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Abstract

Solution to the optimal stopping problem

V (x) = sup
τ

Ee
−δτ

g(x + Xτ )

is given, where X = {Xt}t≥0 is a Lévy process, τ is an arbitrary stopping
time, δ ≥ 0 is a discount rate, and the reward function g takes the form
gc(x) = (x−K)+ or gp(x) = (K−x)+ Results, interpreted as option prices
of perpetual options in Bachelier’s model are expressed in terms of the
distribution of the overall supremum in case g = gc and overall infimum
in case g = gp of the process X killed at rate δ. Closed form solutions
are obtained under mixed exponentially distributed positive jumps with
arbitrary negative jumps for gc, and under arbitrary positive jumps and
mixed exponentially distributed negative jumps for gp. In case g = gc a
prophet inequality comparing prices of perpetual look-back call options
and perpetual call options is obtained.
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1 Introduction and general results

1.1 Lévy processes

Let X = {Xt}t≥0 be a real valued stochastic process defined on a stochastic
basis (Ω,F ,F = (Ft)t≥0,P) that satisfy the usual conditions. Assume that X
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is càdlàg, adapted, X0 = 0, and for 0 ≤ s < t the random variable Xt − Xs

is independent of the σ-field Fs with a distribution that only depends on the
difference t− s. X is a process with stationary independent increments (PIIS),
or a Lévy process. We will also consider the process X̂ = {X̂t}t≥0 = {−Xt}t≥0,
called the dual process.

If q ∈ R, Lévy-Khinchine formula states

EeiqXt = exp
{

t
[

ibq −
1

2
σ2q2 +

∫

R

(eiqy − 1 − iqy1{|y|<1})Π(dy)
]}

,(1)

where b and σ ≥ 0 are real constants, and Π is a positive measure on R − {0}
such that

∫

(1 ∧ y2)Π(dy) < +∞, called the Lévy measure. These parameters
completely determine the law of the process. We always assume that the process
does not degenerate, i.e. σ 6= 0 or Π 6= 0.

In order to use indistinctly Fourier or Laplace transforms, consider the set

C0 = {c ∈ R:

∫

{|y|>1}

ecyΠ(dy) <∞}.(2)

C0 is a convex set that contains the origin, and consists of all c ∈ R such that
EecXt <∞ for some t > 0. Furthermore, if z ∈ C and ℜ(z) ∈ C0 we can define
the characteristic exponent

ψ(z) = bz +
1

2
σ2z2 +

∫

R

(ezy − 1 − izy1{|y|<1})Π(dy)(3)

having E|ezXt | <∞ for all t ≥ 0, and

EezXt = etψ(z).

Observe that if z = iq the preceding formula gives (1). See Sato (1999) for
details.

When considering X as a semimartingale, denote by (bt, σ2t,Π(dy)dt), or
for short (b, σ2,Π) the triplet of predictable characteristics of X (see II.4.19 in

Jacod and Shiryaev (1987)). If we denote by (b̂, σ̂2, Π̂) the triplet of X̂, the dual

process, we have b̂ = −b, σ̂ = σ, and Π̂(dx) = Π(−dx). Given X and δ ≥ 0
denote

M = sup
0≤t<τ(δ)

Xt and I = inf
0≤t<τ(δ)

Xt,(4)

where τ(δ) is an exponential random variable with parameter δ > 0, independent
of X, and τ(0) = ∞. M and I will be called the supremum and infimum of X
in both cases δ = 0 and δ > 0. τ is a stopping time relative to F if

τ : Ω → [0,+∞] and {τ ≤ t} ∈ Ft for all t ≥ 0.

Denote by M the class of all stopping times relative to F.
For general reference on the subject see Jacod and Shiryaev (1987), Sko-

rokhod (1991), Bertoin (1996), or Sato (1999).
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1.2 General results on optimal stopping

Consider the following problem: given a Borel function g:R → R, the reward
function, a process X as above, and a discount rate δ ≥ 0, find a real function
V and a stopping time τ∗ such that

V (x) = sup
τ∈M

Ee−δτg(x+Xτ ) = Ee−δτ
∗

g(x+Xτ∗).(5)

V is called the cost function, and τ∗, the stopping time that realizes the supre-
mum, the optimal stopping time. We assume that e−δτg(x + Xτ )1{τ=∞} =

lim supt→∞ e−δtg(x+Xt).
In the present paper solution to the problem (5) is given, when considering

reward functions

gc(x) = (x−K)+ and gp(x) = (K − x)+(6)

(with x+ = max(x, 0)) in terms of the distribution of the random variables M
and I in (4). c and p stand for call and put options, and we interpret our results
as the pricing of perpetual call and put options in the Bachelier (1900) model.
In Section 2 closed form solutions are obtained for the call (respectively put)
options, assuming that positive (resp. negative) jumps of X are distributed as a
mixture of exponentials, and negative jumps (resp. positive) behave arbitrarily.
In Section 3 we present a prophet inequality comparing the cost of a perpetual
call and the expectation of the overall maximum of the process, i.e. the price
of a perpetual look-back option. Section 4 contains the proofs, and Section 5
a conclusion. The presented results where partially announced in (Mordecki,
(2000a)) were other examples are considered, and are complemented by the
ones contained in the paper “Optimal Stopping and Perpetual Options for Lévy
processes”, (Mordecki, (2000b)), where similar results for reward functions (ex−
K)+ and (K − ex)+ are obtained, and applications to finance are discussed in
detail.

Theorem 1 Let X be a Lévy process and δ ≥ 0. Denote M and I as in (4)
(a) If EM <∞, the solution to the problem (5) with reward gc(x) = (x−K)+

has cost function
Vc(x) = E(x+M − EM −K)+(7)

and optimal stopping time

τ∗c = inf{t ≥ 0:x+Xt ≥ K + EM}.

(b) If EI > −∞, the solution to the problem (5) with reward gp(x) = (K −
x)+ has cost function

Vp(x) = E(K + EI − x− I)+

and optimal stopping time

τ∗p = inf{t ≥ 0:x+Xt ≤ K + EI}.
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Remark. As can bee seen in the proof, (b) follows easily from (a), considering
the dual process. For this reason consider mainly the call case (a).

Theorem 1 essentially says, that although in general, the optimal stopping
problem for a Markov process leds to a free boundary problem (Theorem III§8.15
in Shiryaev (1978)), in the case considered, this problem reduces to finding the
distribution of M , a problem that has the advantage of having fixed boundary
conditions. The conclusion is, that for a Lévy process, the optimal stopping
problem with reward x+ can be explicitly solved once the distribution of M is
known. The case of a random walk with δ = 0 was considered by Darling et al.
(1972).

2 Closed solutions for mixed-exponential jumps

We specify now the Lévy measure in (1) in order to obtain closed solutions
for the optimal stopping problem. Given a = (a1, . . . , an) with

∑n
k=1 ak = 1,

ak > 0 for k = 1, . . . , n, and α = (α1, . . . , αn), with 0 < α1 < α2 < . . . < αn,
denote by

hn(y; a, α) =

n
∑

k=1

akαke
−αky, y ≥ 0,

the density of a mixture of n exponential random variables with parameters
α1, . . . , αn and mixture coefficients a1, . . . , an.

Consider a Lévy process X with triplet (b, σ2,Π), and Lévy measure given
by

Π(y) =







λhn(y; a, α)dy y > 0,

π(dy) y < 0,
(8)

where π(dy) is an arbitrary Lévy measure with support on (−∞, 0), and a and
α are as before. X has mixed-exponentially distributed positive jumps. Its dual
process X̂ has mixed exponentially distributed negative jumps and arbitrary
positive jumps.

In this case, the set C0 in (2) contains the interval [0, α1) and the charac-
teristic exponent

ψ(z) = bz +
1

2
σ2z2 +

∫ 0

−∞

(ezy − 1 − zy1{−1<y<0})π(dy)

+λ

∫ ∞

0

(ezy − 1 − zy1{0<y<1})hn(y; a, α)dy

has an analytical continuation to the set {z ∈ C:ℜ(z) ≥ 0, z 6= αk, k = 1, . . . , n}
given by

Ψ(z) = az +
1

2
σ2z2 +

∫ 0

−∞

(ezy − 1 − zy1{−1<y<0})π(dy)+
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+λ
n

∑

k=1

ak
z

αk − z
,(9)

with

a = b− λ

n
∑

k=1

ak

αk

[

1 − (1 + αk)e
−αk

]

.

The distribution of the random variable M in (4) for (b, σ2,Π) as above with
σ > 0, under either the condition δ > 0, or

ψ′(0+) = lim
p→0+

ψ(p)

p
= a+

∫ −1

−∞

yπ(dy) + λ

n
∑

k=1

ak

αk
< 0,(10)

if δ = 0, where the integral can take the value −∞, is also a mixture of expo-
nentials, and has density

fM (y) = hn+1(y;A, p)(11)

where p = (p1, . . . , pn+1), with

0 < p1 < α1 < p2 < . . . < αn < pn+1(12)

are the real and positive roots of Ψ(p) = δ and A = (A1, . . . , An+1) are given
by

Aj =

∏n
k=1(

pj

αk
− 1)

∏n+1
k=1,k 6=j(

pj

pk
− 1)

j = 1, . . . , n+ 1,(13)

as follows form Theorem 1.1 in Mordecki (1999). This gives the following result.

Theorem 2 Let X be a Lévy process with σ > 0, Lévy measure given by (8),
and δ ≥ 0. Under the condition δ > 0 or (10) when δ = 0, we have

EM =
n+1
∑

k=1

Ak

pk
,

with pk, k = 1, . . . , n + 1, the positive roots of Ψ(p) = δ, that satisfy (12), and
Ak given in (13). Furthermore, the optimal stopping problem for X with reward
gc(x) = (x−K)+ has cost function

Vc(x) =







∑n+1
k=1

Ak

pk
e−pk(x∗−x) x ≤ x∗,

x−K x > x∗,

with x∗ = K + EM , and optimal stopping time

τ∗ = inf{t ≥ 0:x+Xt ≥ x∗}.

5



Remarks. (1) In order to obtain closed solution for put options, we must specify
the negative jumps of the Lévy process. Given X with Lévy measure in (8) the
dual process X̂ has negative mixed exponentially distributed negative jumps,
and it is direct (see proof of (b) for Theorem 1), under the same assumptions,
denoting x∗p = K + EÎ

sup
τ

E(K − x− X̂τ )
+ =







K − x x ≤ x∗p,

∑n+1
k=1

Ak

pk
e−pk(x∗

p−x) x ≤ x∗p,

and the optimal stopping time is

τ∗p = inf{t ≥ 0:x+Xt ≤ x∗p}.

(2) The results presented extend those in Taylor (1968) for the Wiener pro-
cess, see also Shiryaev (1978), Mordecki (1998) for a compound Poisson process
with exponential jumps, and Mordecki (1997) for a diffusion with exponential
jumps. All these cases considered only δ = 0.

3 A prophet inequality for Lévy processes

Our final result states a prophet inequality for the class of Lévy processes. Recall
that if K = 0 and g = gg the cost function is given by

V (x) = sup
τ

Ee−δτ (x+Xτ )
+.

Theorem 3 Let X be a Lévy process with EM < ∞, and x ≥ 0. Then, the
following inequality holds:

V (x) ≤ E(x+M) ≤ eV (x).

This result generalizes the one obtained in Darling et al. (1972) for random
walks, x = 0 and δ = 0. It is called a prophet inequality in the sense that
compares the expected reward of a gambler that has complete foresight, or
a prophet that can choose the moment at which the maximum is attained,
obtaining x+M , with the expectation of the best possible strategy in the class
M. For references on analogous results for sequences of random variables see
Hill and Kertz (1990). For related results on prophet inequalities in finance see
Kertz (1999).

4 Proofs

The proof of Theorem 1 is based on a result on random walks of independent
interest, a slightly generalization of Darling et al. (1972).
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Introduce a sequence X,X1, X2, . . . of i.i.d. random variables. As usual,
partial sums are denoted by

S0 = 0, Sn =
n

∑

k=1

Xk, n = 1, 2, . . . ,

and τ denotes a stopping time with respect to the filtration generated by the
random walk S = {Sn}n∈N. The optimal stopping problem for this random walk
with reward g and discount rate α ∈ (0, 1] consists in finding a real function V
and a stopping time τ∗ such that

V (x) = sup
τ

Eατg(x+ Sτ ) = Eατ
∗

g(x+ Sτ∗).(14)

Let τ(α) be a geometric random variable with P(τ(α) > k) = αk, for k = 1, 2, . . .
, independent of S with α ∈ (0, 1), and denote τ(1) = ∞. The supremum of the
random walk killed at rate α is

W = inf
0≤n<τ(α)

Sn.(15)

Proposition 1 Consider a random walk S, τ(α) and W as above. Assume
EW <∞ and denote

C(x) = E(x+W − EW )+, σ∗ = inf{n ≥ 0:x+ Sn ≥ EW}.

Then we have

(i) C(x) ≥ x+,

(ii) C(x) ≥ αEC(x+X),

(iii) C(x) = Eασ
∗

(x+ Sσ∗)+.

and in consequence,

sup
τ

Eατ (x+ Sτ )
+ = E(x+W − EW )+ = Eασ

∗

(x+ Sσ∗)+.(16)

Remark. For α = 1 this result is included in Darling et al. (1972).

Proof. (i) follows by Jensen’s inequality. To see (ii) introduce the random
variable J , independent of S and τ(α), such that P(J = 0) = 1 − α, P(J =
1) = α. We claim

W =d J(X +W )+.

In fact,

EezJ(X+W )+ = 1 − α+ αEez(X+W )+
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= EezW1{τ(α)=1} +
∞
∑

k=1

αE(ez sup0≤n<k Sn1{τ(α)=k}) = EezW .

Now

C(x) = E(x+J(X +W )+ −EW )+ ≥ αE(x+X +W −EW )+ = αEC(x+X).

In order to see (iii), observe that {σ∗ < τ(α)} = {x+W ≥ EW}, and

E(x+W )1{x+W≥EW} = E(x+ Sσ∗)1{x+W≥EW} + E(W − Sσ∗)1{x+W≥EW} =

Eασ
∗

(x+ Sσ∗)+ + EMP(σ∗ < τ(α))

and from this
Eασ

∗

(x+ Sσ∗)+ = E(x+W − EW )+.

This proves (i), (ii) and (iii). The final conclusion (16) follows from Darling et
al. (1972).

Proof of Theorem 1. First observe that (b) follows from (a).

sup
τ

E(K − x−Xτ )
+ = sup

τ
E(K − x+ X̂τ )

+

= E(K − x+ M̂ − EM̂)+ = E(K + EI − x− I)+,

where X̂ is the dual process, and M̂ = sup0≤t<τ(δ) X̂t = −I.

Let us now see (a). Without loss of generality we take K = 0, so gc(x) = x+.
First we verify that (7) holds. In order to see this, on one side we recall the
fact that the cost function of the optimal stopping problem considered is the
minimal δ-excessive majorant function of the reward gc, and satisfies

Vc(x) = lim
n→∞

lim
N→∞

QNn gc(x)(17)

where the operator Qn is given by

Qngc(x) = max{gc(x), e
−δ2−n

Egc(x+X2−n)},

and QNn is the N th iteration of Qn. (see Shiryaev (1978) and VIII.2.4 in Shiryaev
(1999)). Fix now n. The limit limN→∞QNn gc(x) is the cost function for the op-
timal stopping problem for the random walk Xn = {Xk2−n : k ∈ N} discounted

at rate αn = e−δ2
−n

with reward gc, (Theorem II.23 in Shiryaev (1978)).
Take now δ ≥ 0 and τ(δ) as in (4). For fixed n, and δ > 0

τn =
[2nτ(δ)] + 1

2n

(with [x] the integer part of x) is a geometric random variable taking values on

the set { 1
2n ,

2
2n , . . . ,

k
2n , . . .} with parameter αn = e−δ2

−n

, i.e. P(τn > k2−n) =
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(e−δ/2
n

)k. If δ = 0 put τn = ∞. On the other side Proposition 1 give the
solution to this discrete time optimal stopping problem. In conclusion

lim
N→∞

QNn gc(x) = E(x+Mn − EMn)+(18)

where the r.h.s. is the formula in Proposition 1, and

Mn = sup{Xk2−n : 0 ≤ k < τn},

Mn ≤M and EMn <∞. Now we make n→ ∞. First

Mn = sup
0≤k<τn

Xk2−n = sup
0≤k<τ(δ)

Xk2−n →M = sup
0≤t<τ(δ)

Xt P-a.s.(19)

because τn > τ(δ), τn → τ(δ) and X is càdlàg. The result then follows taking
limits in (18). The l.h.s. has limit Vc(x) by (17) and

E(x+Mn − EMn)+ → E(x+M − EM)+

in view of (19) and dominated convergence since EM <∞. The fact that τ∗c is
the optimal stopping rule follows exactly as in the proof of (iii) in Proposition
1.

Proof of Theorem 2. We simply plug formula (11) in Theorem 1.

EM =

∫ ∞

0

yhn+1(y,A, p)dy =
n+1
∑

k=1

Ak

pk
.

Furthermore, if x ≥ x∗, E(x+M − EM −K)+ = x−K. If x < x∗

Vc(x) = E(x+M − EM −K)+ =

∫ ∞

x∗−x

(x+ y − x∗)hn+1(y,A, p)dy

=
n+1
∑

k=1

Ak

pk
e−pk(x∗−x).

concluding the proof.

Proof of Theorem 3. Let δ ≥ 0 and X be a Lévy process with EM finite.
Assume x ≥ 0. As for any τ ∈ M inequality (x+Xτ )

+1{τ<τ(δ)} ≤ x+M , holds

and Ee−δτ (x+Xτ )
+ = E(x+Xτ )

+1{τ<τ(δ)}, we have

V (x) = sup
τ

Ee−δτ (x+Xτ )
+ ≤ E(x+M).

We have to prove now, that for x ≥ 0,

E(x+M) ≤ eV (x).
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As V (x) = E(x+M − EM)+, this amounts to say, that for x ≥ 0

q(x) =
E(x+M)

E(x+M − EM)+
≤ e.(20)

If x ≥ EM , E(x+M − EM)+ = x, and q(x) ≤ 2 < e.
Denoting B(x) = P(M ≥ x), we claim

B(x+ y) ≥ B(x)B(y).(21)

To see this consider, for z ≥ 0

τ(z) = inf{t ≥ 0:Xt ≥ z}.

Based on Xτ(x) ≥ x on the set τ(x) < τ(δ), and the lack of memory of τ(δ)

B(x+ y) = P( sup
0≤t<τ(δ)

Xt ≥ x+ y) = P( sup
0≤t<τ(δ)

Xt ≥ x+ y | τ(x) < τ(δ))B(x)

≤ P( sup
0≤t<τ(δ)

Xt ≥ Xτ(x) + y | τ(x) < τ(δ))B(x)

= P( sup
τ(x)≤t<τ(δ)

Xt −Xτ(x) ≥ y | τ(x) < τ(δ))B(x) = B(y)B(x),

and (21) is proved.
Consider now the auxiliary function f = f(x), given by

f(x) = e
x

x∗

∫ +∞

x

B(y)dy, x ≥ 0,

where x∗ = EM =
∫ +∞

0
B(y)dy. Differentiation gives

f ′(x) = e
x

x∗

( 1

x∗

∫ +∞

x

B(x)dx−B(x)
)

In order to conclude that f ′(x) ≥ 0 for all x ≥ 0, we integrate (21)
∫ +∞

x

B(y)dy =

∫ +∞

0

B(x+ y)dy ≥ B(x)

∫ +∞

0

B(y)dy = B(x)x∗

and deduce that f(x) is non decreasing. As f(0) = x∗ we conclude

f(x) = e
x

x∗

∫ +∞

x

B(y)dy ≥ x∗.(22)

Now, applying (22) with 0 ≤ x ≤ x∗

q(x) =
x+ x∗

∫ +∞

x∗−x
B(y)dy

≤
x+ x∗

x∗
exp

(x∗ − x

x∗

)

= c(x).

It is direct to see that the function c(x) is decreasing, and that c(0) = e, con-
cluding the proof.
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5 Conclusion

The presented paper shows how to reduce a discounted optimal stopping prob-
lem for a Lévy process X, with rewards (x−K)+ and (K − x)+ to the compu-
tation of the distribution of the supremum M and infimum I of the underlying
process X killed at the discount rate. It is interesting to note, that in general,
the optimal stopping problem of a Markov process, leds to a free boundary
problem, and the computation of the supremum of a process has fixed bound-
ary conditions. Second, recent results on exact distributions of M (resp. I)
when positive (resp. negative) jumps of X are distributed according a mix-
ture of exponentials and negative (resp. positive) are arbitrary are used, in
order to obtain closed solutions to the optimal stopping problems. Third, a
prophet type inequality is obtained, that can be seen as a comparison between
prices of “perpetual look-back call options” and perpetual call options. The pre-
sented results complement the ones contained in the paper “Optimal Stopping
and Perpetual Options for Lévy processes”, (Mordecki, (2000b)), where reward
functions (ex −K)+ and (K − ex)+ are considered, and applications to finance
are discussed in detail.
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[2] Bertoin, J. (1996). Lévy Processes. Cambridge University Press, Cam-
bridge.

[3] Darling, D.A., Ligget, T. Taylor, H.M. (1972). Optimal stopping for partial
sums. The Annals of Mathematical Statistics, 43 1363–1368.

[4] Hill, T.P., Kertz, R.P. (1990). A survey of prophet inequalities in opti-
mal stopping theory. Contemporary Mathematics, 125 Amer. Math. Soc.,
Providence, RI, 191–207.

[5] Jacod, J., Shiryaev, A.N. (1987). Limit Theorems for Stochastic Processes.
Springer, Berlin Heidelberg.

[6] Kertz, R. Pricing-differentials and bounds for look-back options, and
prophet problems in probability. Advances in stochastic inequalities (At-
lanta, GA, 1997), Contemporary Mathematics, 234, Amer. Math. Soc.,
Providence, RI, 1999, 97–120.

[7] Mordecki, E. (1997). Ruin Probabilities and Optimal Stopping for a Dif-
fusion with jumps. In Actas del IV Congreso Monteiro (Fernández Stacco
E.L. et al. eds.) 39–48. Bahia Blanca, Argentina.

11



[8] Mordecki, E. (1998). Optimal stopping for a compound Poisson process
with exponential jumps. Publicaciones Matemáticas del Uruguay, 7 55–66.
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ponential negative jumps. Pre-Mat, 99/28. Submitted.

[10] Mordecki, E. (2000a) Optimal stopping and perpetual options for Lévy
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