected average harvest µ̂s for a time slot s of length ℓs. For the
prototype harvester, µ̂s = Īh is the expected harvest in milliampere. The expected intake does (by
definition of the forecasts) not change within a slot.

The consumption of a duty-cycled node is uniform in time intervals of several minutes or hours:
Firstly, wake-up intervals are usually in the range of some hundred milliseconds. Secondly, asym-
metric events, such as waiting for the receiver’s wake-up for data transmission, are rare for low
sampling and packet rates. Therefore, node consumption is modeled by its average load Īn. This
simplification additionally reduces computation complexity, since there is no need to determine
intermediate voltages (within a slot).

All parameters are available for determining the expected voltage at the end of a time slot s by
solving Eq. (6) with Eq. (7). By considering a series S of slots, this method is able to predict a
voltage course for the available forecast horizon. Here, the predicted voltage after one slot is used as
initial voltage of the following slot, giving an iterative solution. In general, updates of this voltage
course have to be calculated only if a new forecast is available, i.e., if a slot elapses.

4.4. Policy-Based Uniform Load Maximization

This section introduces the concept of energy policies and presents an algorithm to identify the
maximum constant load satisfying a given policy. Here, the approach is to use policies as a heuristic
for finding the maximum constant load.

4.4.1. Energy Policies. An energy policy defines a set of rules that the future course of energy re-
serve (i.e., supercapacitor voltage Vc) has to fulfill—e.g., the voltage should stay above a threshold.
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However, the algorithm for predicting Vc in Sect. 4.3.2 produces a time series V = 〈 v0, . . . , v|V|−1 〉
of supercapacitor voltages rather than a function description. Therefore, we define an energy pol-
icy P as a conjunction of predicates (rules) that is evaluated for a time series V of supercapacitor
voltages. Since V has been calculated based on an average sensor node consumption Īn, evaluating a
policy P answers the question whether Īn complies with P—e.g., answers the question whether Īn
will ensure that Vc stays above a threshold.

In the following, we introduce and explain two policies. The first aims at preventing depletion
by keeping Vc above a user-defined, critical threshold. The second tries to additionally improve the
final value of I∗n by keeping the harvester in a better power point.

Depletion Safety. Achieving perpetual operation implies depletion-safe operation, hence the volt-
age Vc of the supercapacitor must not fall below the cut-off voltage Vcut. Due to uncertain energy
intake in the future, it appears useful to define a critical voltage Vcrit ≥ Vcut that must never be
undercut, so that the policy guarantees backup energy. The corresponding depletion-safe policy is
formally defined by

PDS(V) := ∀v ∈ V : v ≥ Vcrit . (8)

Maximum Power Point. The harvester introduced in Sect. 3.1 operates at a better harvesting power
point for higher values of Vc—for given values of Ih and In, the difference in Eq. (4) mainly depends
on the value of Vc: the larger Vc, the lower the current subtracted from Ih. If the difference is positive,
this means that the supercapacitor is charged quicker. If the difference is negative, this means that the
supercapacitor is discharged slower. This observation is closely related to the example in Sect. 4.1.

For our hardware, the maximum power point is at Vc = Vmax, so that it is desirable to operate
the supercapacitor at this voltage. Requiring a high voltage Vc at all times yet implies a low load In:
Keeping Vc close to Vmax at times of low or no harvest (e.g., at night) demands near-zero consump-
tion. To achieve uniform operation, the idea is to formulate a policy ensuring that Vc reaches Vmax

(at least) once a day:

PMPP(V) := ∃v ∈ V : v = Vmpp ∧ PDS(V) , (9)

where the inclusion of PDS is mandatory to prevent depletion. For the prototype harvester, Vmpp =
Vmax is the natural choice.

4.4.2. Maximum Policy-Compliant Load. Finding the maximum load I∗n complying with an energy
policy P is achieved by predicting a node’s voltage course. Here, I∗n is constant w.r.t. the prediction
horizon in order to achieve stable, uniform operation. The maximum average consumption of the
sensor node is defined by the value of I∗n ; the actual consumption should be symmetric and uniform
with an average of I∗n = Īn (cf. Sect. 4.2).

The algorithm FINDMAXLOAD in Fig. 7 uses binary search to find the maximum load I∗n com-
plying with policy P . Starting with the current supercapacitor voltage Vc, the algorithm calculates
the series of intermediate voltages V via SIMVC, where the individual elements v ∈ V are the in-
termediate voltages at the beginning (or ends, respectively) of time slots. The lengths and expected
harvest of the time slots are defined by the forecast in its slot representation S . The series V is finally
checked for compliance with P and the bounds of the search are adjusted. The maximum number
of iterations is limited by an absolute tolerance tol, so that the binary search has log2

(

In,max/tol
)

iteration steps. Here, In,max is the maximum allowed consumption.
The algorithm SIMVC implements the functionality explained in Sect. 4.3. Iterative approxima-

tion of Vc at the end of a time slot is repeated until the absolute error falls below ǫ or a maximum
number of iteration steps N has been executed.

The optimality of the algorithm requires the optimality (applicability) of the binary search. This
is the case, if the policy is violated for all loads larger than I∗n , and if all loads smaller than I∗n
comply with the policy. The two presented policies fulfill this requirement. The sketch of the proof
is as follows. First, we observe that a lower consumption In cannot lead to a smaller voltage Vc, cf.
Eqs. (4) and (5). For PDS we can then show that if a load (consumption) complies with PDS (i.e.,
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1: function FINDMAXLOAD(V0,S,P)
2: I−n ← 0
3: I+n ← In,max

4: repeat
5: I∗n ← (I−n + I+n )/2
6: v ← V0

7: V ← 〈 v 〉
8: for all s ∈ S do
9: v ← SIMVC(v, ℓs, µ̂s, I

∗

n)
10: V ← V ∪ 〈 v 〉
11: end for
12: if P(V) then
13: I−n ← I∗n
14: else
15: I+n ← I∗n
16: end if
17: until I+n − I−n ≤ tol
18: return I∗n
19: end function

1: function SIMVC(V0,∆t, Ih, In)
2: if V0 < Vcut then
3: In ← 0
4: end if
5: a← (Vn · In)/(C · η)
6: b← Ih/C
7: y ← V0

8: if Ih ≪ In then
9: y ←

√

y2 − 2a ·∆t
10: else if y 6= a/b then
11: j ← 0
12: repeat
13: j ← j + 1
14: yold ← y
15: y ← g(y, V0,∆t)
16: until |yold − y| < ǫ or j ≥ N
17: y ← min (y, Vmax)
18: end if
19: return y
20: end function

Fig. 7. (left) Algorithm for finding the maximum supported load I∗n complying with policy P and (right) algorithm for
simulating the supercapacitor voltage for known harvest and consumption

no intermediate voltage is smaller than Vcrit), any smaller load also complies. For PMPP we must
additionally show that if a load produces at least one intermediate voltage with value Vmpp, this is
also true for any smaller load.

4.4.3. Estimating the Critical Voltage. Ensuring depletion-safe operation is a major driver behind
the policy concept. Achieving this goal is sensitive to the choice of Vcrit, since it defines the amount
of energy reserved to absorb energy-intake deficits due to erroneous harvest predictions. For this
reason, we derive an equation to choose Vcrit properly.

The risk of depletion is particularly high, when Vc = Vcrit at the beginning of a slot—i.e., when
running FINDMAXLOAD—while the expected harvest µ̂s for the following slot s and the maxi-
mum policy-compliant load I∗n are high. In this case, a prediction error resulting in a harvest deficit
causes Vc to fall considerably below Vcrit. Even if not resulting in depletion, FINDMAXLOAD would
produce the lowest possible value of I∗n (i.e., I∗n ≈ 0mA) at its next execution, rendering the node
useless for the network and increasing its risk of depletion.

To avoid depletion, we must ensure that Vc > Vcut for a time ∆t of at least the length ℓs of
the following slot s, when FINDMAXLOAD is run again to update I∗n . The smallest required value
of Vcrit can be obtained from Eq. (1) with suitable bounds for Ih and Ir. A worst case error of harvest
prediction leads to zero intake, i.e., Ih = 0mA. The current Ir in Eq. (1) cannot exceed µ̂s because
the voltage at the end of slot s would fall below Vcrit, which is a contradiction to FINDMAXLOAD.
Moreover, Ir is limited by means of Eq. (2) and In ≤ In,max. However, these bounds of Ir are
too weak and unrealistic, because they neglect that FINDMAXLOAD runs over a longer prediction
horizon than a single time slot. The actual output I∗n of the algorithm, and with that Ir, is usually
much smaller and below the average harvest in the prediction horizon (we will discuss and show
this in Sects. 5.1.3 and 5.2). Using the expected mean harvest E {Ih} as an approximation for an
upper bound on Ir and letting Ih = 0mA, we can hence employ Eq. (1) to obtain

C · V̇c = −Ir ≈ −E {Ih} ⇒ Vcrit ≥ Vcut +
E {Ih}

C
·∆t . (10)

For our prototype harvester in Sect. 3.1, E {Ih} = 2mA, and a slot length of ℓs = 1 h, we find
Vcrit ≥ 1.53V for a 25F capacitor and Vcrit ≥ 0.72V for a 200F capacitor, respectively. We will
show in Sect. 5.2 that these limits give reasonable estimations for choosing Vcrit.

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 12, Publication date: September 2014.



Perpetual Data Collection with Energy-Harvesting Sensor Networks 12:17

Table II. Parameter setup for benchmarking the voltage simulation algorithm SIMVC

Parameter Symbol Unit Set of Values

capacity C F 25, 50, 100, 200

initial voltage V0 V 0.5, 0.6, . . . , 2.7

load In mA 0, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10

harvest Ih mA 0, 0.5, 1, 1.5, 2, 3, 4, 5, 10, 20, 30

slot length ∆t min 10, 20, . . . , 360
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Fig. 8. Evaluation of (a) the execution time of SIMVC and (b) the number of performed Newton steps

4.4.4. Implementation and Benchmarks. The algorithms in Fig. 7 were implemented for TinyOS.
They are individual tasks in order to prevent blocking the microprocessor, which may cause side
effects or failure in other parts of the software stack. Moreover, the Newton iteration in SIMVC is
a third task. All calculation steps were performed in floating point arithmetic to avoid unforeseen
calculation problems or errors. Calculations rely on the standard math library for square root and
logarithm operations.

The implementation was benchmarked with an Iris sensor node. We recorded the execution time
of SIMVC with microsecond resolution for the set of parameters shown in Table II. More than
320 000 results cover the practical ranges of all parameters with focus on frequency of occurrence,
e.g., small harvest and load values are more likely than larger ones. The value of ǫ = 1mV was
chosen to achieve sufficient precision while keeping execution time low. Up to N = 100 Newton
steps were allowed.

On average, 2.67 Newton iterations were required to calculate the resulting voltage after ∆t,
where the standard deviation was 0.95. The maximum number of Newton steps was 58, corre-
sponding to 46.5ms execution time. Mean execution time was 3.06ms with a standard deviation of
1.26ms. Figure 8 shows the distribution of execution times and the number of Newton steps of the
experiment. Overall execution time of a single run of FINDMAXLOAD scales with the number of
slots S and the number of binary-search steps. To achieve a granularity of tol = 20 µA for I∗n , which
is below the minimum consumption of an Iris sensor node [Renner et al. 2012a], ten binary search
steps are sufficient. A back-of-the envelope calculation shows that for S = 12, a load adaptation at
the end of a slot will require 367ms on average. The energy expenditure caused by load adaptation
can hence be neglected—e.g., the consumption of the radio running a 1% duty cycle would over-
shoot the consumption caused by load adaptation by a factor of 470 on an Iris node (with the values
from [Renner et al. 2012a]).

5. EVALUATION OF PREDICTIVE LOAD ADAPTATION

This section presents the evaluation methodology and results of our predictive load adaptation al-
gorithm. We show that the algorithm enables uniform node operation, and that the use of harvest
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forecasts increases the achievable load by a factor of up to two. The maximum-power-point policy
enables a higher node load for large capacities and reduces the risk of depletion in case of erroneous
harvest forecasts in changing weather conditions.

5.1. Evaluation Methodology

5.1.1. Data Basis. The evaluation of the proposed energy policies is based on a 194-day harvest
trace that was recorded by a sensor node powered by the harvester prototype from Sect. 3.1. It was
placed outside on a window sill facing westwards on the fourth floor of the main University building.
Readings are averaged over 5 min intervals to reduce experiment runtime.

5.1.2. Methodology and Parameters. The voltage course is simulated with a time resolution of
5 min. The initial supercapacitor voltage is Vc = Von in all experiment runs. In the event of tempo-
rary depletion (Vc falls below Vcut), the node resumes operation only after charging to Vc ≥ Von

(cf. Sect. 3.1). The node adapts its consumption In = I∗n through FINDMAXLOAD for a forecast
horizon of 24 h. Consumption updates are performed at the beginning of a new time slot. The maxi-
mum consumption used in the binary search is In,max = 17.5mA and η = 86% (cf. Sect. 3.3). This
setup complies with the current consumption of an Iris node with enabled radio and the average effi-
ciency of the harvesters’ regulator (cf. Sect. 3.1). This setup additionally enables a straight-forward
comparison with the results in Sect. 7. Supercapacitors were dimensioned from 25F to 200F. The
algorithm parameters were ǫ = 0.1mV and tol = 10 µA. Critical voltages Vcrit of 0.5V, 1.0V, and
1.5V were tested according to Sect. 4.4.3.

To analyze the gain of using harvest forecasts, the performance of load adaptation in absence of
a forecast was evaluated first. This is equivalent to the method proposed in [Zhu et al. 2009] (cf.
Sect. 2.3). In this context, the only relevant (applicable) policy is PDS, and the maximum load can
be directly calculated for the prediction horizon (cf. Sect. 4.3.1). To compare the general behavior,
advantages, and disadvantages of the policy concept and the individual policies, an evaluation with
perfect forecasts was performed. For this purpose, perfect forecasts with and without time slots were
generated and used, i.e., the actual Ih-data of the next 24 h and their slot representations were fed to
FINDMAXLOAD. Finally, we assessed the performance in a realistic environment. Harvest forecasts
were generated using the EWMA method introduced in Sect. 2.2. EWMA filter coefficients α of
0.2, 0.5, and 0.8 were used, and the number of slots ranged from S = 6 to 72.

5.1.3. Metrics. We assessed the performance of the policies with the following metrics. We ana-
lyzed the distribution of I∗n obtained from the individual loads of each 5 min-interval to cater for a
fair comparison w.r.t. different slot lengths and slot distribution. If a node is (temporarily) depleted,
a value of 0mA is used. Load distributions are displayed with box plots showing the median along
with minimum and maximum values plus upper and lower quartiles. The distribution is compared
with the average usable harvest η · E {Ih}, that defines the upper bound of average current con-
sumption, cf. Fig. 6, since for our hardware Vc ≤ Vn. This value is only reachable for Ih = In and
Vc = Vmax, cf. Eq. (4). Furthermore, we analyzed the distribution of load adaptation deltas ∆I∗n
(the difference of two consecutive values of I∗n) and show corresponding box plots. We assessed
node downtime as a fraction of simulated experiment runtime, i.e., 194 days. In addition to these
metrics, traces of Vc, In = I∗n , and Ih are used to support our findings and provide details.

5.2. Evaluation Results

5.2.1. No Forecast. Figure 9 depicts the performance metrics for load adaptations performed
every 5 min. In Fig. 9a, it shows that the achievable load I∗n increases with supercapacitor size.
However, the gain is less than the capacity increase, e.g., the median I∗n for C = 100F and Vcrit =
1.0V is approximately 0.83mA while it is 1.39mA for C = 200 F. Using PDS without forecast
restricts the load to an upper bound, which is defined by the values of C, Vcrit, and Vmax—cf.
Sect. 4.3.1 for the case Ih = 0. This bound is visible in the figure; e.g., for a 25F supercapacitor and
Vcrit = 1.0V, I∗n cannot exceed the shown 0.29mA. On sunny days, large portions of the harvest are
neither used by the node nor can they be stored in the buffer, once Vc reaches Vmax. This behavior
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Fig. 9. No forecast: Distribution of (a) I∗n and (b) ∆I∗n for Vcrit = 0.5V (red/left), 1.0V (yellow/center), 1.5V
(blue/right). I∗n was updated every 5 min
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Fig. 10. Perfect forecast: Distribution of I∗n for Vcrit=0.5V (red/left), 1.0V (yellow/center), 1.5V (blue/right)

is particularly pronounced in the case of small supercapacitors. While it could be circumvented—
e.g., by allowing a node to spend more energy when Vc is close to Vmax—the achievable benefit is
questionable and has drawbacks, e.g., the demand for uniform load profiles (cf. Sect. 4.1) and the
simple policy concept are undermined. Consumption is relatively uniform, which is indicated by
the distribution of adaptation deltas in Fig. 9b. In most cases, the load is adapted by a few tenth of
milliampere only.

5.2.2. Perfect Forecasts. The theoretical potential and conceptual weaknesses of the policies are
revealed by providing a perfect forecast. Here, the node determines I∗n and updates its consump-
tion In every 5min, i.e., with the granularity of the Ih-trace and voltage simulation. Hence, no
downtimes are experienced.

Figure 10 shows the distribution of I∗n for both policies. The plots reveal that all medians are
considerably below the average harvest. For a 25F supercapacitor, only one fourth of the harvested
current is effectively used by the node on average. The influence of Vcrit for PDS depends on ca-
pacity C, see Fig. 10a: In case of small C, a larger value of Vcrit leads to a smaller load, since the
usable range of Vc is reduced while small capacitors can be fully charged even on days with low
harvest. Combining Vcrit = 1.5V with a 200F supercapacitor increases the average load, because
the supercapacitor is operated at higher voltages and thus kept in a better (harvesting) power point.
This effect is amplified by the fact that a larger Vcrit increases the likelihood of Vc reaching Vmax.
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Yet, a too large value of Vcrit will produce the contrary result: Despite a good power point, only a
small fraction of energy can be drawn from the supercapacitor.

The maximum-power-point policy PMPP brings improvements for C ≥ 100F, see Fig. 10b. This
supports the previous findings and shows that small supercapacitors are fully charged once per day
in the setup, even without applying PMPP.

Figure 11 shows an energy course. On days with high harvest, PMPP and PDS show similar
voltages traces. Differences are notable during days with low harvest. Particularly in the first days,
PMPP achieves higher loads, because Vc is held at a higher level. The price of this benefit is paid,
when a good day is followed by a poor one (e.g., day 13): The load is suddenly decreased, whereas
PDS leads to a smoother descent.

Comparing the results to those in Sect. 5.2.1 admits several conclusions. Firstly, the average load
is increased when using a harvest forecast for smaller capacities (C ≤ 100F in this evaluation),
because forecasting relaxes the load limitation dictated by the capacity. In case of C = 25F and
C = 50F, the average I∗n is more than doubled. For C = 200F, the choice of Vcrit is critical when
using PDS.

5.2.3. EWMA Forecasts. Load adaptations experience an expected performance decrease when
uncertain forecasts are used. The general observation of the experiments is that the average load de-
creases, yet stays above the level of doing without forecasts. There is one exception: Using forecasts
with C = 200F and PDS leads to lower values of I∗n . This is caused by overestimating the harvest-
ing conditions on a poor day after a series of good days. In this situation, Vc quickly falls below
Vcrit and leaves the harvester in a lower power point. Using PMPP only pays off for C > 100F.

These results can be traced in Fig. 12, which primarily serves to study the influence of the number
of slots. Figures 12a and 12c reveal that fewer slots may lead to a higher average load and produce
fewer outliers of particularly large values of I∗n . This effect is best visible for C = 200F and
PMPP. The reason for this behavior is that using more slots creates a more fine-grained prediction
of Vc; combined with imprecise forecasts, the chance of policy violation is increased. Moreover,
with fewer slots, the chance of missing temporary situations with Vc < Vcrit is increased. The
characteristics of load adaptations shown in Figs. 12b and 12d exhibit a similar shape among policies
and w.r.t. previous results.
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Fig. 12. EWMA forecast: Distribution of I∗n and ∆I∗n using 12 (red/left), 24 (yellow/middle), and 48 (blue/right) slots
with an EWMA smoothing factor of α = 0.8. The critical voltage is Vcrit = 1.0V.
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Fig. 13. EWMA forecast with slots and PMPP: Influence of the filter coefficient α on node downtime for Vcrit = 0.5V
(light) and Vcrit = 1.0V (dark)

Downtimes vary with the chosen setup. They are close to 0% for Vcrit ≥ 1V, if at least 12 slots
are used. An in-depth analysis of the results reveals that additional time slots reduce the risk of
depletion only due to the increased number of load adaptations, i.e., policy control points. Forecast
quality is not improved—details about this aspect are provided in [Renner and Turau 2012a].
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Fig. 14. EWMA forecast with 24 slots: Course of Vc and In for Vcrit = 1.0V and C = 100 F. Ticks on the x-axis
indicate midnight

Influence of EWMA Smoothing Factor. The influence of the EWMA smoothing factor α on node
downtime is studied in Fig. 13. It shows that downtimes are intolerable in case of Vcrit = 0.5V.
This is an expected result, because there is no backup energy in case of too optimistic forecasts. A
value of Vcrit = 1V prevents node downtimes in most setups; only for small capacities and S = 6,
a risk of depletion between 4 and 8% remains. A small value of α, see Fig. 13a, generally yields
lower downtimes. From the perspective of downtime only, a small value of α appears favorable. In
the following, it is shown that this observation is to be taken with care.

While α has low influence on the median value of I∗n and, generally, on its distribution as well—
no figure is thus presented—the detailed traces in Fig. 14 show remarkable behavior for both chang-
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ing and stable weather conditions. Between days 9 and 12, when harvest is improving over the days,
α = 0.2 allows a quicker adaptation and therefore better precision of the harvest forecasts. This in
turn extends the used range of Vc, resulting in larger values of I∗n and In, respectively. However,
operating Vc close to Vcrit bears the threat of short break-ins of In, e.g., see the middle of day 12 in
Fig. 14a. Upon the poor harvest on day 13, the forecast produced with α = 0.2 has a higher error
than the one obtained using α = 0.8 (cf. Fig. 14b), so that the latter enables maintaining a higher
load from the middle of that day on, because the too optimistic forecast using α = 0.2 forced Vc

close to Vcrit. Both traces show a quick recovery after the single poor day, i.e., In is high between
noon of days 14 and 17. The following series of days with low harvest, however, produces several
insights. A quickly adapting forecast lowers the achievable load for PMPP, because bringing Vc

up towards Vmax is enforced. In contrast, PDS enables a moderate load around 0.3mA. A slowly
adapting forecast (α = 0.8) produces less accurate forecasts in this case, yet leads to a higher load
regardless of the policy and without causing depletion.

Both traces share in common that PMPP produces load peaks when the forecast is consecutively
improved of several days (e.g., from day 9 to 13). This can be explained as follows: Since the
forecast is too low, Vc reaches Vmpp quicker than predicted. In this case, the maximum-power-
point criterion of PMPP is satisfied, so that the policy effectively reduces to PDS. This can be
observed at noon of day 11, where both policies permit the same value of I∗n at an equal Vc. When Ih
undershoots I∗n shortly before sunset and Vc thus falls below Vmpp, this effect is annulled. To comply
with PMPP, a reduced value of I∗n is produced by FINDMAXLOAD until a point is reached, at which
PDS and PMPP output the same value of I∗n . This is the case, when the forecast is lower than the
actual harvest in the prediction horizon and if the maximum-power condition of PMPP is dominated
by depletion-safety regardless of the value of Vc. Such a situation is generally observable between
noon of day 14 and noon of day 17.

5.2.4. Additional Results and Observations. The results presented in this section motivate two
further investigations that are carried out in the following.

Using the current supercapacitor voltage V0 for policy-compliance testing leads to abrupt load
changes when V0 falls below Vcrit. The effect of ignoring V0 was therefore studied. Improvements
of the average I∗n are below 2% in most cases, but load adaptations are less abrupt when Vc ap-
proaches Vcrit. This comes at the cost of an increased downtime; e.g., downtime rises from 1% to
11% for PDS with C = 50 F, Vcrit = 1V, and α = 0.8. For Vcrit = 1.5V, downtimes range from
0% to 2%. Overall, increasing performance (i.e., load) amplifies the risk of depletion. These figures,
moreover, give a feeling for the performance in a real-world application. Here, preventing depletion
may not be possible, because nodes cannot interrupt normal operation completely due to sensing
tasks and inevitable data forwarding responsibilities.

The policy PMPP requires to fully charge the supercapacitor once a day. While this has been
shown to generally improve I∗n , it has also been identified to be a source of wasted harvest. If
harvest overshoots its forecast, the supercapacitor is usually fully charged at times of high harvest,
i.e., Ih ≫ I∗n = In. Furthermore, the combination of a large capacity (C = 200F) and consecutive
days with low harvest lead to a low (almost zero) value of I∗n , because charging to Vmpp is impossible
within a day. To overcome these problems, the effect of choosing Vmpp = 2.5V (instead of Vmpp =
Vmax) was investigated exemplary. With perfect harvest forecasts, the average I∗n decreases by up
to 10%, where the effect is lower for smaller C. When EWMA-filtered harvest forecasts are used,
there is essentially no effect for C ≤ 50F. In some setups with C = 100F and all setups with
C = 200F, the average I∗n is elevated by up to 3%. Downtime is not affected. For large capacities,
a value of Vmpp slightly (e.g., 0.1V to 0.2V) below Vmax has the potential to increase the average
achievable load in a practical scenario while not enlarging the risk of depletion.

5.3. Summary

The evaluation shows the applicability of the policy concept and confirms that operating a superca-
pacitor close to its maximum voltage (usingPMPP) enables a higher load and hence yields improved
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mean utility with low variation. The gain vanishes for small capacities, as the solar cell fully charges
these supercapacitors even on days with low harvest. This also causes a relatively low average load
compared to the mean harvest, since a surplus Ih > Ir cannot be buffered for later use. The prob-
lem vanishes with the use of smaller solar panels and larger supercapacitors. In fact, the solar panel
of the prototype is over-dimensioned when combined with a 25 or 50F supercapacitor; its average
harvest of a day exceeds the storable energy of these small supercapacitors by a factor of 4 and 2,
respectively.

Load variation of factor 2 and above—within and across days—stresses that choosing a fixed
consumption or duty cycle a priori is difficult, if not impossible. With a static consumption setup,
energy resources are wasted, or unacceptable and repeated node downtimes are risked. In contrast,
the policy concept achieves rapid adaptation to the remaining energy resources. Using harvest fore-
casts increases the achievable load and thus improves the utility of harvested energy.

Enforcing a minimum supercapacitor voltage Vcrit above the harvester’s cut-off voltage decreases
the risk of depletion but does not affect utility in most cases. This is particularly important for
forecasts using time slots and EWMA-filtering: Forecast errors and model inaccuracy (caused by
the linearization in combination with long time slots) must be compensated. However, the load
changes abruptly when Vc undershoots Vcrit.

The results suggest that in a real deployment, depletion cannot be always prevented: Operating a
node in its sleeping mode for a long time (hours or days) is likely to be impossible, since sensing and
data forwarding tasks have to be performed. More precise harvest forecasts are needed to accomplish
early detection of poor weather conditions, so that energy can be saved timely. Therefore, finding an
improved method for harvest forecasting should be on the agenda of future sensor network research.

Performing load adaptations at the beginning of time slots, used for harvest forecasting, reduces
adaptation overhead and improves load stability. For solar harvesting, the optimal choice is between
12 and 24 slots. Using fewer slots increases the risk of depletion, using more slots adds a certain
randomness to forecasts (and adaptations), because slot values are too much affected by temporary
weather influences, such as passing clouds.

6. PRACTICAL LOAD ADAPTATION FOR MULTI-HOP DATA COLLECTION

In the following, we present our motivation for practical load adaptation and the general approach.
We introduce the ORiNoCo protocol, a low-power duty-cycling data-collection protocol, and de-
scribe a concrete method for online load adaptation.

6.1. Motivation and Objective

Combining state-of-charge assessment with the concept of energy policies enables load adaptation
that minimizes the risk of depletion while it elevates average uniform load, as shown in Sect. 5.
However, these results have been obtained through simulation. Because there is a gap between sim-
ulation and the real world, a practical evaluation in a real-world deployment is required. Moreover,
simulation and its result focused on the perspective of a single node and did not cover the network
aspect, which is of major relevance for wireless sensor networks. This section hence targets the
following goals:

(1) Supporting the results on real hardware.
(2) Proving the practical interplay of harvest forecasts, predictive load adaptation, and actual energy

consumption.
(3) Devising and analyzing a concept of practical load adaptation in a multi-hop sensor network

deployment with the methods presented in this paper.

In the following, the general approach to reach these goals is presented. Details are provided
subsequently in the section.

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 12, Publication date: September 2014.



Perpetual Data Collection with Energy-Harvesting Sensor Networks 12:25

6.2. General Approach

One of the major application scenarios of wireless sensor networks is data collection. Due to topol-
ogy changes, unstable wireless links, and uncertain consumption profiles of the nodes, it is difficult,
if not impossible, to pre-set a radio duty cycle that prevents depletion and ensures sufficient through-
put at the same time. For these reasons, radio duty-cycle adaptation in multi-hop sensor networks
is an ideal candidate to analyze practical applicability of predictive load adaptation with energy
policies.

Many well-known routing protocols for sensor networks (e.g., CTP [Gnawali et al. 2009]) pro-
duce traffic and consumption overhead due to packet exchange for link-quality assessment and route
maintenance. Recently, opportunistic routing protocols (e.g., [Landsiedel et al. 2012; Unterschütz
et al. 2012] without this deficiency have been developed. We will show how this novel class of
routing protocols can be integrated with the concept of predictive load adaptation through local
reckoning and without producing overhead in terms of packet exchange. For this purpose, we use
the opportunistic receiver-initiated no-overhead collection (ORiNoCo) protocol from [Unterschütz
et al. 2012]. The energy consumption of the afore-mentioned opportunistic routing protocols is
mainly influenced by four factors:

(1) the rate of sending and receiving packets,
(2) the waiting time before packet transmission, called forwarding delay hereafter,
(3) the beacon rate of the integrated low-power MAC, and
(4) the size of packet bursts, i.e., a node sends multiple packets subsequently as a bulk.

The first two of these factors can only be (passively) measured by a sensor node online, whereas
the second two are knobs for load adaptation. A detailed consumption model is presented in this
section, and a scheme for practical load adaptation that ensures fair energy splitting for sending and
receiving data is derived. The intention of this scheme is to prove the practical applicability of load
adaptation with the concepts presented in this paper.

Finally, this adaptation scheme is put into practice through a case study of a twelve-node out-
door deployment. For this purpose, all components from this paper are implemented for TinyOS.
A detailed analysis of the performance is conducted. In particular, the results of the algorithm for
maximum policy-compliant load determination are compared with the actual consumption of the
node and the average harvest. Node downtimes are analyzed and the results are compared to those
of Sect. 5.

6.3. The ORiNoCo Protocol

For a better understanding of the load adaptation scheme, an explanation of the general concept
behind ORiNoCo is provided.

6.3.1. Receiver-Initiated Media Access Control. ORiNoCo is based on the RI-MAC protocol [Sun
et al. 2008], which aims at preserving energy by duty cycling the radio through what is called low-
power probing.

All nodes in the network send periodic beacons to signal a general readiness to receive a data
packet. A node willing to send data switches on its radio and waits for the beacon of the receiver.
The sender transmits its data packet upon reception of this beacon after a small random back-off,
if the channel is idle. Successful packet reception is acknowledged by the receiver with another
beacon, containing the identifier (or address) of the sender. Having received the (acknowledging)
beacon, the sender either switches off its radio, if there are no more packets left, or transmits an
additional packet to the (same) receiver. The receiver node holds on for a short period Thld and
switches off its radio thereafter, if no additional data packet arrives. Hence, the value of Thld also
defines the maximum back-off. An example of a data transmission using the RI-MAC protocol is
illustrated in Fig. 15.

Each node in the network periodically sends beacons. To decrease the chance of accidental and
undesired node synchronization—which results in beacon collisions—inter-beacon times, or sleep
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Fig. 15. Consecutive transmission of two data packets from sender T to receiver R with RI-MAC

intervals, are chosen randomly from the interval

[(1− δ) · Tslp, (1 + δ) · Tslp] (0 < δ < 1) . (11)

The choice of Tslp is critical. On the one hand, a small value reduces the forwarding delay for the
sender, but it increases consumption due to frequent beacon transmissions, and it provokes channel
congestion in dense networks. On the other hand, a large value prevents congestion, but it increases
the forwarding delay and energy consumption for the sender. An analysis of consumption w.r.t. Tslp

is provided in Sect. 6.4.

6.3.2. Opportunistic Data Collection. RI-MAC only provides direct communication between sen-
sor nodes. In most data-collection sensor networks, multi-hop communication towards the sink is
required, so that an additional routing protocol has to be run on top of RI-MAC. ORiNoCo enhances
RI-MAC to become a data-collection protocol.

To achieve this goal, each node stores a path metric ω and adds it to all beacons. The value of ω
reflects the cost for delivering data to the sink via the sender of the beacon and enables the formation
of a tree-like routing structure.

Data collection is enabled through the following protocol behavior. When a node T wants to
transmit data, it listens on the channel until receiving a beacon from an arbitrary node R. Node T
calculates the path weight ωT,R using the cost metric function

ωT,R ← ωR + υT,R . (12)

Here, ωR is the metric attached to the beacon sent by node R, and υT,R is a measure of the cost for
sending a single packet to node R, where υT,R is determined by node T. In this section, the hop
count metric is used, so that υT,R = 1. If the condition

ωT,R ≤ ωT (13)

holds, node R is closer to the sink than node T. Only in this case, T transmits its data packet to
node R and waits for the acknowledging beacon. Upon reception of that beacon, node T updates its
weight ωT with ωT,R—adapting to a path with low cost but poor connectivity is thus prevented. If
node T receives no acknowledging beacon, it waits for the next beacon satisfying Eq. (13) from any
node.

Initially, all nodes with exception of the sink assume ω =∞, i.e., there is no path to the sink. The
sink S always maintains ωS = 0. Through weight updating by Eq. (12), a tree-like routing structure
is constructed successively. Unlike using a traditional routing tree, nodes are not restricted to for-
ward data to a single (parent) node only, but they may chose among all nodes satisfying Eq. (13).
However, upon failure of a node or a changing topology, a sender T may be prevented from for-
warding its data, if no receiver R satisfying Eq. (13) is in its range. In this case, node T resets its
path weight (i.e., ωT ←∞) after a pre-defined time period, e.g., a multiple of Tslp.
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6.4. Energy Consumption and Load Adaptation

Load adaptation in sensor networks using low-power protocols, such as ORiNoCo, is usually
achieved by adjusting the radio duty cycle φ. However, the duty cycle cannot be adjusted directly as
outlined in Sect. 6.2.

Therefore, an understanding of the ORiNoCo consumption model and its parameters is required
to allow for effectively and accurately adapting consumption. Such a model is elaborated in the
following.

6.4.1. Parameters and Assumptions. To model energy consumption of ORiNoCo while keeping
complexity low, the following assumptions and simplifications are made:

— There are three consumption states, namely the sleep state with a current consumption Islp, the
radio receive state with a current consumption Irx, and the radio send state with a current con-
sumption Itx. Consumption during periods of idle listening is Irx, thus equivalent to receiving.
This simplification introduces only small errors on many sensor node platforms.

— The time Tbeac needed for sending a beacon, the time Tdat needed for sending and receiving
a data packet, and the hold time Thld are constant and known. Back-offing takes an average
of Thld/2.

— Times for switching the radio on and off, and for changing its state are neglected.
— The average inter-beacon time is Tslp. In fact, the introduction of the variation parameter δ in-

creases the average inter-beacon slightly beyond Tslp—this is called the Hitchhiker’s paradox
(details are provided in [Unterschütz et al. 2012]). However, for values δ < 0.2, the effect is
negligible.

— Each node is aware of (or estimates) the rate κ of packets created by itself and the rate λ of
incoming packets.

— Each node knows (or estimates) its average forwarding delay Tfwd. This is of particular relevance,
because (i) each node may run an individual duty cycle, so that forwarding delays differ within
the network, and because (ii) forwarding delay depends on the number of available parents.

— Each node maintains a packet queue. Packets are only forwarded, if the number of packets in the
queue is at least Q ≥ 1, a threshold smaller than the queue size.

— Packet loss is not modeled, since ORiNoCo does not rely on link-quality information intention-
ally. Such data will thus not be accessible by the nodes, and adding link-quality estimators would
increase algorithmic overhead.

6.4.2. Consumption Model. A node running ORiNoCo quasi-periodically broadcasts beacons and
sleeps for the remainder of time. After sending a beacon, the node waits an extra Thld for incoming
data. The basic operation induces the mean base consumption

Ībase =
Tslp · Islp + Tbeac · Itx + Thld · Irx

Tslp + Tbeac + Thld

≈ Islp +
Tbeac · Itx + Thld · Irx
Tslp + Tbeac + Thld

, (14)

assuming that Tslp ≫ Tbeac + Thld.
A single packet reception consists of sending the initial beacon, receiving the data packet, and

sending an acknowledging beacon. Moreover, the receiver has to wait an additional 1
2
· Thld on

average due to congestion avoidance (back-offing by the sender). Since the consumption of the
initial beacon is accounted for by Ībase, the mean current consumption for receiving packets is

Īrecv = λ · ( 1
2
· Thld · Irx + Tdat · Irx + Tbeac · Itx) . (15)

To send one or multiple data packets, the sender must wait for a beacon before starting the ac-
tual transmission. If Q consecutive data packets are sent, waiting is necessary only every Qth data
packet. For each sent data packet, one acknowledging beacon is received. Congestion avoidance
requires waiting for Thld/2 on average between beacon reception and packet transmission. Mean
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consumption for data transmission is

Īsend = (κ+ λ) ·

(

Tfwd + Tbeac

Q
· Irx +

1
2
· Thld · Irx + Tdat · Itx + Tbeac · Irx

)

. (16)

Overall consumption of ORiNoCo is the sum of the individual components

Ībase + Īrecv + Īsend . (17)

6.4.3. Load Adaptation. In an energy-harvesting sensor network, the goal of load adaptation is to
align consumption and harvest. According to Sect. 4.2, consumption needs to match the maximum
supported load I∗n , i.e.:

I∗n
!
= Ībase + Īrecv + Īsend . (18)

In this equation, consumption due to sensing and running the load adaptation algorithm is not con-
sidered, because it is low (in the considered scenario). In an application with high-power sensors,
Eq. (18) can be modified, e.g., by subtracting the average sensor consumption from I∗n .

According to Eqs. (14) to (16), energy consumption of the ORiNoCo protocol is influenced by the
parameters Tslp, Tfwd, Q, κ, and λ, of which only Tslp and Q can be directly controlled by a node.
Forwarding delay Tfwd is determined by the sleep interval of parent nodes and their number; and λ
primarily depends on the topology but may be implicitly affected by the choice of Tslp. Changing
the local packet rate κ is not considered. All other parameters in the equations mainly depend on
the hardware and cannot be modified.

One simple approach is to choose a fixed value for Q (e.g., Q = 1 to reduce packet delay)
and determine Tslp using Eq. (18). However, this approach bears one conceptual threat: When a
node increases Tslp to reduce its own consumption, it amplifies the average forwarding delay Tfwd

of its neighboring nodes that have a larger value of ω. The resulting consumption increase can
only be compensated by these nodes through prolonging Tslp. An epidemic increase of Tslp results
with its origin being nodes close to the sink, since those nodes have the heaviest network load
and must therefore run at a lower duty cycle, i.e., larger values of Tslp. Therefore, consumption
is mainly caused by waiting for packet transmission. Since large values of Tslp enlarge the average
forwarding delay Tfwd, a single lost beacon has the potential to blow energy consumption. The latter
is particularly critical in sparse networks, where only one forwarder may be available for a node.

Due to these observations, a different concept of load adaptation is followed in this section. It
stems from the fact that each node in the network acts as a data forwarder—i.e., data is received
from other nodes and data is sent towards the sink. Assuming that the network is generally delay-
tolerant (which is the case in many monitoring applications), one reasonable option is to choose Q
and Tslp, such that an equal amount of energy is spent for receiving and for sending, i.e.,

Ībase + Īrecv
!
= Īsend , (19)

while additionally satisfying Eq. (18). We account Ībase as expenditure for reception, because bea-
cons serve as reception invitations.

Here, Tslp is usually measured in milliseconds and ranges from a few tens to a few thousand
milliseconds. In contrast, Q is unlikely to exceed a few tens due to the limited memory (RAM)
resources of sensor nodes. Storing packets in the Flash or EEPROM memory is possible but not
considered for simplicity reasons: Such an approach requires to alter the consumption model, be-
cause Flash and EEPROM access entail non-negligible additional consumption. However, since Q
is less fine-grained than Tslp, it is beneficial to solve Eqs. (18) and (19) for Q first (and round the
result to the ceiling to prevent Q < 1). Afterwards, Tslp can be deduced from Eq. (18) using the
determined value of Q. A practical solution, assuming Itx ≈ Irx, to this pair of equations yields

Q←

⌈

2 · (Tfwd + Tbeac) · Irx · (κ+ λ)

I∗n − Irx · (κ+ λ) · (2 · Tbeac + 2 · Tdat + Thld)

⌉

(20)

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 12, Publication date: September 2014.



Perpetual Data Collection with Energy-Harvesting Sensor Networks 12:29

protocol independent protocol dependent

ORiNoCo load adaptation

ORiNoCo

energy budgeter

slot distribution

energy-aware software layer

hardware

Ih, Vc

Ih

µ̂s, ℓs

Vc, C, η

I∗

n

beacons, data packets

κ, λ, Tfwd Q, Tslp

Fig. 16. System components and data flow of the integration of ORiNoCo and predictive load adaptation

and

Tslp ←
Irx · (Tbeac + Thld)

I∗n − Islp − Īrecv − Īsend
− (Tbeac + Thld) (21)

In both equations, the denominator may become zero or negative. This case requires individual han-
dling, e.g., by assigning pre-defined values to Tslp and Q, because I∗n is smaller than the minimum
load (for sending and receiving packets).

6.5. Integration of ORiNoCo and Predictive Load Adaptation

The integration of ORiNoCo and predictive load adaptation consists of several software components
that are described in this section. Figure 16 provides an overview of the components and the data
flow. All software was developed for TinyOS. The binary program image for an Iris node has a size
of 32.5 kB and uses 1.7 kB RAM (not including the packet queue); thus sparing sufficient resources.

The energy-aware software layer measures and provides the values of Vc, Ih, and In. Samples
of all sensors are taken periodically. Value updates are reported to registered software components
through TinyOS events; in addition, they can be accessed on demand. The calibrated capacity C and
the regulator efficiency η are also provided.

A day is split into S time slots by the slot distribution. It stores and provides the values of slot-
wise harvest forecasts with a forecast horizon of one day (cycle). The average value Īh since the
beginning of the current slot s is calculated from the periodic samples of Ih provided by the energy-
aware software layer. When a slot s elapses, the final value of Īh = µs is used to update µ̄s by
EWMA filtering. The initial value µ̄s = 0 is replaced on the first day with the value of µs to
overcome the slowness of the EWMA filtering process for values of α around 0.7 and larger.

The energy budgeter corresponds to the implementation of the algorithm for determining the max-
imum supported load in Sect. 4.4.4. The values of Vc, C, and η are obtained from the energy-aware
software layer. Slot value forecasts are provided by the slot distribution. The prediction horizon is
one day. Energy policies are implemented as individual, exchangeable software components.

The ORiNoCo protocol consists of several components that replace most parts of the TinyOS
radio stack. It was implemented for the Iris sensor node platform. A packet queue of configurable
length is used to buffer incoming packets and those generated by the node. As soon as the queue
length exceeds Q (and if no packet reception is pending), packet transmission is initiated. It is only
stopped, when the packet queue is empty. This implies that both sending and receiving are blocking
(each other). Changes of the parameters Q and Tslp are enabled through a programming interface.
To provide the necessary parameters for load adaptation, a traffic monitor estimates κ, λ, and Tfwd

with an EWMA filter with a filter coefficient of 0.95, i.e., new values are weighted with a factor
of 0.05 to decrease the sensitivity to outliers.
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Fig. 17. Node deployment: positioning and configuration

Load adaptation is started upon expiration of a slot by capturing the corresponding event. First,
the maximum supported load I∗n is obtained from the energy budgeter. Thereafter, new values of Q
and Tslp are determined as described in Sect. 6.4.3. Required parameters are obtained from the
ORiNoCo interface. To avoid queue congestion—which requires to drop packets—load adaptation
prevents Q from exceeding a configurable value. Configurable upper and lower boundaries of Tslp

are also enforced during load adaptation (cf. Sect. 6.3.1).

7. EVALUATION

Next, we present the evaluation methodology and results of our real-world case study. We show
that predictive load adaptation enables precise consumption adaptation in multi-hop data collection
networks, where consumption is influenced by external and changing factors such as the network
topology. The case study confirms that harvest forecasts increase node activity. Load adaptation
automatically balances the packet flow, so that nodes with low energy resources have to handle less
network traffic.

7.1. Evaluation Methodology

7.1.1. Deployment. The field test consisted of twelve sensor nodes equipped with the harvester
prototype and one sink. The latter was connected to and powered by a PC via USB. All nodes but two
were placed on the outside window sills of the university building. Plastic boxes protected the nodes
from rain. To maintain sufficient harvest, the solar cells were mounted on top of the boxes. One of
the nodes and the sink were placed inside the building to maintain network connectivity (direct
communication from one side of the building to the other was not possible). However, the solar cell
of the indoor node was installed on the outside window sill. Figure 17 shows the arrangement of
nodes around the building. Deployment was divided into several phases. In each of these phases,
a subset of the nodes was deployed; the network grew and the topology changed over time. The
intention of this approach was to simulate changes in network topology and to check the adaptation
performance in this situation.

7.1.2. Setup and Parameters. All nodes (except the sink) were equipped with supercapacitors
from 25 to 100F (nominal capacity), see Fig. 17. They ran the software introduced in Sect. 6.5.
Capacity was calibrated after booting.

Samples of Ih were taken every 3 s and samples of Vc were obtained every 5 s. The slot distri-
bution consisted of 12 to 24 slots as shown in Fig. 17, and harvest forecasts were equivalent to the
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Table III. Packet types used in the field test. Harvest forecasts are split into multiple packets
for S > 12

Type Payload Size (byte) Interval

Energy and ambient report Vc, Ih, consumption, light, temperature 26 3min

ORiNoCo statistics κ, λ, Tfwd 10 10min

ORiNoCo packet statistics sent, received, and beacon counters 36 15min

Configuration C, Vb 3 3 h

Load adaptation Q, Tslp, I∗n , κ, λ, Tfwd 13 once per slot

Harvest forecast S, S tuples (µ̂, ℓ) 38 1 d

EWMA-filtered slot values, cf. Sect. 2.2. Slot values were smoothed with α = 0.8 in compliance
with the results from Sect. 5. Slots were not synchronized among the nodes, because each node was
started immediately at its deployment, i.e., at an arbitrary time within the overall experiment dura-
tion. The maximum-power-point policy PMPP with Vcrit = 1.2V and Vmpp = 2.5V was chosen.
To avoid abrupt decreases of the load, the current voltage V0 was not used for policy evaluation (cf.
Sect. 5.2.4). The forecast horizon was one day.

The queue of ORiNoCo could hold at most 30 packets, which ensured a sufficient amount of
RAM for the program stack. A packet history (storing the packet origin and sequence number) of
length 30 was used to filter out duplicates. Received beacons with too low signal strength (RSSI
values) were discarded to reduce packet loss due to low link quality (the actual value is hardware
specific and was determined empirically). After waiting for a beacon for 6 · Tfwd, the path weight
was reset. The variation parameter in Eq. (11) was δ = 0.1, and the hold time was Thld = 8ms.

Load adaptation used Islp = 40 µA and Irx = Itx = 19.5mA based on the consumption profile
of common sensor nodes [Haas et al. 2012]. The value of Islp is the sum of the node’s sleeping
consumption and the harvester’s self-consumption. Consumption Irx = Itx is the sum of an idle
microprocessor, an active radio, and an illuminated red LED (which was used to receive an optical
feedback of the ORiNoCo activity). During adaptation, 1 ≤ Q ≤ 15 was enforced to prevent
packet drops—i.e., packet loss—if a node runs at maximum Q and receives data from another node
also running at maximum Q. To avoid beacon collisions and restrict both packet and forwarding
delay, 125ms ≤ Tslp ≤ 5 s was ensured during adaptation. The initial values after booting were
Tslp = 500ms and Q = 1.

The sink ran a modified version of the TinyOS base station application. We replaced the default
MAC layer with ORiNoCo running at a fixed Tslp = 250ms. Packets received by the sink were
forwarded to a PC via the serial line, where all data was logged.

7.1.3. Network Traffic. Each node in the network periodically created data packets to simulate net-
work load and to collect evaluation data at the same time. Table III lists the types and frequencies of
packets created by each node during the field test. In addition to the payload, each packet contained
a data sequence number, a routing sequence number, a hop counter, the first seven hops (8 bit node
addresses), a time stamp, a delay counter, and the typical TinyOS MAC header. This packet meta
information added another 29B to the packet size. Note that path information (hop counter and
hops, accounting for 8B) was only added for the following evaluation.

7.1.4. Metrics and Methodology. The evaluation of the deployment is based on the logged packets
generated by the nodes in the network. Data significance is checked by assessing the number of
received and expected packets, i.e., the loss rate is determined. Network statistics are obtained from
the routing path information included in the packets.

Node consumption In is derived from the consumption readings of the energy-aware software
layer. It is compared to the results of the algorithm determining the maximum policy-compliant
load I∗n in terms of their mean value over experiment runtime. To show the improvement of predic-
tive load adaptation versus the depletion-safe variant without harvest forecasts (cf. Sect. 5.1.2), the
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Table IV. Deployment and network statistics

node A B C D E F G H I J K L

Deployment statistics

deployment (d) 20.2 29.1 29.1 29.1 26.1 25.1 25.1 25.1 25.1 25.1 18.4 20.4

downtime (%) — — 3.3 — 1.9 0.6 — — — — — —

depletions 0 0 1 0 1 2 0 0 0 0 0 0

Data packets statistics

created (1 000) 14.9 21.9 21.2 21.9 18.6 18.7 18.6 18.6 18.6 18.6 13.6 15.1

lost 10 163 136 183 25 30 5 7 130 6 8 17

lost (h) 0.7 7.4 6.4 8.4 1.3 1.6 0.3 0.4 7.0 0.3 0.6 1.1

avg. path length 2 1 1 1 2 2 3 2 1 2 3 3
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Fig. 18. Deployment time (blue bars) and node downtimes (interruptions of the bars)

maximum PDS-compliant load was obtained for V0 = Vmax, Vt = Vcrit, ∆t = 24 h. The maximum
load at the intermediate voltage V0 = 2V was also determined for comparison.

Relative and absolute errors between actual consumption In and maximum policy-compliant
load I∗n were obtained with a resolution of 3min. Load adaptation deltas ∆I∗n (cf. Sect. 5.1.3)
are displayed by box plots with median, extreme values, and quantiles specified in the plot captions.
Traces of the energy state are used to illustrate notable behavior and to explain results in more detail.
Here, all plots have a resolution of 15min for improved display. All traces show the supercapaci-
tor voltage Vc, the maximum policy-compliant load I∗n , the actual consumption In reported by the
software consumption tracker, and the harvest Ih.

7.2. Analysis and Evaluation Results

We start with an evaluation of general network statistics. It follows an analysis of the maximum
policy-compliant load and actual consumption. A detailed analysis of energy traces is carried out,
and the adaptation of ORiNoCo parameters is investigated.

7.2.1. Deployment and Network Statistics. Network statistics of all nodes are summarized in Ta-
ble IV, and Fig. 18 shows the deployment time of the individual nodes (interruptions indicate times
of depletion). It shows that downtimes were particularly low, and depletion occurred only four times
in total, of which the two for node F were due to a problem with the solar current sensor software
and node reprogramming (see below). The network had an intended depth of up to three hops.
Packet loss (not accounting for lost packets due to node downtime) was below 0.9% in all cases and
mainly occurred for nodes close to the sink. The large amount of total data, the low loss rate, and
the path length variation support the expressiveness of the following evaluation.

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 12, Publication date: September 2014.



Perpetual Data Collection with Energy-Harvesting Sensor Networks 12:33

A B C D E F G H I J K L

0

50

100

node

c
a
p
a
c
it
y
C

(F
) nominal

calibrated

(a) capacity

A B C D E F G H I J K L

0

1

2

3

4

node

h
a
rv

e
st

I
h

(m
A

)

(b) harvest

Fig. 19. (a) Comparison of nominal and calibrated capacity and (b) mean harvest

A B C D E F G H I J K L

0

1

2

node

I
∗ n

(m
A

)

(a) maximum load

A B C D E F G H I J K L

−2

−1

0

1

2

0

node

∆
I
∗ n

(m
A

)

(b) adaptation deltas

Fig. 20. Distribution of (a) maximum load I∗n and (b) adaptation deltas ∆I∗n . Box plots show medians, quartiles, and
extreme values

However, the following problems were encountered during the evaluation. Firstly, the values
produced by the consumption tracker of node J are invalid due to a loose cable. Node K falsely
reported zero harvest most of the time, because its reference light sensor was shielded by a sticker
(node label) on its plastic box. Node I suffered from a similar problem, because it was placed inside
the building. Although its light sensor was directly pointed (and close) to the window, zero harvest
was reported in the early morning and late afternoon while Vc was slightly increasing. Node F was
reprogrammed after 15 days due to a mis-configured software image.

The actual capacity and mean harvest influence the performance of predictive load adaptation, as
shown in Sect. 5. Figure 19a compares the results of capacity calibration with the nominal values.
In some cases, e.g., for nodes A and B, both values are essentially equal. In other cases, there is a
large error; e.g, node E has a measured capacity of only 16F, which is 64% of the nominal value
only. Node I has only 80% of its nominal 100F. Average harvest is different on the two sides of the
building and varies from node to node due to different solar cell orientation. This is evident from
Fig. 19b. The low capacity of node E is paired with the highest average harvest, whereas the large
capacity of node I meets a low average harvest of only 1mA.

7.2.2. Maximum Policy-Compliant Load. Analogous to the evaluation in Sect. 5, Fig. 20 shows
the distribution of I∗n and ∆I∗n . The median of I∗n ranges from 0.3mA (node F) to 1.2mA (node I),
see Fig. 20a. Generally, its value reflects the supercapacitor capacity; the low value of node F,
compared to nodes with equal capacity, is caused by the erroneous readings of the solar current in
the first half of the experiment. Moreover, node G has a relatively low median value of I∗n , which
corresponds to its low harvest. The median values meet the expectations from Sect. 5.2.3. Deviation
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was smaller in the field test, because harvest was lower and more stable (compared to the trace used
in the simulation). Only for nodes F and G variation is comparable to the simulation results; here,
the distance of upper and lower quartile exceeds 0.25mA. The relatively large variation of node I is
small compared to simulation.

Load adaptation deltas, shown in Fig. 20b, are small. For all nodes, the median plus upper and
lower quartiles are essentially zero. The range of extreme values is well below the range of I∗n
values, indicating that adaptations from highest to lowest load and vice versa did not occur.

In compliance with Sect. 5.2.3, an influence of the number of slots cannot be observed, e.g.,
the median loads of nodes A and B exhibit a similar relation to their average harvest. Both nodes
have almost the same capacity, where node A uses 12 slots and node B uses 24 slots. This finding
supports all previous results, stating that 12 slots give an appropriate trade-off between forecast
precision and memory consumption. Moreover, fewer slots require fewer adaptation steps. This
conclusion is backed by the distribution of ∆I∗n , which does not change from S = 12 to S = 24.

7.2.3. Benefits from Harvest Forecasts. Simulative evaluation in Sect. 5 has shown that load adap-
tation profits from harvest forecasts, i.e., the mean load is higher. The field test supports this finding:
Figure 21a shows that all nodes run a higher average load than the maximum achievable value with-
out harvest forecasts (PDS with Vcrit = 1.2V). Note that these maximum values correspond to the
extreme values shown in Fig. 9a in Sect. 5.2.1. The comparison therefore shows a lower bound on
the actually achievable improvement. According to the simulation results, the average profit is likely
to rise by an extra 25%, because supercapacitor voltage decreases during the night. The figure addi-
tionally shows the same comparison for Vcrit = 1.0V (only used without forecasts); in the absence
of forecasts, choosing a smaller value of Vcrit is possible while not significantly increasing the risk
of depletion. In this case, the improvement is only 10 per cent points smaller.

7.3. Actual Consumption

The load adaptation scheme from Sect. 6.4.3 reconfigures ORiNoCo to consume the maximum
policy-compliant load I∗n . Model simplifications and topology changes, affecting the parameters
used for identifying the new configuration, cause a difference between actual consumption In
and I∗n . Figure 21b shows the absolute and relative ME values for all nodes. Absolute values in
Fig. 21b are between 40 and 85 µA for all nodes but node I, which corresponds to a relative error
of 8% to 17%. According to existing research in [Hurni et al. 2011], this error is in the range of
comparing real (measured) consumption with the results of a software tracker. A significant de-
viation of In from I∗n can thus not be concluded. All error values but one are positive, indicating
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Fig. 22. Energy course of node H in the East of the building with average path weight of ω = 2. Harvest forecasts are
based on S = 12 slots and it is equipped with a small supercapacitor (nominal 25 F)

a larger consumption than configured on average. Possible influences are the neglected consump-
tion of periodic sensor readings, a difference between actual and measured capacity, and the actual
regulator efficiency. A difference between the average queue length and Q also changes consump-
tion; this may happen, e.g., when a node receives more than Q packets consecutively. Topology
changes, affecting the parameters κ and λ, are unlikely sources of error, as they would generally
cause consumption changes in either direction.

7.4. Detailed Analysis of Energy Traces

To analyze the previous results in more detail, energy courses of two nodes are presented and dis-
cussed.

7.4.1. Medium Load and Small Capacity. Figure 22 shows the energy course of node H. Its har-
vest is high in a short period during the morning and low after noon. Harvest varies from day to
day with several poor days. After its deployment on day 5, the node operates at a low consump-
tion of around 0.2mA. Fluctuating consumption is caused by changing routes and varying traffic,
because several nodes were deployed at the same time. The node was deployed close to sunset,
so that harvest forecasts were zero and, therefore, I∗n ≈ 0mA until the next day (it is impossible
to satisfy PMPP with zero harvest forecast and V0 < Vmpp). During day 6, I∗n increases due to
the improvement of harvest forecasts. The figure reveals that In follows the course of I∗n closely
throughout the remaining time but is always slightly in excess. However, the small difference does
not cause changes in I∗n . This implies that actual Vc meets the predicted course. The general stability
of I∗n indicates that S = 12 is an adequate choice for enabling stable and depletion-safe operation.

General deviations of In from I∗n within time slots are due to changing values of λ and Tfwd, since
all nodes in the network adapt their ORiNoCo configuration, affecting the estimated parameters of
remote nodes. The node increases the value of I∗n during night times. Since the harvest forecast does
not change in the night, this means that Vc is larger than predicted. The reasons are manifold, e.g.,
consumption could be smaller than planned (which is yet unlikely due to the consumption trace),
capacity could be underestimated, or the regulator efficiency could be better than configured. The
few peak consumptions, e.g., on day 10, stem from missed beacons after initiating packet transmis-
sion: ORiNoCo requires a transmitting node to wait for an appropriate beacon. This results in long
forwarding delays of several seconds.
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Fig. 23. Energy course of node C in the West of the building. The node has a capacity of (nominal) 50 F

Supercapacitor voltage Vc covers the full range down to Vcrit, which is only undercut on few
days. This implies that the algorithm determining I∗n works fine in practice and gains from harvest
forecasts. The latter is backed by the trace of In, which is above the maximum achievable value
of I∗n using PDS without forecasting. Only after two consecutive days of poor harvest (on days 7
and 8), I∗n drops for a few hours. The effect is yet limited due to the choice of Vmpp = 2.5V,
which permits policy compliance for smaller harvest and larger loads compared to Vmpp = Vmax.
Moreover, not including V0 in policy evaluation avoids abrupt drops of I∗n after day 24 for the
short periods of Vc < Vcrit. A small capacity and short periods of high harvest lead to long times
of Vc = Vmax, which is evident from the figure. This is caused by the demand for a uniform load in
combination with the policy requirement Vc > Vcrit. While energy is generally wasted, simplicity
and stability of load adaptation are gained.

7.4.2. Causes of Depletion. The previous traces convey the benefits of predictive load adaptation
and the practical applicability. As reported in Sect. 5, depletion may not be completely preventable.
To analyze the causes, Fig. 23 shows the energy course of node C, which depleted around noon of
day 8. In general, the trace exhibits similar aspects as the previous ones, yet a combination of influ-
encing factors caused depletion. Firstly, high harvest on the first days leads to overestimated energy
intake on day 7. In consequence, Vc drops to a level slightly above Vcrit, where it is trapped closely
before sunset: Because the forecast is to good, the node believes it can still satisfy PMPP. In par-
ticular, the voltage prediction yields Vc > Vcrit at all times within the 24 h prediction horizon. This
misjudgment leads to Vc < Vcrit and I∗n ≈ 0mA shortly after sunset. Yet, actual consumption In
is larger than this target value, because Q and Tslp have upper bounds (cf. Sect. 7.1.2) and define
a minimum consumption w.r.t Sect. 6.4.2. Despite the mismatch of I∗n and In, the node does not
deplete during the night. Closely after noon of day 8, Vc approaches Vcrit, so that the voltage pre-
diction, caused by the minorly revised and hence still too good harvest forecast, satisfies PMPP with
I∗n ≈ 0.9mA (the level of the previous day). Since supercapacitor voltage Vc is low, the regulator
supply current Ir exceeds Ih, cf. Eq. (2), and results in depletion.

The major cause of depletion is the false harvest forecast. To prevent depletion, improved methods
for harvest forecasting are required. Until such methods are available, an energy policy with an
additional voltage threshold for the current voltage V0 should be used (cf. Sect. 5.2.4).
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In addition to the explained weakness, the trace of node C shows another issue. After day 21,
supercapacitor voltage Vc underruns Vcrit almost every day despite the stable harvest pattern. This
may be caused by, e.g., an overestimated capacity or the low resolution of voltage predictions.
The specific cause could not be determined from the recorded data. Yet, the observation shows
that parameter recalibration—meaning particularly capacity recalibration—are mandatory in a real
deployment.

7.5. ORiNoCo Parameter Adaptation

In addition to the feasibility study of the predictive load adaptation algorithm, the suggested method
for ORiNoCo reconfiguration was assessed.

The distribution of Tslp in Fig. 24a is generally inverse to that of I∗n . As expected, the ability
to manage a higher load allows a node to sleep less. The queue threshold Q took its minimum
value (Q = 1) between 86% and 99% of the time, as shown in Fig. 24b. Values larger than 2
occurred only at the beginning of the experiment (when the expected harvest was zero and Vc ap-
proached Vcrit) and on subsequent days with poor harvesting conditions. Although changes of Q
occurred infrequently, they were required on some days, thus supporting the argument in Sect. 6.4.3.
The achieved energy savings—increasing Q from 1 to 2 cuts sending energy expenditure roughly
into half—indicates its usefulness over only adjusting the sleep interval Tslp. Moreover, doubling Q
rather than doubling Tslp achieves the same effect while not affecting the consumption of other
nodes, cf. Sect. 6.4.3.

Result variation stresses the difficulty of choosing a single pair of values Tslp and Q that works
for all nodes. Guaranteeing depletion-safe operation implies low harvest utility with a static setup,
if it is possible to find such setup prior to deployment at all.
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The daily average number of created, received, and sent data packets is shown in Fig. 25. Nodes B
through D exhibit a similar packet load: they have equally sized capacitors and forward the data of
nodes A, E, and F to the sink in equal shares. Node H and J, in contrast, have close positions
but different packet loads. Load adaptation has relieved the burden of node H, which has a smaller
supercapacitor and a smaller mean I∗n . Node I had the highest packet load of all nodes, because it
was the only connection between the sink and nodes on the East side of the building.

These results are reconfirmed by the link load statistics in Fig. 26. Node I sent 25% of all data
packets in the network, whereas nodes B through D were able to share the load of their sub-network
almost equally. Figure 26a proves that nodes with a hop count of ω = 2 received a share of data
packets from nodes with ω = 3 (on the same side of the building) corresponding to their capacity
relations. Figure 26b emphasizes the opportunistic concept of ORiNoCo: Nodes spread their packets
to all remote nodes with a smaller value of ω. Combined with predictive load adaptation, the routing
load is automatically balanced w.r.t. the energy situation by adapting the value of Tslp.

In addition to long-term packet-flow balancing, the combination of ORiNoCo with load adap-
tation enables automatic short-term packet flow balancing without the need of control traffic. Fig-
ure 27 illustrates such a case. Poor weather conditions leave nodes B through D with Vc < Vmpp

in the afternoon of day 18 in Fig. 27a—the voltage of node C is particularly low. Load adaptation
forces nodes to sleep longer (Tslp is increased). While Tslp of nodes B and D is roughly doubled,
node C sleeps six to ten times longer than before. In consequence, node C receives less data (its
λ is decreased by a factor of four). The remaining packets have to be handled by nodes B and D.
However, their actual consumption is generally not affected, because I∗n does not depend on λ and
load adaptation reconfigures ORiNoCo for the new situation. The chance of packet loss due to de-
pletion of a node with a non-empty packet buffer is decreased, since packets are routed by nodes in
a better energy situation. In addition, nodes closer to depletion forward less data and their risk of
depletion is reduced, because the probability of missing beacons—causing high consumption over
an extended and unforeseeable period of time—is reduced (cf. Sect. 7.4.1).

The same situation does not threat other nodes—in particular, those forwarding packets to
nodes B through D—because they adapt to the new situation. Figure 27b shows the behavior of
nodes A, E, and F. These nodes quickly identify the increased forwarding delay Tfwd. As nodes
forward their data to any (parent) node with a smaller value of ω, these nodes experience the same
increase of Tfwd. Despite the changes, the maximum load I∗n stays relatively stable. Since the har-
vest forecast does not change after sunset (when slots and EWMA-based forecasts are used), this
observation indicates that the nodes’ consumption is maintained when reconfiguring ORiNoCo and
well-aligned with the maximum policy-compliant load.

7.6. Summary and Discussion

A real-world case study in a multi-hop sensor network was conducted. Twelve sensor nodes pe-
riodically created data packets that were forwarded to a single sink using the ORiNoCo protocol.
They were powered by the harvester prototype and traced their energy state. Predictive load adap-
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Fig. 27. Automatic packet-flow balancing in the tree-like routing structure: (a) parent nodes with hop count ω = 1 and
(b) child nodes with ω = 2

tation was achieved through harvest forecasts and the maximum-power-point energy policy, where
the ORiNoCo protocol was reconfigured dynamically and online to meet the maximum policy-
compliant load. A concrete method for this reconfiguration was devised and discussed.

A four-week field test was conducted and evaluated to show the practicability of the approaches
pursued in this paper and to assess the quality of combining a simple method of load adaptation
with a sensor network collection protocol of low overhead w.r.t. control traffic. In particular, the
following major results were obtained.

— The presented consumption model of the ORiNoCo protocol showed to be a valid ground for
practical load adaptation. Nodes were generally able to adjust their load with low error compared
to the maximum policy-compliant load. Moreover, the field test has shown that load adaptation
is not restricted to a single, isolated node, but also works in a multi-hop network. Here, load
adaptation has effectively and implicitly balanced the packet flow w.r.t. available energy resources
of individual nodes.

— The concept of energy policies works well in practice. All nodes were enabled to run at a rela-
tively uniform load on subsequent days with constant weather and harvest conditions. Only on
days with low harvest, abrupt load adaptations were required. The average achievable load of the
nodes was improved by up to 150% when using harvest forecasts. This improvement yet came at
an increased risk of depletion. A way to circumvent this problem was discussed.

— Predictive load adaptation exhibits the behavior expected from simulation results. This obser-
vation revalidates that the devised energy-flow model gives a sufficiently accurate picture in
combination with the employed methods of energy assessment. Moreover, the expressiveness
of simulation results in this paper is stressed.
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In conclusion, it has been shown that the devised concept of predictive load adaptation with
energy policies and the method for practical consumption adaptation of a multi-hop sensor network
data-collection protocol, have been effectively put into practice. Weaknesses were identified, and
possible solution strategies were pointed out.

8. CONCLUSION

We developed a novel method for online load adaptation for energy-harvesting sensor nodes. It con-
sists of two building blocks. Firstly, the energy-flow model of the harvester prototype was turned
into an algorithm for predicting the prospective energy reserve of the supercapacitor in terms of its
terminal voltage for a given consumption and a given harvest forecast. Secondly, the concept of en-
ergy policies was introduced. An energy policy defines predicates to enforce properties of operation
style of a sensor node, e.g., to enforce depletion-safety. The combination of these two components
enables to identify the maximum policy-compliant load (or consumption). While this concept is
generally tailored to harvesters using a supercapacitor as energy buffer, it can be transferred to other
hardware. Two energy policies were suggested, of which the maximum-power-point policy yielded
the highest achievable consumption at the smallest risk of depletion. In this context, the influence of
capacity and forecast errors was studied through simulation. Larger capacities (of 50F and above)
completely prevented depletion and increased the achievable load. With the constraint of accom-
plishing uniform consumption, less energy was wasted in periods of harvest excess.

A real-world case study was conducted through a multi-hop sensor network. Twelve nodes were
equipped with the harvester prototype and executed the online load adaptation algorithm. Multi-hop
data collection was achieved with the ORiNoCo protocol. The maximum policy-compliant load was
employed to adjust the consumption of ORiNoCo. This was achieved by modeling the consumption
of ORiNoCo and adjusting its duty cycle and data forwarding policy. With a four-week deployment,
the results of the previous simulation were confirmed, and the practicability of the algorithm was
attested on real hardware. In particular, all nodes were able to adjust their consumption to avoid
depletion in most cases while elevating the average load on days with high harvest.

The devised method and its final integration with the ORiNoCo protocol constitute an out-of-the-
box software architecture for near-perpetual data collection. It is compatible with energy-harvesting
power supplies equipped with a supercapacitor and an energy source with a cyclic harvest pattern.
This combination of hardware and software keeps manufacturing, deployment, and maintenance
costs little. The low complexity and small parameter set enables facile and practical setup of multi-
hop sense-and-send applications by non-experts. This is an important step towards enabling mass-
market sensor network deployments.

In the course of evaluation, we identified pointers to future work. Increasing forecast quality has
the potential to completely wipe out the risk of depletion while improving the achievable load.
Here, integrating reduced weather forecasts, possibly only consisting of cloud-cover information,
will improve forecast accuracy. The concept of energy policies and predictive load adaptation may
profit from longer forecast horizons in terms of more uniform and predictable routing load. This
would have a positive impact on large-scale networks, where unexpected or abrupt changes of the
routing load may amplify routing-related consumption to a degree that leads to depletion. A current
surplus at times of a full energy buffer is currently not used. Methods to utilize this unused energy
without affecting the consumption of other nodes should be devised and investigated. Practical
load adaptation—e.g., of a low-power MAC, such as ORiNoCo—could be refined by feeding the
actual consumption into the adaptation process. Expanding its operational area to delay-constrained
networks also constitutes a research challenge of practical relevance. Finally, we plan to compare
our approach with existing research.
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