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Abstract

The problem of clustering data can be formulated as a graph partitioning prob-

lem. Spectral methods for obtaining optimal solutions have reveceived a lot of

attention recently. We describe Perron Cluster Cluster Analysis (PCCA) and, for

the first time, establish a connection to spectral graph partitioning. We show that

in our approach a clustering can be efficiently computed using a simple linear map

of the eigenvector data. To deal with the prevalent problem of noisy and possibly

overlapping data we introduce the minChi indicator which helps in selecting the

number of clusters and confirming the existence of a partition of the data. This

gives a non-probabilistic alternative to statistical mixture-models. We close with

showing favorable results on the analysis of gene expression data for two different

cancer types.
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1 Introduction

In data analysis, it is a common first step to detect groups of data, or clusters, sharing important

characteristics. The relevant body of literature with regard to methods as well as applications is

vast (see [14] or [18] for an introduction). There are a number of ways to obtain a mathematical

model for the data and the concept of similarity between data points, so that one can define

a measure of clustering quality and design algorithms for finding a clustering maximizing this

measure. The simplest, classical approach is to model data points as vectors from Rn. Euclidean

distance between points measures their similarity and the average Euclidean distance between

data points to the centroid of the groups they are assigned to is one natural measure for the quality

of a clustering. The well-known k-means algorithm [18] will find a locally optimal solution in

that setting.
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One of the reasons why the development of clustering algorithms did not cease after k-means

are the many intrinsic differences of data sets to be analyzed. Often the measure of similarity

between data points might not fulfill all the properties of a mathematical distance function, or

the measure of clustering quality has to be adapted, as for example the ball-shape assumption

inherent in standard k-means does not often match the shape of clusters in real data.

An issue which is usually, and unfortunately, of little concern, is whether there is a partition

of the data into a number of groups in the first place and how many possible groups the data

support. Whenever we apply a clustering algorithm which computes a k-partition this is an

assumption we imply to hold for the data set we analyze. The problem is more complicated

when k is unknown. In the statistical literature mixture models [20] are suggested as alternatives

for problem instances where groups overlap.

We address the problem of finding clusters in data sets for which we do not require the

existence of a k-partition. The model we will use is a similarity graph. More specifically, we have

G = (V,E), where V = {1, . . . ,n} is the set of vertices corresponding to the data points. We have

an edge {i, j} between two vertices iff we can quantify their similarity, which is denoted w(i, j).
The set of all edges is E and the similarities can be considered as a function w : E �→ R+

0 . The

problem of finding a k-partition of the data can now be formulated as the problem of partitioning

V into k subsets, V = ∪k
i=1Vi. Let us consider the problem of finding a k = 2 partition, say

V = A∪B. This can be achieved by removing edges {i, j} from E for which i ∈ A and j ∈ B.

Such a set of edges which leaves the graph disconnected is called a cut and the weight function

allows us quantify cuts by defining their weight or cut-value,

cut(A,B) := ∑
{i, j}∈E,i∈A, j∈B

w(i, j).

A natural objective is to find a cut of minimal value. This problem can be solved with the min-cut

algorithm [22] in O(|V ||E|+ |V |2log|V |). A problem with this objective function is that sizes of

partitions do not matter. As a consequence, using min-cut will often compute very unbalanced

partitions, effectively splitting V into a single vertex, or a small number of vertices, and one very

large set of vertices; cf. Fig. 1. We can alleviate this problem by evaluating cuts differently.

One alternative measure is average cut, which is defined as

Averagecut(A,B) :=
cut(A,B)

|A|
+

cut(A,B)

|B|
.

Average cut is sensitive to the sizes of either A and B getting too small; as long as A and B are

balanced the average cut yields 2/|V | times the cut value, which is easily exceeded by the term

for the smaller partition.

Instead of just considering partition sizes one can also consider the similarity within par-

titions, for which we introduce the so-called association value of a vertex set A denoted by

a(A) = a(A,V ) := ∑
i∈A

∑
j∈V

wi j . Defining the normalized cut by

Normcut(A,B) =
cut(A,B)

a(A,V )
+

cut(A,B)

a(B,V )
,

we observe that the cut value is now set into relation to the similarity of each partition to the

whole graph. Vertices which are more similar to many data points are harder to separate. As

we will see, the normalized cut is well suited as an objective function for minimizing because it

keeps the relative size and connectivity of clusters balanced.

The min-cut problem can be solved in polynomial time for k = 2. Finding k-way cuts in

arbitrary graphs for k > 2 is NP-hard [6]. For the two other cut criteria, already the problem

of finding a 2-way cut is NPC [Papadimitriou] [23]. However, we can find good approximate

solutions [19, 23] to the 2-way normalized cut by considering a relaxation of the problem. In-

stead of discrete assignments to partitions consider a continuous indicator for membership. As it

turns out, the eigenvectors obtained from a suitable eigenvector problem for the Laplacian of the

pairwise-similarity graph G can be interpreted for exactly that purpose. This so-called spectral
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method [19, 23] has been used for solving the k-partition problem directly as well as through

successive computation of 2-partitions. Recall, that the weight function w is symmetric as the

graph is undirected and the weights are non-negative; we will write W to denote the matrix of

weights using the convention of weight zero for non-edges. With

d(i) = ∑
{i, j}∈E

w(i, j)

we can define the Laplacian matrix L of G as

L(i, j) =

⎧
⎪⎨

⎪⎩

di −W (i, j) if i = j,

−W (i, j) if {i, j} ∈ E,

0 else.

(1)

The normal form of the Laplacian of a weighted undirected graph G is then defined to be

L = D−1(D−W ), where D = diag(d(1), . . . ,d(n)). For solving the average cut problem we will

consider the eigenvalue problem

Lx = (D−W )x = λx

and for the normalized cut problem the generalized problem

DLx = λDx

(D−W )x = λDx (2)

or the standard Eigenvalue problem of

D−1/2(D−W )D−1/2x = λx. (3)

The running time of the 2-partition problem directly depends on the time to compute the

second-smallest (or largest) eigenvector. For the standard eigenvalue problem Ax = λx, it is

O(n3) where n is the order of the graph. If A is sparse the Lanczos algorithm, an iterative

solver, can compute an eigenvector in O(mn)+O(mM(n)), where m is the number of times the

operation Ax is executed and M(n) is the cost of matrix-vector multiplication Ax. Note that m

will be typically smaller than the worst-case bound of n; the exact value depends on the sparsity.

Similarly, M(n) will be on the order of O(n) for sufficiently sparse instances.

For solving the 2-partition problem, we are interested in the eigenvector x2 for the second-

smallest eigenvalue [19, 23]. In particular, we will inspect its sign structure and use the sign of

an entry x2(i) to assign vertex i to one or the other vertex set. Similarly, for direct computation

of k-partitions one can use all k eigenvectors to obtain k-dimensional indicator vectors. Previous

approaches [2, 23] relied on k-means clustering of the indicator vectors to obtain a k-partition in

this space.

Assume that the data can be partitioned and the assignment is given by the block diagonal

matrix B. We then can write W as B + E, where E is some perturbation error. In this setting,

under some further conditions, the recursive algorithm is guaranteed to arrive at clusters which

are indeed the blocks in B.

Theorem 1.1 [19] Let B be a perfect block diagonal matrix. Assume that the eigenvalue gap

1− λ2

λ1
of each block Bi, i = 1, . . . ,k, is at least β (0 < β < 1). In addition, let the difference

between the k-th and (k + 1)-th eigenvalues of B be at least β . Let E denote the perturbation

error matrix for which W = B + E holds. We additionally assume E is bounded: ||E||2 < δ ,

where qδ < β for some positive constant q and that the ratios of cluster sizes are bounded.

Then, the recursive algorithm applied to the W matrix finds a clustering that differs from the

optimal in O(n/q2) rows.
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Figure 1: The first case is when minimum-cut can be wrong due to presence of low-degree vertices.

The theorem implies that if the optimal clustering has a large degree of overlapping, the

spectral algorithm will fail because δ is close to β and thus the constant q will be small. With

our analysis in Section 3.3 we will give an example for this. In the next section, we will propose

an indicator for the amount of overlapping in W which helps in deciding whether the recursive

spectral method is applicable. Subsequently we will introduce an alternative approach to finding

k-partitions even in absence of a perfect block structure. We first rephrase the problem equiv-

alently in terms of transition matrices of Markov-chains and use perturbation analysis to arrive

at the main result, a geometric interpretation of the eigenvector data as a simplex. This allows

to devise an assignment of data into overlapping groups and a measure for the deviation from

the simplex structure, the so-called Min-chi value. The advantages of our method are manifold:

there are fewer requirements on the similarity measure, it is effective even for high-dimensional

data and foremost, with our robust diagnostic we can assess whether a unique k-partition exists.

The immediate application value is two-fold. On one hand, the Min-chi value indicates whether

trying to partition the data into k groups is possible. On the other hand, this can be used as a guide

for deciding on the number of clusters. We demonstrate the practical effectiveness by evaluating

our method on two gene expression data sets, which pose problems for partition algorithms as

groups of genes sharing the same function tend to overlap and error levels as well as amount of

noise tends to be very high. We conclude with a discussion with the very favorable results both

for the diagnostic compared to classical cluster indices and the result of the clustering.

2 Perturbation analysis of eigenvectors

2.1 Comparing cut algorithms and the Perron Cluster Analysis

If the graph cut problem is well-defined W is nearly block structured after a suitable permutation

of rows and columns. The k-way graph cut problem with an edge weight matrix W can therefore

be seen as a problem of recovering the hidden block structure of W . In the ideal case, W has

k pairwise unconnected vertex sets. Reweighting the rows of W via T = D−1W ends up in

a stochastic1 matrix T . In the ideal case, T has also block structure, where each block is a

stochastic matrix, see Fig. 3 for k = 3.

The following equations show that the eigenvectors of T and the eigenvectors of the normal-

ized cut problem (2) are identical:

(D−W )y = λ Dy

⇔ D−1 (D−W )y = λ y

⇔ y−T y = λ y

⇔ T y = (1−λ )y. (4)

Because of equation (4) and λ ≈ 0 the eigenvectors of T corresponding to eigenvalues (1−λ ) ≈ 1

are important, which are identical to the eigenvectors of the normalized cut algorithm. The ba-

1T is nonnegative and the row sums are 1, i.e. ‖T‖1 = 1.
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Figure 2: We draw 500 random samples from mixture of two normal distributions center at different means

with mixing coefficients = [0.7,0.3]. The entry Wi j is exp(−||xi −x j||
2) for all i, j. This picture shows that in

the case of no overlapping of two clusters, the minimum of the normalized cut occurs at the zero-crossing.
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Figure 3: Structure of the stochastic matrix T in the case of k = 3 pairwise unconnected vertex sets after a

suitable permutation of row and column indices.

sic idea of the Perron (Cluster) Cluster Analysis (PCCA) is, that these eigenvectors are almost

invariant under T , and that one can apply Markov chain theory to the stochastic matrix T , see

Deuflhard et al. [7, 8]. The name PCCA derives from the so-called Perron eigenvalue λ1 = 1 of a

stochastic matrix [4, 21] and from the fact, that one uses eigenvectors corresponding to a cluster

of eigenvalues near λ1 for clustering the data.

In the case, where W is symmetric, in [7] it is shown that an ε-perturbation T̃ of the stochastic

matrix T , where

T̃ = T + εT (1) +O(ε2), (5)

leads to an ε-perturbation of the components of the corresponding eigenvectors ỹ = y + O(ε).
Furthermore it is shown, that in the ideal case the sign structure of the k observed eigenvectors

determines the index sets of the k uncoupled blocks uniquely.

This leads to a former version of PCCA, where the sign structure of the perturbed eigen-

vectors is examined in order to find the hidden blocks of T̃ . For k = 2, we now show that the

former PCCA method and the 2-way partition method previously mentioned [19, 23] are the

same. However both methods are not robust because the sign information may be sensitive to

slight perturbations (e.g. “dirty zero” problem). In practise, the generalized eigenvalue problem

for the normalized cut algorithm is often replaced by the solution of a symmetric problem, see

equation (3). The following equations show, that y = D−1/2x is just a positive component-wise

scaling of the eigenvector x and therefore the eigenvectors x1, . . . ,xk and y1, . . . ,yk corresponding

to the eigenvalues λ1, . . . ,λk share the same sign structure.

D−1/2 (D−W )D−1/2 x = λ x

⇔ D−1/2 (D−W )y = λ D1/2y

⇔ (D−W )y = λ Dy

⇔ T y = (1−λ )y. (6)

Equation (6) also shows that the spectrum of T is real valued for a symmetric weight matrix

W . In Section 2.2 it is shown, that there is a robust version of PCCA using not only the sign

structre of the eigenvectors, but also the values of their components.

2.2 Second order perturbation result - Simplex structure

From a different point of view Huisinga et al. [16] examine the correspondence between the sign

structure of eigenfunctions of a Markov operator (the continuos version of a stochastic matrix)

and the characterization of so-called transition sets. From their context it seems natural, that

in the general perturbed case the k first eigenvectors Ỹ = [ỹ1, . . . , ỹk] of T̃ comprise all 2k−1

possible2 sign structures regarding the rows of Ỹ . For the former PCCA algorithm, this means

2Note, that ỹ1 is a constant vector.
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that for k > 2 there are more sign structures than clusters. Deuflhard have shown, that in this case

a so-called “dirty zero” problem occurs from perturbation of the sign “0”, see [7, 8]. Deuflhard

and Weber [8] overcome this problem by examing a second order perturbation result and by

using a mixture model for the clustering, which leads them to the Robust Perron Cluster Analysis

(PCCA+). Here we recall some of their ideas.

In the ideal uncoupled case the components of each of the eigenvectors Y = [y1, . . . ,yk] of

T are pairwise identical for indices corresponding to the same block. Regarding the rows of Y

as points in IRk, therefore, ends up in exactly k different points. Since the first eigenvector y1

corresponding to λ1 = 1 for a stochastic matrix is always constant, this can also be seen as k

different points in IRk−1 omitting the first column of Y . The convex hull of k different points

in IRk−1 is called a simplex. In IR2 for k = 3 it is a triangle, see Fig. 4. In IR3 for k = 4 it is a

tetrahedron.
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Figure 4: Perturbation result of Deuflhard and Weber, Lemma 1.1. in [8], for stochastic matrices with

symmetric W : The simplex structure of the eigenvectors is saved in first order perturbation theory.

With the ε-perturbation analysis of equation (5) the first order perturbation term for the

eigenvectors

Ỹ = Y + εY (1) +O(ε2)

is a linear mapping Y (1) = YB, with a regular matrix B ∈ IRk×k, of the ideal case eigenvectors,

see Fig. 4(a). The simplex structure is not perturbed. The perturbation of the simplex structure Y

vs. Ỹ is therefore at most of order O(ε2), see Fig. 4(b). This simplex structure plays an important

role in the PCCA+ algorithm.

For the examination of gene expression data often the so-called fuzzy clustering methods

yield good results [11, 12, 13]. In fuzzy clustering for every cluster i = 1, . . . ,k there is a mem-

bership function χ̃i : V → [0,1], which assigns a grade of membership between 0 and 1 to each

vertex (gene pattern) in V . Therefore, a vertex may correspond to different clusters with a dif-

ferent grade of membership. For each vertex v ∈ V the sum of the grades of membership with

regard to the different clusters is 1, i.e.

k

∑
i=1

χ̃i(v) = 1. (7)

Each vertex is represented by a fuzzy vector (χ̃1(v), . . . , χ̃k(v))
′ ∈ IRk. Since these vectors are

positive and the partition of unity holds, they lie in the standard σk−1 simplex spanned by the k

unit vectors of IRk. Note, that (7) defines a (k−1)-dimensional subspace in IRk. At this stage:

The result of fuzzy clustering is a simplex and the input data set (the rows of the eigenvector

matrix Ỹ of T̃ ) has also an O(ε2)-perturbed simplex structure. Therefore, clustering can be seen
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as a simple linear mapping from the rows of Ỹ to the rows of a membership matrix χ̃ , where

χ̃ ji := χ̃i(v j) and j = 1, . . . ,N is the index of the vertex v j ∈ V . For the unperturbed ideal case,

where T has block structure, this linear mapping can be done such that the membership matrix

χ comprises the k characteristic functions for the clusters. The fact, that the mapping between

the perturbed eigenvectors Ỹ and the membership matrix χ̃ is linear and deviation from simplex

structure is O(ε2) leads to the following estimation

χ − χ̃ = O(ε2),

which is the key equation showing the robustness of the method in [8], it shows a bounded

convergence to the strict clustering as ε → 0.

3 Recovering the simplex structure of eigenvectors

3.1 Construction of a linear mapping

The linear mapping is expressed by a regular k×k-matrix A :

χ̃ = ỸA . (8)

This matrix maps the vertices of the simplex contained in the rows of Ỹ onto the vertices of the

simplex σk−1, i.e. the k unit vectors. Therefore, if one finds the indices π1, . . . ,πk ∈ {1, . . . ,N}
of the vertices in Ỹ one can construct the linear mapping via

A
−1 =

⎛
⎜⎝

Ỹπ1,1 . . . Ỹπ1,k
...

...

Ỹπk ,1 . . . Ỹπk ,k

⎞
⎟⎠ . (9)

Equation (9) leads to a feasible solution χ̃ = ỸA if and only if the convex hull of the rows of

Ỹ (seen as vectors in IRk) is a simplex [27]. From perturbation analysis we know that this is the

case with a deviation of order O(ε2). In the general case, the result obtained by (9) is infeasible.

However, the partition of unity constraint is always satisfied, because the rows ofỸ as vectors

in IRk lie in a (k− 1)-dimensional subspace, which is mapped to the subspace defined by (7).

Therefore, deviation from simplex structure leads to infeasibility of the linear mapping only with

regard to the bounds 0 ≤ χ̃ ji ≤ 1, especially to some negative grades of membership. For more

details see Theorem 2.1 in [8]. There are two possibilities to cope with this situation:

• In [8] the linear mapping is modified, such that the solution is feasible and optimal with

regard to some cost function.

• The linear mapping is not modified. The lowest value in the result matrix χ̃ , the so called

minChi-value, is used as indicator for the deviation from simplex structure and should be

O(ε2). We prefer this possibility in the present text.

Huisinga et al. [15, 17] and Deuflhard et al. [8] have defined a measure of metastability and they

have shown that the metastability of k subsets of a Markovian system can be bounded from above

by the sum of the first k eigenvalues of the corresponding stochastic matrix T . Therefore, in the

context of Markov chain theory the eigenvalues of T can be used as an indicator for the number

of clusters, i.e. only eigenvalues near the Perron root λ1 = 1 should be taken into account.

In the present paper, however, the stochastic matrix T is not computed from a Markov chain,

but from a geometrical clustering. In computer experiments, the second eigenvalue of T was

always bounded away from λ1 = 1, but the simplex structure can still be found. Therefore, the

metastability indicator or the eigenvalue criterion does not hold for this type of clustering any

more. Also the optimization of metastability like in [8] does not make sense for a geometrical

probelm. This is the reason to apply the minChi-value described before as indicator for the

number of clusters.
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The relation between the simplex structure of the eigenvectors of a stochastic matrix T =
D−1W and the fuzzy clustering idea has first been examined by Weber and Galliat [27]. Their

“inner simplex algorithm” can be used to find the indices π1, . . . ,πk of the rows of Ỹ , which are

used for the construction of A . The computational effort of this algorithm is of order O(N2),
where N is the number of vertices of the graph G. An improvement of this algorithm, which has

a computational effort of order O(N), is given in [8], where the inner simplex algorithm leads to

a starting guess for the optimization routine. If we denote the rows of Ỹ by Ỹ (1), . . . ,Ỹ (N)∈ IRk,

then the algorithm, which determines the index set {π1, . . . ,πk} for (9), is as follows:

Inner Simplex Algorithm

1. Define π1 as that index, for which ‖Ỹ (π1)‖2 is maximal. Define X1 = span{Ỹ (π1)}.

2. For i = 2, . . . ,k: Define πi as that index, for which the distance to the hyperplane Xi−1,

i.e. ‖Ỹ (πi)−Xi−1‖2, is maximal. Define Xi = span{Ỹ (π1), . . . ,Ỹ (πi)}. Go on with 2.

3.2 A guiding example

First we construct a stochastic matrix T̃ . For this reason we take a symmetric 6× 6-matrix W

having perfect block structure and perturb this matrix with some perturbation terms. The result

matrix is:

T̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.3432 0.1663 0.1367 0.1377 0.1085 0.1076

0.1672 0.3427 0.1370 0.1377 0.1080 0.1074

0.1078 0.1075 0.3222 0.2476 0.1073 0.1075

0.1083 0.1077 0.2470 0.3216 0.1081 0.1073

0.1086 0.1076 0.1363 0.1377 0.3435 0.1663

0.1080 0.1073 0.1369 0.1370 0.1667 0.3443

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Clustering. The eigenvalues of T̃ are {1.0000,0.2953,0.2940,0.1774,0.1762,0.0746}. The

eigenvalue indicator for the number of clusters gives us k = 1, but we know by construction

k = 3. In the following we will examine the cases k=3, k=4, and k=2. The first 4 eigenvectors of

T̃ can be calculated as:

Ỹ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.0000 0.1079 −1.4997 0.2324

1.0000 0.0986 −1.5087 −0.2480

1.0000 −1.1116 0.5921 −0.0097

1.0000 −1.1014 0.5856 0.0087

1.0000 1.2989 0.7447 1.7987

1.0000 1.3115 0.7641 −1.7873

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Clustering, k=3. With the above algorithm we get π1 = 6,π2 = 2, and π3 = 3. Therefore,

A
−1 =

⎛
⎝

1.0000 1.3115 0.7641

1.0000 0.0986 −1.5087

1.0000 −1.1116 0.5921

⎞
⎠ , A =

⎛
⎝

0.3055 0.3068 0.3877

0.3965 0.0325 −0.4289

0.2284 −0.4573 0.2289

⎞
⎠ .

Applying the transformation χ̃ = ỸA , where Ỹ comprises the first 3 eigenvectors, yields

χ̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.0057 0.9962 −0.0019

0.0000 1.0000 0.0000

0.0000 0.0000 1.0000

0.0026 0.0033 0.9941

0.9906 0.0085 0.0010

1.0000 0.0000 0.0000

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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which is almost feasible, because minChi = −0.0019 ≈ 0. The 3 columns of χ̃ are the

corresponding membership functions, which separate the 3 blocks of W well.

Clustering, k=4. With the above algorithm we get π1 = 6,π2 = 5,π3 = 2, and π4 = 3. Com-

puting A by equation (9) and using χ̃ = ỸA yields:

χ̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−0.1301 0.1371 0.9950 −0.0021

0.0000 0.0000 1.0000 0.0000

0.0000 0.0000 0.0000 1.0000

0.0040 0.0066 0.0032 0.9941

0.0000 1.0000 0.0000 0.0000

1.0000 0.0000 0.0000 0.0000

⎞
⎟⎟⎟⎟⎟⎟⎠

,

which is infeasible, because minChi = −0.1301 ≪ 0 is about 100 times the value of minChi

for k = 3.

Clustering, k=2. For the case k = 2 we always get minChi = 0, see [8, 27]. The minChi-

indicator prefers this number of clusters. It is easy to decide, whether the right number of clusters

is k > 2, if we take the maximum number k ≪ N for which minChi ≈ 0 (like in the present

example). But if minChi ≪ 0 for every N ≫ k > 2, then the decision, whether k = 1 or k = 2

is the right number of clusters is not easy. In this case, one can e.g. look at the result matrix χ̃
for k = 2 and determine how well the 2 clusters are separated, i.e. if χ̃i j ≈ 0 or χ̃i j ≈ 1 for every

i = 1, . . . ,N and j = 1,2 (in other words: if the information entropy is low, see [25]).

3.3 Less input vectors lead to a wrong clustering

In spectral k-partitioning methods often a smaller number s of eigenvectors, e.g. s = ⌈log2 k⌉
in [9, 10], is used as input data for cluster algorithms. A counter-example following the ideas of

Weber [26] shows, that the projection into lower subspaces might cause failures in classification.

If we have “full” simplices, see Fig. 5 top, a projection of the simplex structure into a lower

dimensional subspace conceals the difference between transition states3 (A ↔ B) and vertices

corresponding to a different cluster (C), see Fig. 5 bottom. Therefore, especially successive

algorithms working only on the eigenvector corresponding to the 2nd largest (or 2nd lowest for

the Laplacian) eigenvalue might fail [19, 23]. Only with strong assumptions like in Theorem 1.1,

correctness can be shown. In the example figure, the marked points are assigned to cluster C, if

one uses only 2 eigenvectors. But in PCCA the 3rd eigenvector shows, that one of the marked

points do not correspond to C but is a transition state between A and B and should be assigned to

one of those clusters.

4 minChi in practice

Given an n×m data matrix, we compute pairwise-distances for all pairs and construct the n×n

distance matrix A with a symmetric distance function w : Rm ×Rm �→ R+
0 . We then convert the

distance to a similarity matrix with W = exp(−βA) where β is a scaling parameter and the

stochastic matrix is defined by T = D−1W . We can use the error measure min-Chi to determine

a locally optimal solution for the number of clusters. Given the matrix T , we can use our method

to determine a number of clusters denoted by k as follows:

The Mode Selection Algorithm

1. Choose kmin . . .kmax such that the optimal k could be in the interval,

3Transition states are vertices of the weighted graph, which have a similar grade of membership with

regard to different clusters.
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Figure 5: For a 3-clustering the PCCA method also needs 3 eigenvectors (see top figure, 1st eigenvector

is constant). If one uses only the 2nd eigenvector of T for a 3-clustering, important information about

membership is lost (see botom figure and the marked points)

2. Iterate from kmin . . .kmax and for each k-th trial, calculate χ (eq. 8) for cluster assignment

via the Inner Simplex algorithm and min-Chi as an indicator for the number of clusters,

3. Choose the maximum k for which min-Chi < Thresholds as the number of clusters.

Selections of the threshold depends on the value β which controls the perturbation from the

perfect block structure of T (see Figure 9). As a rule, when β is large, the threshold can be small

because T is almost block-diagonal.

We argue for the suitability of the Min-Chi indicator in the case of the overlapping clusters

because traditional internal indices are not applicable when the average distance within-cluster

is much larger than the distances between the centers. The minimum separation of the means is

the assumption used to define internal indices such as the Bouldin index which is not suitable

for a model of overlapping clusters. We compare the Min-Chi indicator with the Bouldin index

applied to the result from the Inner Simplex algorithm 3.1. We simulate two data sets distributed

as a mixture of bivariate Normal. In Fig. 6, we show the result for the mixture of four Normal

distributions with one of high variances and in Fig. 6 the results for the mixture of three standard

Normal distributions.

Given a partition into K clusters by a clustering algorithm, one first defines the measure of

within-to-between cluster spread for the kth cluster with the notation Rk = max
j �=k

e j+ek

m jk
, where ei is

the average distance within the ith cluster and mi j is the euclidean distance between the means.

The Bouldin index [18] for k is

DB(K) =
1

K
∑
k>1

Rk.

According to the Bouldin indicator, the number of clusters is k∗ such that

k∗ = argmin
kmin...kmax

DB(k).

11
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Figure 6: Simulated data (s1): mixture of three spherical gaussians, where the distance between the

means is greater than the variance.
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means does not hold.
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We calculate both the Min-Chi indicator and the Bouldin index for k = {2, . . . ,10} and illustrate

the result in Fig. 7 and 6.

4.1 Example: clustering of gene expression data

Microarrays can be used to quantify the expression of messenger RNA (mRNA) of a large set

of genes simultaneously. The experiments are repeated under different conditions, for differ-

ent subpopulations or for different tissues. For each experiment a high-dimensional vector, this

might be on the order of 30,000 dimensions for Humans, of per-gene expression levels is ob-

tained. Clearly, the number of experiments and hence the number of data points will typically

be substantially smaller. Possible goals of performing the experiments are inference of genetic

variations implicated in diseases or identification of disease sub-types.

It is well known, that for the same amount of data clustering is more difficult in high-

dimensional spaces. Even for a simple model such as a multi-variate Gaussian the number of

parameters describing is quadratic in the dimension of the input space for unconstrained covari-

ance matrices. Countering the need for more data to obtain reliable parameter estimates with

simplifying assumptions about the covariance structure — e.g., assuming spherical Gaussians

— might lead to poor representations of the data.

Reducing the dimension of the data prior to clustering is one classical way of tackling this

problem. One approach of dimensionality reduction is to simply pick the subset of genes that

is particularly meaningful. Of course, making the decision which subset to pick is difficult,

because they are combinatorially many. One such system following this approach, CLIFF [28],

is using information theory to rank genes, picking the ones with highest information gain. Our

work is similar to the work by [2] with explicit use of simplex structure to determine the number

of clusters and compute the assignment of samples to clusters based on their positions in the

simplex. The method is an unsupervised clustering because we do not pick the subset of genes

in advance. In practice, the approach should be combined with many cross-validation trials in

which the number of genes varies.

4.2 Result and Discussion

Our goal is to evaluate the method on its ability to estimate the number of clusters with respect to

(1) the simplex structure as a model for clustering in Section 2.2 and (2) the expert’s classification

on diseased subtypes and survival study.

Selection of k. Because selection of k depends on parameters β and the threshold on min-

Chi, we should perform a search over the parameter set to obtain multiple candidates for optimal

k. For example, the effect of scale β on the block-structure of T is shown in Figure 9. Given

our model, k = 2 is always possible unless the data set contains no clusters (k = 1) in which

case we need to inspect the entropy of χ to decide between partitioning into one or two clusters.

By plotting k vs. min-Chi as β increases (Figure 8), we observe that the threshold on min-Chi

decreases as β increases in all experiments. When β is small, there is more perturbation off

diagonal and β is large, we observe that certain blocks become more distinct, but that singletons

also occur.

Evaluation of cluster assignment χ . As we compute min-Chi from χ , for each possible

candidate for k we also obtain a grade of membership χ and use it to assign samples to a par-

ticular cluster simply by choosing the maximum Ci = argmax
k

χik. In theory if the projection of

all points lies perfectly within the convex hull of a standard k-simplex, one can use information

theory approach by applying a cut-off on the entropy of χ to decide for which cluster. However,

due to numerical errors, negative weights can occur and constrained optimization must be per-

formed but it is beyond the scope of this paper. In both experiments, we ignore the case when

infeasible solutions of χ occurs and regard negative weights as zero. After we decide on cluster
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Figure 8: Parameters and min-Chi. The behavior of min-Chi depends on β and selection of k depends

on the threshold of min-Chi values. In both figures, legends show min-Chi plots and their β .

membership, the difference between clusters and true classes is measured by all-pairs sensitivity

and specificity which are shown in Tables 1(a) and 2(a). Specificity is a fraction of true positives

over all positive classification: #T P
(#T P+#FP)

. Sensitivity is how many true positives identified over

all pairs of samples: #T P
(#TP+#FN) . A true positive (TP) counts when a pair of samples (si,s j) is

assigned to the same cluster and belongs to the same class. A false positive (FP) counts when

(si,s j) is assigned to the same cluster, but does not belong to the same class. A false negative

(FN) counts when (si,s j) is not assigned to the same cluster, but belongs to the same class.

To analyze correspondence with cancer subtypes, we evaluate our method on two gene ex-

pression data sets: Alizadeh [1] and Bittner [5], posing problems because groups of genes sharing

the same function tend to overlap and noise tends to be high. For preprocessing, we follow the

normalization procedure in [24], select only 2000 genes with the highest variance and use the

standard Euclidean distance measure, but first correct for the mean and variance of the data set.

The second study is to find the distinction of the survival rate of patients among clusters. We

use the same comparison method as in [3] on three data sets: AML, Breast cancer, DLBCL.

In this experiment, we select only 2000 genes with the highest variances, compute two clusters

using the Inner Simplex algorithm, assign patients based on the cut-off on χ (χ > 0.6) and com-

pare the difference in the distribution of survival time between the two clusters, using the Survival

package implemented in R. We show the result for three data sets in Figure 12, 13(a),and 13(b).

The p-value for each data sets and comparison with other clustering methods is summarized in

Table 3. More details on the three data sets and other methods are explained in [3]. Our result

suggests that even without a model for gene selection, the clusters discovered are significant with

respect to the survival model and the p-value should be lower with a model for gene selection.

5 Conclusion

In this paper we have shown the relation between Perron Cluster Cluster Analysis and spectral

clustering methods. Some changes of PCCA+ with regard to geometrical clustering have been

proposed, e.g. the minChi indicator for the number k of clusters. We have shown that this indi-

cator is valueable also for noisy data. It evaluates the deviation of some eigenvector data from

simplex structure and, therefore, it indicates the possibility of a “fuzzy” clustering, i.e. a clus-

tering with a certain number of almost characteristic functions. A simple linear mapping of the

eigenvector data has to be performed in order to compute these almost characteristic functions.

Therefore, the cluster algorithm is easy to implement and fast in practice. We have also shown,

that PCCA+ does not need strong assumptions like other spectral graph partitioning methods,
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Input Parameters Result

β λ2 Threshold k Sens. Spec.

1e-4 0.1075 — 1 — —

5e-4 0.533 0.0 2 1.0 0.48

0.3 4 0.58 0.58

0.4 5 0.58 0.79

1e-3 0.8635 0.0 2 1.0 0.48

0.15 4 0.89 0.54

0.2 5 0.56 0.61

(a) Number of clusters, Sens. & Spec.

Table 1: Alizadeh: Summary of parameters and their effect on the number of clusters k. The feature set

consists of 2000 genes used to compute the stochastic matrix in Fig. 9. The standard used to compute all-

pair sens. and spec. is the expert’s classification given 4 known subtypes. For β=1e-4, there is no possible

mapping onto any k-simplex for k > 1 which indicates that with the Euclidean distance at this scale the block

structure does not exist.

Input Parameters Result

β λ2 Threshold k Sens. Spec.

9e-4 0.4329 0.0 2 0.92 0.53

0.1 3 0.91 0.53

0.3 8 0.40 0.85

1e-3 0.5050 0.0 2 0.92 0.53

0.05 3 0.91 0.53

0.2 8 0.38 0.77

2e-3 0.9564 0.0 2 0.92 0.53

0.01 4 0.81 0.67

0.03 6 0.77 0.71

(a) Number of clusters, Sens. & Spec.

Table 2: Bittner: Summary of parameters and their effect on the number of clusters k. The feature set

consists of 2000 genes used to compute the stochastic matrix (not the same as in the Alizadeh’s set). The

standard used to compute all-pair sens. and spec. is the expert’s classification given 2 known subtypes.
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Figure 9: Alizadeh: Effect of different scales on the block structure. The scale parameter, β controls the

amount of perturbation from the block structure of T .
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Figure 10: χ of Alizadeh with scale parameter β = 5e− 4,1e− 3. In the figures, the gray scale maps to

the interval [0.0,1.0] and each row sums to 1.0.
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(b) DLBCL: Inner Simplex clustering

Figure 12: Comparison of the Survival Curves resulting from applying the Inner Simplex algorithm on

the DLBCL data and the actual clinical study. Our p-value is 0.0937.
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(b) Breast cancer: two clusters

Figure 13: Comparison of the Survival Curves resulting from applying the Inner Simplex algorithm on

AML and Breast cancer data sets.
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Method DLBCL AML Breast cancer

p-value p-value p-value

(1) Simplex 0.0937 0.056 0.000198

(2) Von Heydebreck et. al 0.645 n/a n/a

(3) Median Cut 0.0297 0.0487 0.00423

(4) Clustering Cox 0.00755 0.0309 0.000127

(5) Supervised PC 0.00124 0.00136 2.06e-4

(6) Clustering-PLS 0.00087 0.050 0.00123

(a) Survival analysis: comparison of the different methods on three data sets

Table 3: Comparison of the different methods applied to the DLBCL data of Rosenwald et al., the acute

myeloid leukemia (AML) and the breast cancer data of van’t Veer et al. The methods are (1) Inner Simplex

algorithm; (2) using the method of [24]; (3) assigning samples to a low-risk or high-risk group based on their

median survival time; (4) using 2-means clustering based on the genes with the largest Cox scores; (5) using

the supervised PCA method; (6) using 2-means clustering based on the genes with the largest PLS-corrected

Cox scores. Lower p-values from methods (3)-(6) is due to applying gene selections before clustering.

because it uses the full eigenvector information and not only signs or less than k eigenvectors. In

the examples we transformed the almost characteristic functions back into a crisp clustering. The

philosophy of robust Perron Cluster Analysis, however, tells us, that real transition states might

occur, which we can not assign to only one of the clusters. The meaning of this philosophy in

the field of gene expression may be a subject for further investigations.
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