
Perracotta: Mining Temporal API Rules from Imperfect Traces
Jinlin Yang, David Evans

Department of Computer Science
University of Virginia

{jinlin, evans}@cs.virginia.edu

Deepali Bhardwaj, Thirumalesh Bhat, Manuvir Das
Center for Software Excellence

Microsoft Corporation

{deepalib, thirub, manuvir}@microsoft.com

ABSTRACT
Dynamic inference techniques have been demonstrated to provide
useful support for various software engineering tasks including
bug finding, test suite evaluation and improvement, and
specification generation. To date, however, dynamic inference has
only been used effectively on small programs under controlled
conditions. In this paper, we identify reasons why scaling dynamic
inference techniques has proven difficult, and introduce solutions
that enable a dynamic inference technique to scale to large
programs and work effectively with the imperfect traces typically
available in industrial scenarios. We describe our approximate
inference algorithm, present and evaluate heuristics for winnowing
the large number of inferred properties to a manageable set of
interesting properties, and report on experiments using inferred
properties. We evaluate our techniques on JBoss and the Windows
kernel. Our tool is able to infer many of the properties checked by
the Static Driver Verifier and leads us to discover a previously
unknown bug in Windows.

Categories and Subject Descriptors

D.2.4 [Software/Program Verification]

General Terms

Reliability, Experimentation, Verification

Keywords

Dynamic analysis, temporal properties, specification inference.

1. INTRODUCTION
Many software tasks require specifications: verifying programs
requires specifications of their intended behavior, testing programs
requires specifications to determine the input domain and expected
outputs, and maintaining programs requires specifications to
understand what aspects of the behavior can be modified.
Unfortunately, most programs do not come with precise specifica-
tions. Worse, those that do often fail to preserve the consistency of
specifications and implementations. As the implementation
changes, the specification becomes increasingly incorrect.

As a result, several researchers have been motivated to study the
problem of specification inference [3, 4, 11, 16, 17, 19, 40, 48,
49]. Although early work in this area emphasized static analysis of
the program text [3, 16, 19, 48], more recently several researchers
have explored the possibility of using a program’s dynamic
behavior on sample executions to infer a specification [4, 11, 17,
40, 49]. Dynamic specification inference has shown promising

results in many areas, including bug detection [25, 36, 37, 39], test
case selection [24, 26, 50], and program steering [35]. However,
all of the results to date have been on small programs.

The scalability and applicability of dynamic inference techniques
to industrial programs is limited by several issues:

1. The inference algorithms themselves often scale poorly with
the size of the program and input trace.

2. Previous dynamic inference techniques only infer properties
that are completely satisfied by the execution traces. This
means they require perfect traces, and do not work well in
situations where only imperfect traces are available.

3. Many of the properties that are inferred dynamically are often
uninteresting. For small programs, it is feasible for the
developer to manually winnow the set of inferred properties
down to the interesting ones; for large programs, this
winnowing must be mostly automated.

Our work seeks to address these challenges and find ways to
usefully apply dynamic inference techniques to large programs in
industrial scenarios. We focus on dynamic inference of temporal
properties. Temporal properties constrain the order of occurrence
of program events. For example, acquiring a lock should
eventually be followed by releasing the lock. Such properties are
very important in software development. Many programs have
some inherent temporal behaviors. For example, network protocols
can usually be described using a finite state machine. Satisfying
temporal properties is essential for an implementation to be
correct. Such temporal properties, however, are rarely available.

Manually specifying temporal properties is an expensive,
error-prone, and tedious process [28]. In our previous work, we
proposed a dynamic analysis approach for automatically inferring
temporal properties from a program’s execution traces [51] and
demonstrated that the inferred properties are useful for supporting
program evolution on some small examples [52]. Section 3 sum-
marizes our inference approach and explains how our improved
inference algorithm scales to large traces and programs. In
attempting to apply our approach to larger programs, however, we
encountered the problems identified above. The traces we were
able to obtain were imperfect, which prevented many important
properties from being inferred. Of the properties inferred,
however, a large fraction was uninteresting and for larger
programs it became increasingly impractical to manually separate
the interesting and uninteresting properties.

The key contributions of this paper involve developing solutions to
the problems encountered when dynamic inference techniques are
used on industrial programs and evaluating their effectiveness
experimentally:

• Addressing the problem of imperfect traces by developing an
analysis technique for detecting dominant behaviors from a
program’s potentially imperfect traces (Section 4).

• Developing two techniques for incorporating contextual
information into the inference algorithms (Section 5).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee, but we won’t sue you.
ICSE'06, May 20–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$4.99.

28th International Conference on Software Engineering
(ICSE 2006). Shanghai, China, 20-28 May 2006.

 2

• Introducing two new heuristics for automatically identifying
properties that are likely to be interesting and a method for
logically combining inferred properties (Section 6).

We have implemented these techniques in our inference engine,
Perracotta, and evaluated them in three scenarios, including
experiments on inferring API rules for Daisy file system, Windows
kernel, and JBoss core components (Section 7). We were able to
find 56 interesting rules for Windows APIs, including many
properties checked by the Static Driver Verifier [42]. One
important use of the inferred properties is to validate the program
satisfies those properties using static verifiers. This paper describes
our initial effort to verify inferred temporal properties using a
static analysis tool. We fed the inferred Windows kernel API rules
to the ESP verifier which led us to find a significant bug in the
Windows code.

2. RELATED WORK
This section provides background on temporal properties and
program verification, and discusses related work in static and
dynamic property inference.

2.1 Background
Pnueli developed the theory of temporal logic [38]. Dwyer et al.
developed a set of temporal property patterns based on a case study
of hundreds of property specifications [15]. Their Bandera specifi-
cation language facilitates specification of those patterns [12].
Smith et al. developed the Propel approach to make writing and
understanding specification easier [44]. Our work tries to infer
properties which could be expressed using any of these logics.
Since the properties we consider in this paper are simple, we can
describe them with regular expressions.

Much research has focused on using specifications of temporal
properties to verify systems, especially concurrent systems [2, 5, 9,
10, 13, 14, 18, 27, 33, 47]. All these works require a specification
of properties to check, which is a big burden for users and limits
the wider adoption of such tools. For our verification experiments,
we use Java PathFinder [47] (Section 7.1.2) and ESP [13] (Section
7.3.2).

Java PathFinder (JPF) is an explicit-state model checker for Java
programs [47]. It can check deadlock, race conditions, unhandled
exceptions, and user-specified assertions. Upon finding a violation
of a property, it produces an execution path illustrating the
problem.

ESP is a validation tool for typestate properties [46]. ESP allows a
user to write a custom specification encoded in a finite state
machine to describe typestate transitions. ESP employs an
inter-procedural dataflow analysis algorithm [41] to compute the
typestate behavior at every program point. ESP uses the property
simulation method for combining dataflow analysis and symbolic
evaluation. The algorithm computes two sets of information: (a)
the property state (typestate according to the specified protocol)
and (b) the path simulation state. At a merge point in the control
flow, if two symbolic states have the same property state, ESP
merges the path simulation states. Otherwise, ESP explores the
two paths independently as in a full path-sensitive analysis.

2.2 Static Inference
Tools can attempt to automatically derive specifications from a
static analysis of the program text [6, 7, 8] or through a trial and
error approach with a static analyzer [19]. Alur et al. developed a
static analysis for synthesizing Java class interfaces for a single

class [3]. We limit the remainder of our survey to static inference
work designed to deal with imperfect code, since this work is
similar in spirit with our goal of handling imperfect traces for dy-
namic inference.

Engler et al. proposed a method for extracting properties by
statically examining source code based on a set of pre-defined
templates [16]. They can infer the kinds of alternating properties
we focus on in this paper. They use a set of specific names to
reduce the number of candidate events [16]. They select properties
based on three program styles. Weimer et al. invented a static ana-
lysis that statistically analyzes incompletely satisfied static proper-
ties by examining a program’s exception handling routines [48].
The main difference between these works and ours is that our
approach uses dynamic traces instead of static analysis of the
program text. This enables our techniques to be used in more
scenarios such as when source code is not available. Their
approaches mainly focus on local properties, while we can identify
relationships among events that are far removed from each other in
program text. Some of the techniques we develop in this paper
could also be applied to possibly improve static inference
techniques, as we discuss in Section 8.

2.3 Dynamic Inference
Another approach for inferring specifications uses program
execution traces. This paper is the first to present results from
applying dynamic inference on a real system whose size is
comparable to Windows. Previous work has attempted to extract a
complete finite state machine [4, 11, 49], which is historically
called the grammar inference problem. Gold proved it is NP-hard
[21, 22]. To achieve better scalability, our work only focuses on
the relationships among a few events, which represent the majority
of properties people care about most [15]. Our chaining heuristic
enables us to compose more complex state machines out of the
simpler ones. In addition, previous work on dynamic inference
(except [11], described at the end of this section) assumes the test
program executions are perfect and will not infer properties that
are not completely satisfied by the traces. Our inference algorithm
is designed for imperfect traces typically found in an industrial
setting and can tolerate bugs in the trace as long as the majority of
the trace is correct. Next, we survey dynamic inference techniques
and explain other differences between previous work and this
work.

Ammons et al. used an off-the-shelf probabilistic finite automaton
learner to mine temporal and data-dependence specifications for
APIs or ADTs from dynamic traces [4]. To handle traces
containing bugs, their approach required human experts to decide
whether a violation is actually a bug. In contrast, our techniques
can automatically tolerate imperfect traces without guidance. Their
machine learning algorithm has a high computational cost,
whereas our algorithm scales better to larger traces than theirs.
Daikon is a tool that automatically infers likely program invariants
using statistical inference from a program's execution traces [17].
Daikon’s effectiveness has been demonstrated for a variety of
applications, such as assisting new programmers to maintain and
improve a legacy system [17], test case selection [26], and
generating annotations for use by static checkers [37]. Whaley et al.
proposed a static and a dynamic approach for inferring what
protocols users of a Java class must follow [49]. The protocols
their approach can find are mainly typestate properties and are
limited to one class. Our approach is able to discover useful
properties among methods from different classes. They sliced their

 3

dynamic traces based on a class’s field, while we slice based on an
object’s identity and arguments.

Cook et al. invented a statistical dynamic analysis for extracting
thread synchronization models from a program’s execution traces
[11]. Our work differs from theirs in that we focus on detecting
API rules and assume the trace already has the thread information.
Reiss et al. developed a technique to compact large volume of
execution traces [40]. They use the sequencing properties on
individual objects, while we detect rules across multiple objects.
DynaMine extracts usage patterns from a system’s CVS revision
histories and dynamically validates inferred patterns [36]. Their
approach is complementary to our work in that examining a CVS
history is a way to select events to monitor at run-time. Their
mining algorithm has to filter out a fixed set of frequent events to
scale to large scenarios, which is not as general as our heuristics.
The patterns they inferred tend to focus only on methods within a
class, whereas we can infer properties spanning classes.

3. APPROACH
In previous work we proposed a dynamic analysis for auto-
matically inferring simple finite state machines from a program’s
execution traces [51, 52]. Figure 1 depicts the steps in our
approach. First, we instrument the target program to monitor
events and states of interest. Then we run the instrumented
program through a set of test cases collecting execution traces. Our
inference engine then tries to match the traces against a set of
pre-defined property templates. Our post-processing component
selects and outputs the interesting properties out of the initial
results.

For example, the Alternating template constrains two events to be
in strict alternating order. We can define it in regular expression as
(PS)*, where P and S are placeholders and represent two different
events. Suppose we monitor the acquire and release methods of a
lock class and obtain this trace as follows: lock.acq, lock.rel,

lock.acq, lock.rel. Our inference engine instantiates the (PS)*
template with each possible pair of events: (lock.acq lock.rel)* and
(lock.rel lock.acq)*. The first substitution accepts the trace as a
valid string, so Alternating property is inferred. We denote it as

lock.acq→lock.rel. The second substitution rejects the trace as a
valid string, so no Alternating property is inferred.

We developed a hierarchy of eight property templates based on the
Response pattern (whenever P happens, S must also eventually
happen) [15], of which Alternating is the strictest. We have found
they are useful for comparing the behaviors of several versions of
an evolving system [52]. Our inference algorithm infers the
strictest template that any two events satisfy [51]. In this paper, we
only consider the Alternating property pattern. It is the strictest of
the template patterns and has proven the most useful in practice.

3.1 Implementation
To enable our approach to scale to large traces, we developed the
algorithm for inferring two-event properties with a time

complexity O(nL) and a space complexity O(n2), where n is the
number of distinct events and L the length of the trace. Our
algorithm first scans the trace and encodes each distinct event as a
unique index number and then creates an n by n matrix, M. Each
row corresponds to a P event, while each column an S event. Each
cell of M stores the current state of a state machine that represents
the alternating pattern between the corresponding pair of events.
The key insight for achieving O(nL) time complexity is that an
event X from the trace can be treated as either a P event or an S
event. When we read an X from the trace, we update both the row
and column corresponding to index(X) of M. We hard-coded the
templates as tables, so the updating can be done by looking up the
tables and has O(n) complexity for each event in the trace. Thus,
the overall complexity is O(nL). At the end of processing the trace,
the inferred properties are those whose corresponding state
machines are in accepting states.

3.2 Limitations
Although our original technique produced promising results when
applied to small programs [52], it became ineffective when we
attempted to use it on larger programs.

One major limitation of our previous inference algorithm is that it
requires complete satisfaction [51]. For example, two events must
always appear in alternating order for our technique to infer the
Alternating property. Hence, our previous algorithm depends on
the availability of perfect execution traces. The real world,
however, is rarely perfect.

The execution trace may be incomplete because of partial profiling
in cases where profiling must be turned on or off on a running
system so it is possible that the trace misses some events. Another
cause of trace imperfection is missing context information. For
example, acquiring a lock and releasing a lock only alternate on the
same lock object. If the trace does not include the identity of the
lock object, our previous algorithm would not be able to
distinguish calls to different lock objects and so would not be able
to infer such properties.

The most insurmountable cause of traces being imperfect is buggy
programs, even in test suites. Programmers often forget to release
allocated resources, especially on rarely executed paths, even
when traces are collected from test cases thought to exhibit correct
behavior. As a result, allocation and release of the resource would
not always alternate with each other in the trace. Our previous
algorithm would not infer the Alternating property in such cases,
since a single violation prevents the property from being satisfied.
To address this limitation, we developed a new statistical
algorithm that is able to discover the dominant behavior from
imperfect traces (Section 4).

One big advantage of dynamic analysis over static analysis is the
availability of precise context information (e.g. thread, pointers).
Our previous work did not use such information. In this paper, we
present two approaches for taking advantage of such information:
context-neutral and context-sensitive (Section 5).

Another limitation of our previous dynamic inference techniques is
noise. For traces with large number of distinct events, the inference
results typically include many uninteresting properties. As a result,
the relatively few interesting properties are very difficult to find
manually. This problem becomes a substantial obstacle when we
apply inference to systems with a large number of monitored
events. To address this problem, we developed two heuristics for

Program
Instrumented

Program

Test Suite

Execution

Traces

T
e
s
tin

g

Inferred

Properties

Property

Templates

In
fe

re
n
c
e

In
s
tru

m
e
n
ta

tio
n

P
o
s
t-P

ro
c
e
s
sin

g

Figure 1. Approach overview.

 4

selecting interesting properties, and a method for combining
inferred properties (Section 6).

4. APPROXIMATE INFERENCE
It is critical that some important system resources are freed after
they are allocated, but sometimes even expert programmers forget
to free resources. Similarly, proficient developers often neglect to
release an acquired lock along exceptional paths. In order to infer
properties from traces in which these buggy paths are executed, we
need mechanisms for approximate inference that can infer
properties that are not completely satisfied. Our technique works
by identifying the dominant properties of an imperfect trace.

Consider a trace where P and S alternate n times but the last three
P’s do not have a corresponding S: PSPS…PSPSPPP. If P
corresponds to a resource allocation and S to the corresponding
deallocation, the last three allocations in the example trace are not
properly deallocated. Intuitively we can see that the dominant
behavior of P and S on this particular execution path is still
Alternating. This becomes even more obvious if we partition the
original trace into small subtraces as follows: PS PS … PS PPP.

The first n partitions all satisfy the Alternating property, and only
the final partition does not.

We generalize the above observation and formally define what
dominant behaviors are. We use the regular expression P+S+ to
define a sub-trace because it intuitively corresponds to a satisfied
or almost satisfied Alternating pattern. We can add the sub-trace
partitioning as an extra state-machine to our original
implementation. As a result the complexity of the algorithm is still
O(nL), where n is the number of distinct events, and L the length of
the trace.

After partitioning the original trace into sub-traces, we run our
inference algorithm on each sub-trace and compute the satisfaction
rate of each template. The satisfaction rate of the Alternating
property is pAL= nAL/n where nAL is the number of partitions that
satisfy the Alternating template and n is the total number of
partitions. For the PS PS … PS PPP example above, we would
compute the Alternating satisfaction rate as pAL= n/(n+1), which
for large n approaches 1.

Then we can rank all pairs of events based on pAL. We can filter the
results by setting a threshold for pAL so that we only present those
pairs of events whose pAL is above the threshold.

This simple technique does not distinguish between the different
kinds of imperfection that may be present in the trace (for example,
it does not matter how many Ps are in the last group).
Nevertheless, in our experiments it provides an adequate measure
of approximate satisfaction for identifying useful properties. We
plan to study other ways to partition a trace in the future.

The effectiveness of approximate inference depends on picking a
good satisfaction threshold. If the threshold is too high, interesting
properties may be missed. But if it is too low, too many false and
uninteresting properties will be preserved. Our experiments in
Section 7 reveal the importance of picking an appropriate value for
pAL.

5. CONTEXTUAL PROPERTIES
A monitored event has two types of information: static information
(e.g., the method entered) and context information (e.g., the
runtime thread, this object, the real parameters passed to a method,
and return values). A major advantage of dynamic analysis over
static analysis is the ready availability of precise context informa-

tion. We can take advantage of this information to infer more
precise properties.

In general there are two alternatives: context-neutral and
context-sensitive. In context-neutral mode, we treat two events that
have same static information but different context information as
the same event, whereas context-sensitive mode considers them as
two distinct events. For example, consider the example trace in
Figure 2. There are only two distinct events in context-neutral
mode (lock.acq and lock.rel), but four events if we include the
object identity in the event context.

Context-neutral analysis does not find an Alternating pattern
between lock.acq and lock.rel, where context-sensitive analysis
finds six Alternating properties shown in Figure 2, of which only
the two in bold are useful. Neither context-sensitive nor con-
text-neutral analysis, however, is able to detect that lock.acq and
lock.rel alternate for a same lock object. We can precisely obtain
this property if we generalize the results of context-sensitive
analysis based on same object identity. This is equivalent to slicing
the original trace into separate traces based on object identity.
Figure 2 shows the two traces obtained by object slicing. Our basic

analysis infers the lock.acq→lock.rel property from the two new
traces. In addition to object identities, we can also treat other types
of context information in a similar way. For example, we can slice
the trace based on the thread context or based on the value of the ith
argument to a method.

The results of context-sensitive analyses are the most complete,
but are not useful without generalization. Context-slicing can be
viewed as a simple way to generalize the results of con-
text-sensitive analyses. A limitation of context-slicing is that it
cannot detect properties that cross contexts, such as an Alternating
pattern between event P in one thread and event Q in another
thread. In future work, we plan to study more sophisticated
generalization heuristics to handle this. For now, we analyze a
trace using both context-neutral and context-slicing and union their
results together. We present our experimental results on evaluating
different context handling methods in Section 7.1.

6. SELECTION HEURISTICS
Our inference techniques infer a large number of properties on
typical traces, most of which are not interesting to developers. This
section presents two heuristics for selecting interesting properties

lock1.acq
lock2.acq
lock2.rel
lock1.rel

C
o
n
te

x
t-n

e
u
tra

l

No property inferred

C
o
n
te

x
t-s

e
n
s
itiv

e

lock1.acq�lock2.acq lock1.acq�lock2.rel
lock1.acq����lock1.rel lock2.acq����lock2.rel
lock2.acq�lock1.rel lock2.rel�lock1.rel

C
o
n
te

x
t-s

lic
in

g

lock.acq�lock.rel
Alternating for same lock

//lock1
acq
rel

//lock2
acq
rel

Figure 2. Context handling techniques

 5

from the inference results and a chaining method for combining
properties so properties can be presented in a more useful way.

6.1 Reachability
In our preliminary experiments, we found many properties whose
causing event is the wrapper of the effect event. For example, the

A→B property in Figure 3 is less interesting than the C→D
property whose two events don’t have call relationship. The reason

we think C→D is more interesting than A→B is because C and D
are in some sense asynchronized calls whose relationship is not
obvious from inspecting either C or D. Another reason is that the

C→D scenario represents the two classes of interesting properties:
resource allocation/deallocation and lock/unlock.

Our call-graph based heuristic marks a property P→S as probably
uninteresting if S is reachable from P in the call graph. We apply
this heuristic by performing a reachability analysis on the static
call graph of the target for all the inferred properties. Then we only
focus on those properties that involve pairs of events where the
second event is not reachable from the first event.

If there is a function call made through a function pointer, we will
stop searching on that path. Although a more sophisticated call
graph construction algorithm would give us more precise results
[23], in our experiments (Sections 7.2.1 and 7.3.1), we found this
simple approach allows us to eliminate many uninteresting
properties without missing interesting ones.

6.2 Name Similarity
Many non-trivial software systems are developed by strictly
following a naming convention such as the Hungarian Naming
System [43]. Even when such a naming convention is not strictly
adhered to, developers tend to choose similar names for related
functions. This makes the code more readable and easier to
understand and maintain. Our second heuristic takes advantage of
this practice – we expect a property to be more interesting if it
involves similarly named events. For example, the event names
ExAcquireFastMutexUnsafe and ExReleaseFastMutexUnsafe differ
by only one word, and we would expect properties involving those
two events to be interesting.

Our heuristic works by partitioning event names into words. We
could do the partitioning based on the capitalized letters, under-

scores, or using a dictionary. Suppose we have a property P→S.
After partitioning, there are wP words in P and wS words in S.
Suppose there are w common words between P and S. Then we can
compute the word similarity of P and S as 2w/(wP+wS). For
example, the word similarity of ExAcquireFastMutexUnsafe and
ExReleaseFastMutexUnsafe is 0.8 since four out of five words are
identical.

To identify properties that are likely to be interesting, we rank the
inferred properties based on their word similarity scores. We can
set a threshold (e.g., 0.5 means at least half of the words have to be
the same) on the similarity score and only focus on those that are
above the threshold. This works best for identifying properties
relevant to resource allocation/deallocation and locking disci-

plines, which are some of the most useful properties whose two
events only differ very little in name. The limitation of this
heuristic is it can remove important properties whose event names
are very different.

6.3 Chaining
In addition to using heuristics to select properties likely to be
interesting, we can use logical methods to combine properties to
reduce the number of inferred properties and present them in a
more useful way. Our chaining technique combines properties by
connecting related Alternating properties into chains. For example,

suppose we infer three Alternating properties: A→B, B→C, and

A→C. Then we can remove A→C and say A→B→C forms an
Alternating chain (i.e. (ABC)*). Our algorithm walks through all
inferred properties and produces a list of Alternating chains.

The chaining method can significantly reduce the number of
properties when there are many related properties, since a chain of
length l replaces ½(l2 + l) Alternating properties.

A typical finite state machine in a real system has more than just a
few events. For performance reason, our inference technique is
limited to inferring properties with only two events. The chaining
method provides a way to compose more complex finite state
machines out of many small state machines. This allows us to find
more complex multi-event properties, without having to suffer
from the high computational cost of previous approaches [21, 22].

7. RESULTS
To evaluate our approach, we have implemented our inference
algorithm in a prototype tool called Perracotta (available from
http://www.cs.virginia.edu/perracotta). It has 12,000 lines of Java
code. Perracotta takes a program’s function call sequence and
produces a list of properties. Perracotta scales well to large traces.
The largest example we have tried is a 10 million lines of trace
with more than 3,000 distinct events. Perracotta was able to finish
in 10 hours on a Sun Sparc workstation with 4GB memory. On
most of the traces in our experiments, Perracotta finishes within a
few minutes.

To instrument a Java program, we created a plug-in for the JRat
bytecode instrumentor [32]. It can record the call sequence, thread
information, and the object identity (i.e. the hashcode of this
object). We used Vulcan-based profiling tool from Microsoft to
instrument Windows kernel binaries [45]. It reports function calls
with thread information but lacks support for obtaining object
identity information.

We report on results from experiments using Perracotta on three
different programs: Daisy, a toy file system implementation;
JBoss, a Java application server; and the Windows kernel APIs.
For Daisy, we fed the inferred properties to the Java PathFinder
model checker to verify [1, 47]. We found subtle behavioral
differences in its locking discipline across multiple layers. For
JBoss, we compared the inferred properties to the J2EE
specification [29, 30, 31]. Approximate inference allowed us to
detect properties in the specification that we failed to infer in
earlier experiments. For Windows kernel, we compared the
inferred properties to those already documented in MSDN and the
Static Driver Verifier (SDV for short) [42]. We found a previously
unknown deadlock bug in the NTFS file system in Windows Vista
using ESP [13].

A() {

 …

 B ();

 …

X() {

 …

 C ();

 …

 D ();

 …

Figure 3. Reachable and unreachable events

 6

7.1 Daisy File System
Daisy implements a model of a Unix-like file system in 2,000 lines
of Java code [1]. Daisy’s architecture has four layers. Daisy uses a
RandomAccessFile object to emulate the hard drive, which is the
bottom layer. Above it, the Disk layer abstracts the hard drive into
byte stream. On top of it, there sits the layer that abstracts the byte
stream into blocks. The top layer provides an abstraction of files
and directories. We created a test harness that initially creates f
files on the disk and starts t threads. Each thread makes a sequence
of n calls to randomly selected APIs of the DaisyDir class. In our
experiments, we used f = 5, t = 5 and n = 15. We created a wrapper
for the RandomAccessFile class so that we could monitor its
methods. We used JRat to instrument all methods (except for
overridden Object class methods like toString) to record their
invocations.

Because the number of properties we inferred for Daisy is small, it
is possible for us to look at all properties manually before applying
the heuristics for selecting properties. Hence, the main purpose of
this experiment is to understand how many interesting properties
our heuristics are likely to eliminate.

7.1.1 Inference
The trace has 70,000 events. We sliced it by thread and obtained
six sub-traces (five for the child threads and one for the main
thread). Without applying any object slicing, we ran approximate
inference with a 0.70 threshold for pAL and 10 for event frequency
(that is, an event that occurs less than 10 times in the trace will be
ignored). Perracotta inferred 70 properties for the 40 distinct
events. Only 18 of the inferred properties have a 100% satisfaction
rate (pAL=1). Approximate inference enabled us to detect some
useful properties that would not be found otherwise such as
DaisyDisk.readAllocBit → DaisyLock.relb (pAL=0.97), and

LockManager.acq → LockManager.rel (pAL=0.86).

Since there are many noise properties included in the inferred
properties, we then applied our chaining method and found nine
Alternating chains. This significantly reduced the number of
properties we had to look at manually to nine chains with 30
properties. Because our chaining method is sound, it does not
eliminate any interesting properties.

We then manually inspected the remaining 30 properties and
determined that the six shortest chains (with length from one to
three events) are not interesting because they are simple wrapper
functions. In the remaining three chains, we found they all contain
redundant edges due to wrapper functions. This left eight pro-
perties that are indeed interesting. This is consistent with the
results of using Perracotta’s call-graph heuristic.

Next, we applied contextual slicing on the this object and the first
argument of a method. This led us to infer, with 100% satisfaction,
the two properties Mutex.acq→Mutex.rel and LockManager.acq →

LockManager.rel that approximate inference was able to detect.
Thus, approximate inference allows us to detect useful properties
even when important contextual information is unavailable. Object
slicing, however, would prevent us from inferring some useful
properties that involve more than one object such as
LockManager.acq→Mutex.rel.

The call-graph and chaining heuristics were very helpful for
reducing the number of properties to consider. Contextual slicing
can be used when contextual information is readily available. Its
limitation is that it might miss some useful properties, which could
prevent us from finding complete chains. So combining the results

from approximation and contextual slicing can give us both
precision in important properties without missing useful
properties. The name similarity heuristic had limited value in this
experiment. It prioritizes properties relevant to locking discipline,
but it does not work well for the other types of properties in this
example.

7.1.2 Verification
We selected several properties including both those we deemed
interesting and uninteresting (e.g., two events are reachable in call
graph) and validated them using the Java PathFinder. A counter-
example can result from imperfect inference. For example, we
inferred DaisyLock.acqi→DaisyLock.reli, which acquires and
releases the lock associated with an inode by calling the
LockManager. The LockManager then tries to lock/unlock an inode
by calling the relevant Mutex object’s acq/rel method. As long as
the implementation of Mutex’s acq/rel method guarantees
synchronized access to an inode, it is unnecessary for upper level
methods to be accessed in a synchronized way.

If JPF does not find any violation of a property, we have increased
confidence the property is correct. One such interesting property is
DaisyLock.acqb→DaisyLock.relb. We were surprised that JPF did
not find a counterexample, because it found a violation of the
similar property DaisyLock.acqi→DaisyLock.reli. In Daisy, a file is
associated with a unique inode and block. The inode stores the
block number which is used to locate the block that stores the data
of the file. That is, one must first get the inode to be able to access
the corresponding block (i.e., for read or write). The implementa-
tion enforces that a lock on a block would not be successfully
acquired unless the lock on the corresponding inode has been
acquired first. Similarly, a lock on an inode would not be released
until the lock on the corresponding block has been released.

7.2 JBoss
JBoss is currently the most widely used application server,
middleware that provides APIs for important services like trans-
actions, security, and caching for running web applications [31]. A
Java application server is a particular class of application server
that runs on a Java virtual machine. The J2EE specification
published by Sun is the main document that defines what
developers of web applications and developers of application
server should do [30]. We selected the transaction module because
a transaction typically involves multiple stages that need to occur
in some constrained order. The Java Transaction API specification
defines local Java interfaces between a transaction manager and
the parties involved in a distributed transaction system: the
application, the resource manager, and the application server [29].

7.2.1 Inference Results
The relevant part of JBoss implementation comprises 100,000
lines of Java code. We used JRat to instrument all method invoca-
tions and ran the regression test suite that comes with the JBoss
distribution. This produced a trace containing 2.5 million events
with 91 distinct events (after dropping events that occur less than
10 times). Perracotta executes in 80 seconds.

Figure 4 shows what percent of properties remain as the threshold
increases from 0 to 1. We used pAL=0.90 to select our properties.
The initial result has 490 properties, which is too many to
reasonably inspect by hand. We first applied our chaining heuristic
on them and produced 17 chains out of 61 properties. We then
enhanced the result by applying the call-graph based heuristic.
This brings the number of chains down to 16 with 41 properties.
We did not find the edit distance heuristic useful in this case since

 7

being Java program, JBoss had few properties that deal with
resource management and locking disciplines.

7.2.2 Comparison with JTA specification
One of the most interesting results is that the longest chain we
inferred is almost identical to an object interaction diagram shown
in the Java Transaction API (JTA) specification. Our longest
chain, shown in Figure 5, has 22 properties, which includes not
only the JTA APIs, but also the internal implementation of JBoss.
For comparison purposes, we removed those properties about
internal implementation and present the resulted chain in Figure 6.
The TxManager and TransactionImpl classes implement the JTA
TransactionManager and Transaction interfaces respectively.

The JTA specification has a diagram to illustrate how an applica-
tion server may handle a transactional connection request from an
application (as clearly indicated in the JTA specification, this is
just one typical scenario but not prescriptive) [29]. Our inferred
alternating chain captures most of the scenario. An application
server starts a transaction by calling the begin method of the
transaction manager. After getting a transactional resource from
the resource manager, the application server calls the
enlistResource method. Then the application does its work. The
application server calls the delistResource method to release a
resource and then commit the transaction. Here, Perracotta missed

the important edge between enlistResource and delistResource
because whenever enlistResource is called, either delistResource
or commitResources must be called. In other words, a Resource
does not have to be delisted. As shown in Figure 6, we successfully
inferred the alternating relationship between enlistResource and
commitResource because it is the dominant behavior exposed in
the trace.

Our results reveal more than just how the APIs interact. It also has
information on how internal implementation works, which would
be useful for new developers to understand how JBoss works. For
example, we successfully inferred a chain shown in Figure 5 that
reveals how starting and committing a transaction is implemented
respectively in JBoss. We also found useful properties like
TransactionImpl.lock→TransactionImpl.unlock.

7.3 Windows Kernel
Our final experiment is to infer API rules for the latest kernel
(ntoskrnl.exe) and core components (hal.dll and ntdll.dll) of
Windows Vista. Because of limitations of the tracing tool, we only
have calling sequence and thread information in our traces and
cannot distinguish between objects. To our surprise, Perracotta’s
approximation algorithm was still able to infer many useful
properties such as locking disciplines that typically only alternate
for the same object. We compared our inferred properties against
the list of properties checked by the Static Driver Verifier [42]. We
found we inferred not only many of those properties, but also
properties they did not document. We also selected 10 properties
and fed them to the ESP verifier. We found a serious bug in one of
the Windows binaries that calls the kernel APIs. Section 7.3.1
presents our inference results using approximation and the
heuristics. Section 7.3.2 discusses our ESP verification results.

7.3.1 Inference results
We instrumented the APIs of the Windows kernel and core
components and obtained 17 execution traces by running some
typical windows applications (e.g., Windows MediaPlayer,
Windows MovieMaker). The lengths of the traces range from
300,000 to 750,000 events, for 5.8 million total trace events. The
number of distinct events in each trace varies from 30 to 1,300. On
average each execution trace has 500 distinct events. Perracotta
analyzes all traces in 14 minutes.

Figure 4 shows what percent of properties remain as the
satisfaction threshold increases from 0 to 1. As with JBoss, we set
pAL=0.90, which identified 7,611 properties. This is too many to
manually inspect, so we applied the call-graph and edit distance
heuristics to identify the interesting ones. This sharply reduced the
number of properties to 142.

Table 1 summarizes the impact of the two heuristics we developed
for identifying useful properties. Name similarity is very effective
on the Windows code. For example, for Kernel API only, without
any heuristics, we inferred 436 properties. Name similarity alone

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Window s JBoss

Figure 4. Inferred properties versus satisfaction threshold.
The horizontal axis is the threshold varying from 0.0 to 1.0. The
vertical axis is the fraction of properties that above the threshold.

TxManager.begin

TransactionImpl.enlistResource

TransactionImpl.delistResource

TxManager.commit

TransactionImpl.commitResources

0.95

0.94

0.96

Figure 6. Inferred interface chain

TxManager.begin

XidFactory.getNextId

XidImpl.getTrulyGlobalId

TransactionLocal.getTransaction

Transaction.enlistResource

TransactionImpl.findResource

TransactionImpl.findResourceManager

TransactionImpl.createXidBranch

XidFactory.newBranch

TransactionImpl.addResource

TxManager.commit

TransactionImpl.doBeforeCompletion

TransactionImpl.endResources

TransactionImpl.getCommitStrategy

TransactionImpl.commitResources

TransactionImpl.cancelTimeout

TransactionImpl.doAfterCompletion

TransactionImpl.instanceDone

TxManager.getInstance

TxManager.incCommitCount

TxManager.releaseTransactionImpl

TransactionImpl.checkHeuristics

TxManager.disassociateThread

TransactionImpl.completeTransaction

Figure 5. Inferred implementation chain.
(Grayed events are interface events.)

 8

cut down the number to 33, which is a 92% reduction. Although
the call-graph based heuristic did not have a reduction rate as large
as editing distance, it is still very helpful for reducing the number
of properties. For example, we used the call-graph of ntoskrnl.exe
generated by ESP on the 436 properties. We found there are 89
properties whose second event is reachable from the first one.

To demonstrate the need for our inference technique also, we
conducted an experiment where we applied the name similarity
heuristics on all possible event pairs. We found there are 656 pairs
of events that have a similarity score greater than 0.5. We then
used the call-graph heuristic, which resulted in 572 pairs of events.
As a result, Perracotta’s inference algorithm was able to cut down
the properties by 75% even if we apply the two heuristics first. In
this case, nearly all of the eliminated properties are undesirable
since they were not satisfied more often than our approximation
threshold of 0.90. This shows our dynamic inference is necessary
to find meaningful properties.

We manually inspected the 142 properties remaining after our
selecting heuristics and identified 56 apparently useful ones, which
is 40% of the 142 properties. The properties we deemed interesting
are relevant to either resource allocation/deallocation or locking
discipline. Table 2 shows 20 sample properties. We found the
approximation algorithm is essential for detecting useful properties
that otherwise would be missing. A surprising result is we were
still able to infer those type-state properties that only alternate for
the same object (such as ObpCreateHandle →ObpCloseHandle),
even though there is no object information in the trace we had.

It was not feasible to examine all the 7,611 properties initially
inferred to see how many interesting properties were accidentally
eliminated. Based on our experiences, however, only about 1% of
the initially inferred properties appear to be interesting. Our
selection heuristics are very effective for increasing the density of
interesting properties in the result to 40%. At this density, it is
reasonable for a developer to manually inspect the remaining
properties.

We compared the properties we inferred to those checked by the
SDV, and found that Perracotta had inferred four out of the 16

properties that the SDV checks [42]. For example,
KeAcquireQueuedSpinLock�KeReleaseQueuedSpinLock.

Terracotta also inferred many properties that SDV does not check.
For example,
 MmSecureVirtualMemory�MmUnsecureVirtualMemory
is documented as required in MSDN but the SDV does not check
this because it is not related to device drivers. We missed seven
properties the SDV checks because our trace does not cover those
events. For example, KeAcquireSpinLock� KeReleaseSpinLock.
We missed the other five properties SDV checks because of the
limitations of our current property templates.

More interestingly, we inferred some properties SDV could have
included such as KiAcquireSpinLock�KiReleaseSpinLock and
KfAcquireSpinLock �KfReleaseSpinLock. The SDV developers did
not to include these critical properties because they are Windows
internal functions that are not visible to driver developers.

7.3.2 Verification
We manually selected ten of the inferred properties and fed them
into the ESP verifier, which checks temporal properties on
Windows binaries [13]. This led us to find one previously
unknown serious bug in the NTFS file system. The property is a
typical locking discipline property that constraints acquiring kernel
Mutex must be followed by releasing the same Mutex. The bug is a
double-acquire fault on an exceptional path, where a fastmutex is
acquired twice without being released in between. This bug can
cause the system to deadlock. ESP clearly showed us an execution
path that can activate the double acquire bug. The Windows
development team confirmed it is a real bug and subsequently
fixed the problem.

8. DISCUSSION
In our experience with industrial programs, we found that it was
not usually possible to obtain perfect traces. Very often some
important information (e.g., object identity) is missing or
incomplete in the trace due to limited tracing techniques. Another
important reason for imperfect traces was exposed in the JBoss
experiment – tests can fail or be designed to deliberately test

Name Similarity (>0.5) Call Graph Only Both
Properties Properties Reduction Unreachable Unknown Total Reduction Properties Reduction

Kernel 436 33 92.4% 331 16 347 21.2% 32 92.66%

Non-Kernel 7175 152 97.9% 2949 3310 6259 23.7% 110 98.47%

Total 7611 185 97.6% 3280 3326 6606 23.5% 142 98.13%

Table 1. Impact of selection heuristics.

pAL Property pAL Property

1.0 ExAcquireFastMutex->ExReleaseFastMutex 0.993 ObpCreateHandle�ObpCloseHandle

1.0 IoAcquireVpbSpinLock����IoReleaseVpbSpinLock 0.988 GreLockDisplay����GreUnlockDisplay

1.0 ExAcquireRundownProtectionCacheAwareEx����
ExReleaseRundownProtectionCacheAwareEx

0.985 RtlActivateActivationContextUnsafeFast�
RtlDeactivateActivationContextUnsafeFast

1.0 KefAcquireSpinLockAtDpcLevel�
KefReleaseSpinLockFromDpcLevel

0.982 KeAcquireInStackQueuedSpinLock�
KeReleaseInStackQueuedSpinLock

1.0 KeAcquireQueuedSpinLock�KeReleaseQueuedSpinLock 0.977 SeCreateAccessState�SeDeleteAccessState

1.0 KfAcquireSpinLock->KfReleaseSpinLock 0.972 IoAllocateIrp�IoFreeIrp

1.0 KiAcquireSpinLock->KiReleaseSpinLock 0.961 CmpLockRegistry����CmpUnlockRegistry

1.0 MmSecureVirtualMemory�MmUnsecureVirtualMemory 0.959 ObAssignSecurity����ObDeassignSecurity

1.0 ObpAllocateObjectNameBuffer����ObpFreeObjectNameBuffer 0.954 ExCreateHandle�ExDestroyHandle

1.0 SeLockSubjectContext�SeUnlockSubjectContext 0.954 ExpAllocateHandleTableEntry����ExpFreeHandleTableEntry

 Table 2. Selected Properties Inferred for Windows. Properties in bold are not documented in either MSDN or checked by SDV.

 9

improper API usage, thus introducing imperfections in the traces.
For example, good test suites include intentionally bad call
sequences to test how the application handles exceptions. Instru-
mentation might also interfere with the normal run and cause the
test to fail. The last and most fundamental reason for the trace to be
imperfect is that the program can have bugs. If the buggy path is
executed, the trace may contain some false behaviors. Ammons et
al.’s earlier work made the same observation [4]. The imperfect
trace they had prevented their approach from being fully
automated. In their case, they were dealing with small programs
and able to deal with the imperfections with substantial human
guidance. Our approximate inference is able to tolerate small
amounts of noise in the trace automatically, so it can be applied
even when perfect tracing tools or immaculate test programs are
not available. It works because most realistic programs have been
through non-trivial testing, which ensures its main paths to be
correct. The latent bugs that escape from testing typically reside on
infrequent paths, which do not represent the program’s dominant
behavior.

The approximate inference increases the likelihood that important
properties are found, but those properties are still hidden within the
excessive number of mostly uninteresting properties that are ty-
pically inferred for large programs. Our chaining method is a
simple and effective way to synthesize larger state machines from
small ones to reduce the number of properties.

Our call-graph heuristic is also a more systematic way to select
properties than previous work [16]. For the alternating properties,
Engler et al. used three very specific programming styles to select
the traces [16]. Our approach does not have that restriction. We
have found it very effective in both C and Java programs. It works
because it captures properties for which developers are more likely
to make mistakes. For example, acquiring a lock and releasing a
lock is very often performed by two different functions and hence
even an experienced developer might forget to release a lock or
accidentally acquire a lock twice.

Engler’s earlier work used naming conventions to select properties
in an ad-hoc way by looking for specific keywords [16], while our
name similarity heuristic is more systematic and general. We
found this approach works best when there are many properties
relevant to locking disciplines and resource management since the
event pairs in these properties have similar names. This was the
case for the Windows code, but not for Daisy or JBoss since Java
programs tend not to have such properties. We plan to further
investigate other selection heuristics that account for class
hierarchies and multiple events in alternating chains.

We found the inferred properties can be used effectively to under-
stand and check a program. Feeding properties to a verifier like
ESP or JPF is a promising way to detect behavioral defects. We
were able to find a serious bug in Windows using this approach.
Current program verification tools, however, are not at the point
where this can be done in a fully automated way. A programmer
has to manually inspect the counter-example traces to determine
whether a reported violation is a real defect. Analyzing the ESP
results for an inferred property consumed about a day of human
effort. We believe there is a promising future for closer integration
between static and dynamic techniques. Perhaps it will be possible
to reduce the false positive rate of static analysis tools by using
data from dynamic analyses.

9. CONCLUSION
Perfect, fully-automatic specification inference for industrial
programs remains an elusive goal, well beyond the state-of-the-art.
We have shown, however, that by targeting simple properties that
can be efficiently discovered and by using approximation
inference techniques along with heuristics for pruning the set of
inferred properties, it is possible to obtain useful results even on
large, complex programs. Some manual effort is still required, but
after the heuristics are applied the task is fairly manageable even
for programs as large and complex as JBoss and Windows.

Our results so far are limited to simple alternating properties
involving only two events. Despite this, we are encouraged by how
many useful properties we find. In future work, we plan to extend
the techniques to deal with more complex properties involving
three or more events, as well as properties that combine data
constraints with temporal ones. Our approximation technique and
selection heuristics are general enough to be applied to other types
of properties, although it remains to be seen if they will be
effective in these situations.

ACKNOWLEDGEMENTS
We thank Joel Winstead for the earlier discussion of the inference
algorithm and Willem Visser for help using Java Pathfinder. We
thank the members of the Program Analysis Group and the Test
Effectiveness Group at the Center for Software Excellence at the
Microsoft Corporation for providing a wonderful environment for
Jinlin’s intern project in the summer of 2005. In particular, we
thank Stephen Adams, Jason Yang, and Zhe Yang for their help
running ESP and analyzing its results. We thank Rick Vicik for
providing us the Windows traces and Damian Hasse for
confirming the Windows bug. We thank the following people for
their valuable comments: Tom Ball, Feng Chen, Jack Davidson,
Joanne Dugan, Michael Ernst, Brian Hackett, Klaus Havelund,
John Knight, James Larus, Rustan Leino, Stephen McCamant, Ed
Mitchell, Madan Musuvathi, Karsten Nohl, Nathanael Paul, Sriram
Rajamani, Henning Rohde, Barbara Ryder, Jeffrey Shirley, Mary
Lou Soffa, Ana Nora Sovarel, and Shukang Zhou. This work was
partially supported by grants from the National Science
Foundation (NSF CAREER CCR-0092945 and NSF ITR
EIA-0205327).

REFERENCES
[1] Joint CAV/ISSTA Special Event on Specification,

Verification, and Testing of Concurrent Software. Jul. 2004.
[2] T. Andrews, S. Qadeer, J. Rehof, S. K. Rajamani, and Y. Xie.

Zing: exploiting program structure for model checking
concurrent software. International Conference on

Concurrency Theory, Aug./Sep. 2004.
[3] R. Alur, P. Cerny, P. Madhusudan, and W. Nam. Synthesis of

interface specifications for Java classes. POPL, Jan. 2005.
[4] G. Ammons, R. Bodik, and J. R. Larus. Mining

specifications. POPL, Jan. 2002.
[5] T. Ball and S. K. Rajamani. Automatically validating

temporal safety properties of interfaces. SPIN, May 2001.
[6] K. Bennett, T. Bull, E. Younger, and Z. Luo. Bylands: reverse

engineering safety-critical systems. ICSM, Oct. 1995.

 10

[7] J. Bowen, P. Breuer, and K. Lano. Formal specifications in
software maintenance: from code to Z++ and back again.
Information and Software Technology. Nov./Dec. 1993.

[8] P. T. Breuer and K. Lano. Creating specifications from code:
reverse-engineering techniques. Journal of Software

Maintenance: Research and Practice. Vol 3. 1991.
[9] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular

verification of software components in C. ICSE, May 2003.
[10] H. Chen and D. Wagner. MOPS: an infrastructure for

examining security properties of software. ACM Conference

on Computer and Communications Security, Nov. 2002.
[11] J. E. Cook, Z. Du, C. Liu, and A. L. Wolf. Discovering

models of behavior for concurrent workflows. Computers in

Industry, Apr. 2004.
[12] J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Robby.

Expressing checkable properties of dynamic systems: the
Bandera specification language. International Journal on

Software Tools for Technology Transfer 4(1): 34-56. 2002.
[13] M. Das, S. Lerner, and M. Seigle. ESP: path-sensitive

program verification in polynomial time. PLDI, Jun. 2002.
[14] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B.

Saxe, and R. Stata. Extended static checking for Java. PLDI,
Jun. 2002.

[15] M. Dwyer, G. Avrunin, and J. Corbett. Patterns in property
specifications for finite-state verification. ICSE, May 1999.

[16] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: a general approach to inferring
errors in systems code. ACM Symposium on Operating

Systems Principles, Oct. 2001.
[17] M. Ernst, J. Cockrell, W. Griswold, and D. Notkin.

Dynamically discovering likely program invariants to support
program evolution. IEEE Transactions on Software

Engineering, Feb. 2001.
[18] D. Evans. Static detection of dynamic memory errors. PLDI,

May 1996.
[19] C. Flanagan, R. Joshi, K. Rustan, and M. Leino. Annotation

inference for modular checkers. Information Processing

Letters, Feb. 2001.
[20] P. Godefroid. Model checking for programming languages

using VeriSoft. POPL, Jan. 1997.
[21] E. Gold. Language identification in the limit. Information and

Control, 10, 447–474, 1967.
[22] E. Gold. Complexity of automatic identification from given

data. Information and Control, 37, 302–320, 1978.
[23] D. Grove and C. Chambers. A framework for call graph

construction algorithms. ACM Transactions on Programming

Languages and Systems, 23(6), 685-746, Nov. 2001.
[24] N. Gupta. Generating test data for dynamically discovering

likely program invariants. Workshop on Dynamic Analysis,
May 2003.

[25] S. Hagnal and M. S. Lam. Tracking down software bugs
using automatic anomaly detection. ICSE, May 2002.

[26] M. Harder, J. Mellen, and M. D. Ernst. Improving test suites
via operational abstraction. ICSE, May 2003.

[27] K. Havelund and G. Rosu. An overview of the runtime
verification tool Java PathExplorer. Formal Methods in

System Design.. Mar. 2004.
[28] G. Holzmann. The logic of bugs. SIGSOFT FSE, Nov. 2002.
[29] Java Transaction API specification.

http://java.sun.com/products/jta/

[30] J2EE. http://java.sun.com/j2ee/index.jsp
[31] JBoss. http://www.jboss.org
[32] JRat. http://jrat.sourceforge.net/
[33] J. R. Larus, T. Ball, M. Das, R. DeLine, M. Fahndrich, J.

Pincus, S. K. Rajamani, and R. Venkatapathy. Righting
Software. IEEE Software, May/Jun. 2004.

[34] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan.
Scalable statistical bug isolation. PLDI, Jun. 2005.

[35] L. Lin and M. D. Ernst. Improving adaptability via program
steering. ISSTA, Jul. 2004.

[36] B. Livshits and T. Zimmermann. DynaMine: finding common
error patterns by mining software revision histories.
SIGSOFT FSE, Sep. 2005.

[37] J. W. Nimmer and M. D. Ernst. Invariant inference for static
checking: an empirical evaluation. SIGSOFT FSE, Nov.
2002.

[38] A. Pnueli. The temporal logic of programs. Annual

Symposium on Foundations of Computer Science, Oct./Nov.
1977.

[39] B. Pytlik, M. Renieris, S. Krishnamurthi, and S. P. Reiss.
Automated fault localization using potential invariants.
International Symposium on Automated and Analysis-Driven

Debugging. Sep. 2003.
[40] S. P. Reiss and M. Renieris. Encoding program executions.

ICSE, May 2001.
[41] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural

dataflow analysis via graph reachability. POPL, Jan. 1995.
[42] Static Driver Verifier: Finding bugs in device drivers at

compile-time. WinHEC, Apr. 2004.
[43] C. Simonyi. Hungarian notation. MSDN library.
[44] R. L. Smith, G. S. Avrunin, L. A. Clarke, and L. J. Osterweil.

PROPEL: an approach supporting property elucidation. ICSE,
May 2002.

[45] A. Edwards, A. Srivastava, and H. Vo. Vulcan: binary
transformation in a distributed environment. Research

Technical Report, MSR-TR-2001-50, Apr. 2001.
[46] R. E. Strom and S. Yemini. Typestate: A programming

language concept for enhancing software reliability. IEEE

Transactions on Software Engineering, Vol 12(1), Jan. 1986.
[47] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda.

Model checking programs. Automated Software Engineering,
Apr. 2003.

[48] W. Weimer and G. Necula. Mining temporal specifications
for error detection. International Conference on Tools and

Algorithms for the Construction and Analysis of Systems,
Apr. 2005.

[49] J. Whaley, M. C. Martin, and M. S. Lam. Automatic
extraction of object-oriented component interfaces. ISSTA,
Jul. 2002.

[50] T. Xie and D. Notkin. Tool-assisted unit-test generation and
selection based on operational abstractions. Automated

Software Engineering Journal, 2006.
[51] J. Yang and D. Evans. Dynamically inferring temporal

properties. ACM Workshop on Program Analysis for Software

Tools and Engineering, Jun. 2004.
[52] J. Yang and D. Evans. Automatically inferring temporal

properties for program evolution. IEEE International

Symposium on Software Reliability Engineering, Nov. 2004.

