
Hitotsubashi Journal of Economics 24 (1983) 137-141. C The Hitotsubashi Academy 

PERRON-FROBENlUS THEOREM ON NON-NEGATIVE 
SQUARE MATRICES : AN ELEMENTARY PROOF 

By KOTARO SUZUMURA* 

I. Introduction 

The classical Perron-Frobenius theorem on non-negative square matrices has been of 
indispensable value in many branches of economic theory. In this brief note we would like 

to put forward an elementary proof of this well-known theorem, which would be of pedagogi-

cal interest. 

For any two real n x n matrices A =(atj) and B=(bij) we denote 

A;~B if and only if a(j~bij (i, j= l, 2, . . ., n) ; 

A~: B if and only if A;~B and A~B; and 
A>B if and only if' aij>bt/ (i, j=1, 2, . . ., n) . 

In particular, a real n x n matrix A = (atj) is said to be positive or semi-positive or non-negative 

if and only if A > O or A~~O or A ~O holds true, respectively, where O denotes an n x n matrix, 

all of whose elements are zero. Inequalities between two real vectors with n components 

and the positivity, semi-positivity and non-negativity of a real vector with n components 

may be defined in the like manner. 

Let A =(a,,) be a real n x n matrix and consider the existence of a scalar I and a vector 

with n components x=(xt) other than O such that 

;,xt= ~atjxj (i=1, 2, . . ., n) (1) 
j-1 

holds true. Such a scalar I is called a characteristic root of A and a vector x a characteristic 

vector of A associated with 1. It is clear that I is a characteristic root of A if and only if it 

satisfies the characteristic equation of A, which is defined by 

A(1) = det (11-A) =0, (2) where I denotes the n x n identity matrix. A(1) being an n-th order polynomial with real co-

efficients, the characteristic root of A depends continuously on the elements of A. 

The problem of our concem is the special properties which a characteristic root and the 

associated characteristic vector have when the matrix A is non-negative. 

II. Positive Matrices 

The frst order of business is to pro~e the following: 

* Thanks are due to Professor Kazuhiko Tokoyama for his helpful comments. 
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Theorem 1 
Let A =(av) be a positive n x n matrix. Then: 

(a) A llas a positive characteristic value A(A) which is called the Frobenius root of A , 

(b) A characteristic vector of A associated with 1(A) is positive and is unique up to a scalar 

multiplication , and 

(c) Any characteristic root e' of A, which is complex in general, satisfies lcol~l(A), where 

lcol denotes the absolute value ofa,. 

Proojt Identically permuting columns and rows of A if necessary, we may assume 
without loss of generality that 

au~a22;~ . . . ;~a**>0 (3) holds true. We proceed by induction on the order n of A. 

If n = l, (1) becomes lxl =auxl with au>0. Then the assertions (a) and (b) of the 

theorem are clearly true. 

Assume next that the assertions (a) and (b) of the theorem are true if n =m. We now 

introduce two lemmas which are of use in our proof. 

Lemma 1 
Let B = (b,j) and C = (cu) be two positive n x n matrices such that B~ C holds true. Then 

any characteristic root a' of C satisfies la'l ~l(B). 

Proof: Let B' =(b'ij) be the transposition ofB, i,e. b'i,=bj,(i,j=1 2 , n). Since the 
', 

characteristic equation of B' is identical with that of B, we obtain 1(B') =1(B). Let x=(xf) 

be the characteristic vector of B' associated with 1(B) : 

1(B)xt= ~b'tlxJ, xt>0 (i= l, 2, . . ., n) (4) 
/-1 

Let (~' and y=(yt) be a characteristic root and an associated characteristic vector of C: 

a'yt=~c,jy/' y~0 (i=1,2, n) 
j'l 

Taking the absolute value of the both sides of (5) and letting yo =(lytD, we obtain: 

[a'lyto~ ~ c,jyjo (i=1, 2, . . ., n). (6) 
j*1 

Multiplying xi>0 to the i-th inequality in (6) and adding the outcome over i=1, 2, . . ., n, 

we obtain : 

o 1(B)~xty,o lcol ~･x,y,o~~ ~ ~xtcijyjo;~ ~ ~]x,bijyj = 

,*1 j.l ,=1 j=1 

where use is made of B;~ C>0, b't/ =b/t (i,j=1, 2, . . .,n) and (4). Since ~?-lx,yt0>0 is the 

case, we then obtain 1(B);~la'l, as desired. Il 

The use of this lemma in what follows is two-hold. Firstly, applying the lemma to a' = 

1(C), we see that B;~ C>0 entails 1(B) ~~ 1(C), so that the Frobenius root of a positive matrix 

is a non-decreasing function of its components. Secondly, applying the lemma to A =B= 
C>0, we see that the assertion (c) of the theorem is thereby guaranteed if the assertions (a) 

and (b) are true. Therefore we have only to show that the assertions (a) and (b) are valid 

for n =m + l, given the validity thereof for n =m. 
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Lemma 2 
Tlle Frobenius root 1(B) of a positive m x ,n matrix B satisfies 

max (~ bij);~l(B);~ min (~ bt')' (7] 
I~j~~ i-1 1;~i~~ i-l 

Proof: By definition of 1(B), we obtain 1(B)xt =~]l~_lbijxj and x(>0 for all i=1, 2, 

., . _ , , . . ., m, we obtain 1(B)= m Upon normalization ~,~-lxi = I and addition over i= 1 2 

~~ . ., m) and ~j~=1xj=1 are true, ~],~_lbi/xf=~]~_ (~]~ lbfj)xj Smce xj>0 (J 1 2 
Lj=1 
(7) obtains therefrom. I l 

Coming back to the proof of the theorem, we now take any scalar e >0 and consider 

the following system: 

~ (8) m) . lxt=~) (a,/+cat,~+1a~+1,j)xj (i= l, 2, . . ., 

j=1 

Since a,j + 6ai,~+1a~+1J > O is true for all i, j= l, 2,. . ., m, our induction hypothesis ensures the 

existence of a scalar h(6)>0 and a vector x(6) =(xt(e)) with xi(6)>0 for all i= 1, 2, . . ., m. 

Furthermore x(6) is unique up to a scalar multiplication, so that we may normalize it by 

requrrmg ~~ lx,(e) = 1. We may thereby claim the unique existence of x(e) in the relative 

interior of the fundamental m-simplex : 

~ S~= {x=(x() I xi~;O (i=1, 2, . . ., m) and ~] xi =1} . (9) 
i*1 

Define x~~1(e)>0 by 

~ x~+1(6) =6 ~ a~+1,ix/(6). (lO) j=1 

Then we obtain: 

~+1 ~ ~ atjxj(6) = ~] (aij + eat,~+1a~+1 j)xj(6) (1 l) 
j=1 j'l 

for all i=1, 2, . . ., m. Furthermore we have: 

~+1 
~] a~ + l, jxj(C) = (6-1 + a~+1,~+ 1)x~ + 1(6). (1 2) 
j=1 

In view of (8), (11) and (12), we are home if we may prove the unique existence of a scalar 

C*>0 such that 6*~1+a~+1,~+1 =1(O*) holds true. Note that a function e(C) =a-1+a~+1,~~1 

of 6 is a hyperbola which approaches + co and a*+1,~+1 as a tends to O and + oo, respectively, 

while 1(6) is a continuous non-decreasing function of 6 which starts from 1(O)>a~+1,~+1 by 

virtue of (3), Lemma I and Lamma 2. Therefore e(6) and 1(C) cross just once, which con-

cludes our proof. Il 

III. Non-Negative Matrices 

Consider now any non-negative n x n matrix A = (atj)' For 

we may define a positive n x n matrix A(e) =(a,/(e)) by 

any positive scalar e >0 
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{s = . aij(e) = af/ if atj>0 

ifaij O 
We may now invoke Theorem I to assert the existence of 1(A(e))>0 and the unique positive 

vector x(e)eS* which is associated with 1(A(e)). Noticing this fact we take a sequence of 

positrve scalars {E.} ""_1 such that e.>g.+1 for all and llm =0. We then obtain a sequ-
.-*e. 

ence {1(A(e.))1 "*= I and {x(e.)} ""= I such that 

1(A(e.))>0 and 0<x(e.)eS~ for all LJ=1, 2, . . . (13) 
an d 

1(A(s ))x((e ) ~ atj(E )x (g ) (1 1 2, . . ., n). (14) 
j'l 

S bemg compact we may choose an appropnate subsequence {e.(p)} p"-1 of {e.1 "~=1 

such that {x(e.(F))} F"=1 converges. Let x(O) =1imF_=x(e.(r))eS~. Since the Frobenius root 

of A depends continuously on the components of A, we obtain limp_=1(A(e.(p))) =1(A(limF_= 

e.(p))) =;.(A). It then follows from (13) and (14) that: 

1(A)~O, x(O)eS~, ;.(A)xi(O)= Eaijxj(O) (i=1, 2, n) (15) 
j.1 

Let co be any characteristic root of A. If it so happens that la'l>1(A) holds true, then 

there exists a sufficiently small e>0 such that lo'(a)1 > 1(A(e)) by continuity, where a'(e) is 

a characteristic root of A(e). But this contradicts Theorem 1(c). Therefore we obtain the 

following: 

Theorem 2 
Let A =(atj) be any non-negative n x n matrix. Then 

(a) A has a non-negative characteristic root ;.(A) ,' 

(b) A characteristic vector of A associated with 1(A) is semi-positive ,' and 

(c) For any characteristic root a' ofA, Icol<= ~(A) holds true. 

IV. Non-Negative Indecomposab/e Matrices 

Note that Theorem 2 asserts somewhat weaker properties for a wider class of non-nega-

tive square matrices than Theorem l, which is concerned only with positive square matrices. 

What is lost in the passage from Theorem I to Theorem 2 may be recovered, however, if a 

non-negative matrix in question is indecomposable in the sense specified below. 

Let A =(aij) be a non-negative n x n matrix. If there exists apartition (1, J) of {1, 2, . . ., 

n} such that 

InJ=c, IUJ= {1, 2, . . ., n} , I~c. J~c, a,j=0 for all (i,j)elxJ, 

then A is decomposable. Otherwise A is indecomposable. 

We may then assert the following proposition. As a matter offact, Theorem 3 subsumes 

Theorem I since any positive matrix is trivially nonnegative indecomposable matrix. 

Theorem 3 
Let A = (atj) be a non-negative indecomposable n x n matrix. Then 
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(a) A has a positive characteristic root ~(A) .' 

(b) A characteristic vector of A associated with ,(A) is positive and is unique up to a scalar 

multiplication; and 

(c) For any characteristic root a' oj'A, Ia'l~l(A) holds true. 

Proof: Thanks to Theorem 2, A has a characteristic root 1(A)>=0 with which a semi-

positive characteristic vector x is associated. 

Suppose that xi =0 for all iel and xi>0 for all iel' = {1, 2, . . ., n} ¥ I. It then follows 

that 

E aijxj =i(A)xt =0 for all i el (16) 
jel' 

holds true. Since xj>0 for alljel', we obtain aij=0 for all (i, j)elx I', which is a con-

tradiction unless I=c. Therefore x>0must be the case. 

If ;.(A) =0 is true, then ~]j=1atjxj =0 for all i= l, 2, . . ., n. Coupled with x>0 we then 

obtain A =0, which contradicts indecomposability. Therefore ).(A)>0 must be the case. 

Finally, suppose that there are two characteristic vectors x and y which associate with 

;.(A). Since x, y>0 is true, v =minl<=i<=~(xi/yi) is well-defined. Let z =x-vy. Then z is 

non-negative with at least one zero component. Assume that z is non-zero. We are assured 

that 

~ atjzj = ~ aij(xj - ~yj) = A(A)(xi - vyt) = 1(A)zt 

i*1 j=1 
, , , n, so that z qualifies as a characteristic vector associated with holds true for all i=1 2 . . . 

;,(A). But this is a contradiction as z contains at least one zero component. Therefore z=0, 

i.e. x=vy must be the case, which completes the proof of the theorem. Il 
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