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I. 1. Introduction. We study a differentiable manifold embedded in Eu-
clidean space and invariant under a differentiable flow. It is known that even
if the manifold is analytic and asymptotically stable, a C"-close analytic flow
may possess no diffeomorphic invariant manifold [4], [7], [11], [12], [16]. Even
when a diffeomorphic invariant manifold persists under perturbation, the
new invariant manifold is, in general, less smooth than the original manifold.
This loss of smoothness may be thought of as a shock phenomenon associated
with attracting limit sets (Moser, [16, pages 305-308]).

Our main results are sufficient conditions for persistence of a diffeomorphic
invariant manifold under perturbation of the flow, and a careful study of the
smoothness of the perturbed manifold. The conditions admit a simple geometric
interpretation. For example, the C' perturbation theorem for asymptotically
stable invariant manifolds requires that neighborhoods of points on the in-
variant manifold are flattened out in the direction of the manifold as they are
carried forward by the flow. Figure 1 shows the flow near a hyperbolic stationary
point of an ordinary differential equation. The unstable manifold M is invariant
and asymptotically stable, in an appropriate sense. As the flow carries P to
Q it takes the neighborhood U to the flattened neighborhood V. Hence the
unstable manifold M satisfies our conditions. If all backward limit sets of the
unperturbed flow are stationary points and closed orbits, the conditions may
be verified in terms of eigenvalues and Floquet multipliers. It never is necessary
to compare eigenvalues or Floquet multipliers of one orbit with those of another
orbit. This is an improvement over Sacker’s important work on invariant
manifolds [20], [21]. See Sacker’s example 7.4 [21, pages 748-750].

A compact manifold with boundary is called overflowing invariant under
a vector field if the backward orbit through any point in the manifold is con-
tained in the manifold and the field points strictly outward on the boundary.
Overflowing invariant manifolds oceur as local stable and unstable manifolds.
They also may be used to describe regions within an invariant manifold where
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Figure 1

loss of smoothness occurs. Our theory is applicable to overflowing invariant
manifolds as well as compact invariant manifolds. The overflowing case generally
requires more stringent hypotheses than the compact case, so the two cases
are treated separately.

Our sufficient conditions are formulated in terms of generalized Lyapunov
type numbers. These are real valued functions on an invariant manifold, mea-
suring asymptotic properties of the flow. The type numbers are defined and
studied in §II. Strong uniform conditions follow from hypotheses about the
asymptotie properties of the flow. These conditions are stated as the Uniformity
Lemma, which may be of some independent interest.

Sections III and IV are concerned with the perturbation problem for in-
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variant manifolds. In §III the perturbation theorem for overflowing invariant
manifolds is proved in full detail, except for some results of Whitney [22] on
smoothing of bundles. The invariant manifold is required to be asymptotically
stable. Of course asymptotic stability must be formulated in a way which
makes sense for overflowing invariant manifolds. In §IV we study compact
manifolds, replacing asymptotic stability with a hyperbolic splitting of the
normal bundle. The proof of the perturbation theorem is similar to the proof
for overflowing invariant manifolds. Using a trick, we are able to reduce part
of the proof to results known from the previous case.

In §V we study stable and unstable manifolds. It makes sense to talk of
the unstable manifold of an overflowing invariant manifold, so we express the
main theorem in these terms. Then we tie this in with the hyperbolic splittings
of §IV. Section VI deals with invariant families of planes transversal to an
invariant manifold. These may be useful in studying the low near the manifold.

A compact manifold with boundary M = M U dM is overflowing invariant
under a diffeomorphism F if M C F(M). Throughout this paper we can re-
place the continuous variable ¢ by a discrete variable without substantially
altering any construction. With this modification all our results hold for a
manifold invariant or overflowing invariant under a diffeomorphism.

Our entire study may be extended to invariant submanifolds of an arbitrary
differentiable manifold. Only the approximation of sub-bundles of a tangent
bundle requires modification.

The author wishes to thank Professor Jiirgen Moser for continuous guidance
over a period of several years. Conversations with Howard Jacobowitz, Charles
Conley and Robert Sacker helped in developing the ideas of this paper.

1. 2. An example.

Consider a field X given as follows in cylindrical coordinates on R?,

i = a(r),
6 = b(),
Z = c(re.
Let
a(r) = ar for r < 1/3, where o <0
= g,(r — 1) for r> 2/3, where a, >0
and
alr) =0 onlyat r=0 and r = 1.
Let

b(r) = 2r npear r =1

0 for r<1/2 or r> 2.
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This field has a stationary point at r = 0 and a closed orbit at » = 1. The
plane z = 0 is invariant. Figure 2 shows the flow in the plane z = 0.

The closed dise D = {(r, §,2): 0 < r £ 2, 2 = 0} is overflowing invariant
under X. Let k& be any integer greater than or equal to 1. It will follow from
Theorem 1 that C* fields C" close to X possess overflowing invariant manifolds
C* diffeomorphic to D if ¢(0) < 0, ¢(1) < 0 and ¢(0) < ka, . The first two in-
equalities are asymptotic stability conditions. ¢(1) < 0 guarantees that

{(r,8,2):r = 1,2 = 0}

is a hyperbolic closed orbit. It is well known that the unstable manifold of
a hyperbolic closed orbit remains smooth under perturbation. Hence D perturbs
smoothly except possibly near r = 0. The condition ¢(0) < ka, means that
at r = 0 the attraction to D in the normal direction is more than k times stronger
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Figure 3

than the attraction within D to r = 0. As long as k = 1 the flow in (v, 2) co-
ordinates appears as in Figure 3. All but two orbits approach r = 0 tangent
to D, and this is why the unstable manifold of the closed orbit remains smooth
at r = 0. Note that D is asymptotically stable even if ¢(r) > 0 for some values
of r other than r = 0 and r = 1.

I. 3. Background. The geometric idea behind our proof of the persistence
of invariant manifolds dates back at least to 1901. In that year Hadamard
published a geometric construction for the unstable manifold of a hyperbolie
fixed point of a diffeomorphism of the plane [3]. Hadamard constructed the
unstable manifold as the limit of a sequence of curves. Some initial curve is
chosen, and its successive images under the diffeomorphism form the sequence.
These curves converge to the unstable manifold in an appropriate sense.

In 1950 Levinson used a similar approach to construct certain two dimensional
tori occurring in the study of weakly coupled oscillators [13]. In this problem
the difficulties associated with attracting limit sets are hidden because the
unperturbed flow is parallel flow on the torus. Diliberto and his students de-
veloped a theory of periodie surfaces extending Levinson’s work. See Hufford
[6], Kyner [11], and Marcus [14]. See also Diliberto [2].

MeCarthy was the first to allow attracting limit sets within the invariant
manifold. He showed that if orbits within the invariant manifold come together
slower than points near the invariant manifold come toward it, then an in-
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variant manifold persists under perturbation [15]. He also showed why cusps
may develop if this condition is violated. We follow Hale’s exposition [4, pages
239, 251].

Consider an asymptotically stable invariant circle as in Figure 4. Within
the circle there are two stationary points P and Q. P is an attracting point.
The rate of approach in the direction tangent to the circle is greater than the

Figure 4
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rate of approach in the direction normal to the circle. @ is a hyperbolic point.
The invariant cirele, except for P, is the unstable manifold of @ and hence
perturbs smoothly. At P a cusp may develop under perturbation, as indicated
by the dotted curve.

Figure 5 shows a similar situation, with the normal rate of approach greater

Fiagure 5
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than the tangential rate of approach. In this case the flow smooths out any
deviations near P, so a differentiable invariant circle persists. In the third
case, when the normal and tangential rates of approach are equal, a spiral may
develop at P (Sacker [21, pages T47-748]).

Jarnik and Kurzweil [7] have constructed a more pathological example.
An asymptotically stable invariant plane changes under perturbation to an
invariant set which is not even a topological 2-manifold.

MeCarthy’s work has been extended by Kyner [12], Kurzweil [10], and
Nyemark [18] and [19]. They all require hypotheses uniformly over the in-
variant manifold, rather than on limit sets. No attempt is made to control
higher derivatives. Kupka announced some results dealing with higher de-
rivatives [9].

The higher derivatives of invariant manifolds may be studied using partial
differential equations. Manifolds near the unperturbed invariant manifold
correspond to normal vector fields on the original manifold. Invariance under
the perturbed field is characterized by a first order partial differential equation.
Moser [16] studied solutions of such partial differential equations using quadratic
convergence techniques. Sacker [20] found better smoothness results using
elliptic regularization—adding a small second order operator to form an elliptic
second order equation.

The studies mentioned so far are not fully satisfactory because the hypotheses
involve a Riemannian metric. Persistence of an invariant manifold does not
depend on a Riemannian metric, so the hypotheses of a reasonable perturbation
theorem should be invariantly defined. Recently Sacker introduced generalized
Lyapunov type members to describe the perturbation theorem [21]. The type
numbers are asymptotic rates, and do not depend on the choice of a metric.
Sacker uses the flow to construct a preferred metric in which it is easy to estimate
finitely many derivatives. This is similar to Moser’s introduction of a preferred
metric in the study of Anosov systems [17].

Sacker’s type numbers are not quite appropriate. To wverify his hypotheses
even in simple cases it may be necessary to compare eigenvalues or Floquet
multipliers of different orbits. Also, the type numbers cannot be defined for
overflowing invariant manifolds.

Hirsch, Pugh, and Shub [5] have announced extensions of Sacker’s results
to certain subsets of a compact invariant manifold. This includes a perturbation
theorem for compact invariant manifolds. As in Sacker’s work, the hypotheses
of their perturbation theorem may require comparison of eigenvalues or Floquet
multipliers of different orbits.

L. 4. Notation. We gather here some of the notations used repeatedly below.
R* denotes the n-dimensional Euclidean space. TR" is the tangent space of
R". M is a differentiable manifold embedded in R"; TM is its tangent space.
We use a single vertical bar to denote restriction. Thus TM C TR"|M. The
vertical bar also is used to restrict the domain of definition of functions. All
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bundles which appear are made up of vectors in TR". A manifold M C R" is
called properly embedded if each point in M has a neighborhood U and co-
ordinates (x, y) for U, such that M N\ U = {y = 0}.

The symbol * denotes differentiation with respect to time; D denotes differ-
entiation with respect to space variables. X is a vector field on R". The flow
F*(x) is z(s), where £(f) = X(z(¢)) and 2(0) = z. F’(z) may not be defined for
all se R and all z e R".

A manifold with boundary M = M \U M is overflowing invariant under
a vector field X on R" if X|M is tangent to M and X points strictly outward
on dM. This means that X never is tangent to 9/.

L(E, F) denotes the space of linear maps from a vector space E to a vector
space F. L*(E, F) = L(E, L *(E, F)) is the space of p-linear maps from E
to F. C°(8, T) denotes the space of continuous maps between topological spaces
Sand T.

II. 1. Generalized Lyapunov type numbers, definitions and properties. Our
main theorems are phrased in terms of the first order asymptotic behavior
of the flow. This means that we are concerned with the action of the flow on
tangent and normal vectors of the invariant manifold. The crucial observation
in the proof of each theorem is that asymptotic hypotheses about this action
lead to uniform conclusions. This is the content of the Uniformity Lemma of
the following section.

Let X be a C* vector field on R" with flow F*. Let M = M \U dM be a com-
pact, connected, C* manifold with boundary, properly embedded in R". Suppose
M is invariant under X in the overflowing sense. That is, backward orbits
starting in M remain in M, and X points strictly outward on 9J. From the
compactness of M it follows that F'|M exists for all ¢ less than zero. By a change
of time scale we may guarantee that F*|M exists for all ¢ < 3. Let M, = F'(M)
and M, = F*(M). M, and M, are properly embedded manifolds, invariant
under X in the overflowing sense.

Give R" its usual metric. This splits TR"|M, into TM. @ N, where N is
the bundle of vectors normal to TM, . Let =: TR"|M, — N be the orthogonal
projection. Let A‘(m) = D(F~'|M,)(m) and B'(m) = =-DF'(F *(m)). These
operators act on vectors of T'M, and N, respectively, although we may oc-
casionally suppose B* acts on all of TR"|M, . Extending B* to TR"|M, does not
change its norm because 7'M, lies in the kernel of B".

Let m be any point in M, . Consider any non-zero vectors v, ¢ T,,M, and
wo e N,, . Let v_, = DF *(m)-v, and w_, = «DF '(m)-w, . We have v_, =
At (m)v, and B*(m)w, = wDF*(F~*(m))=DF~*(m)w, = 7w, = w, . See Figure 6.

For the C" perturbation theorem we will require that ||w,||/||w-.|| — 0 and
{|lwoll/llwoll"}/ {fw=c]|/||v=c||"} — 0 as ¢ — . No uniformity is required in
the convergence to the limits. The first condition may be interpreted as as-
ymptotic stability along the orbit through m. For » = 1 the second condition
means that neighborhoods of points on the backward orbit through m are
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flattened as they are carried forward to m by the action of the flow. See the
rectangles in Figure 6. For » > 1 the second condition requires rapid flattening
of neighborhoods.

It is convenient to phrase the limit conditions above quantitatively, in terms
of rates of convergence. Define

v(m) = inf {a: (||wo||/|lw-.]])/a" — 0 as ¢ — o for all w, e N,,}.
If v(m) < 1for all m ¢ M define
o(m) = inf {s: ([fwoll*/lvol[)/(Ulw-c[[*/[lo-]D >0  ast— e
for all v, e T,,M and w, e N,.}.

v and ¢ are called generalized Lyapunov type numbers.

For many purposes it is convenient to phrase the definitions of » and ¢ in
more analytical terms. It is not hard to see that the following are equivalent
definitions.

y(m) = inf {a : ||B'(m)]|/a’' -0 as t—> =}
= Tim {|B*(m)|]"*
o(m) = inf {s : [[A*(m)|] |[B*(m)|[' =0 as t— o}

_ T Jog [|A°(m)]]
=2 Zlog [[B(m]

Note that B*(F~"(m))-B"(m) = B'*"(m). B"(m) is a bounded invertible oper-
ator. From this it follows that »(F~*(m)) = »(m). That is, » is constant on orbits.
Similarly, ¢ is constant on orbits. Thus both »(m) and ¢(m) depend only on the
flow near the backward limit set of the orbit through m.

DF" satisfies the variational equation

g—t (DF*(m)) = DX(F'(m))- DF*(m).
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But DX is bounded on the compact set M so DF’_ has exponential growth.
From this it follows that » and ¢ are bounded on M. In general » and ¢ are
neither continuous nor semicontinuous.

Proposition 1. v(m) does not depend on the choice of a metric on TR"|M,
If v(m) < 1, o(m) also is independent of the metric.

Proof. We follow Sacker [21, pages 709-710)]. Suppose (, )’ is another metrie
on TR", with norm || ||/, orthogonal projection =’ and type numbers »' and ¢’.
Any two norms are uniformly equivalent over the compact set M, . This means
that there is a constant ¢ such that (1/¢) ol = |lolll = ¢ ||p|]] for any
ve TR™ | M, . Thus for all m ¢ M, ,

24| = Al = & (|45l

We claim that (1/¢) ||7-v|| = |[x-v||' £ ¢ ||=-v]| for all v ¢ TR"|M, . For

any v e TR" | M, there is a vector w ¢ TM, such that 7 = v — w. But

[le" o[l = inf [l — 2" = |lp — w||’
zeTM,
scll—wl| =cllroll.

The opposite inequality is proved in the same way, giving
1
2Bl = 1B m|l = ¢ |IB'(m)]],

where B’ (m) = «'DF'(F~*(m)). Thus ||B'(m)||/a' — 0 if and only if
[|B"(m)||'/a' — 0, so v(m) = v'(m).
Similarly ||A*(m)]| ||B'(m)]|* — 0 if and only if [|A*(m)||’ ||B’*(m)||" — 0, so
o(m) = o' (m).

Proposition 1 shows that the type numbers depend only on X and the differ-
entiable structure of M and R". This is important if we want to generalize
our theory to invariant manifolds embedded in arbitrary differentiable manifolds.

II. 2. Uniformity Lemma. 'The Uniformity Lemma is the key to our study of
invariant manifolds. Aecording to this lemma, hypotheses about the asymptotic
behavior of a flow lead to uniform conclusions about the flow. Sacker used
similar results in his construction of a preferred metric. This was hidden in a
rather technical construction [21, pages 731-737], and it seems to have received
insufficient attention. OQur Uniformity Lemma is stronger than Sacker’s results,
mostly because we do not require the type numbers to be semi-continuous.
The proof, however, is essentially the same.

Uniformity Lemma

1) Suppose ||B*(m)||/a' — 0 ast—  for all me M, . Then there are constants
& < a and c such that ||B*(m)|| < ¢ &’ for allme M, and ¢ = 0.
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2) Under the hypotheses of 1), suppose also that a < 1 and [|A*(m)|| ||B'(m)||*
—~0ast— o for all me M, . Then there are constants § < s and C such that
|4 m)|| ||B*m)||* < C for all me M, and t = 0.

3) If vm) < a = 1 and o(m) < s for all m e M, then ||B'(m)|| — 0
and ||A'(m)]] ||B*(m)||* — 0 as t — « uniformly for me M, .

4) v and o attain their suprema on M.

Proof. 3) is a direct consequence of 1) and 2). Suppose 1) holds and » does
not attain its supremum on M. Then let ¢ = sup ». By 1) thereisan éd < a
such that ||B*(m)|| < c¢d'. Then for any o', ¢ < o’ < a, ||B'(m)||/a’* — 0, so
v(m) £ o', a contradiction. In a similar manner we use 2) to prove that ¢ attains
its maxima.

Assume the hypotheses of 1) and 2). (It will be clear from the proof that
1) does not depend on the hypotheses of 2).) Let ¢ and s be given ag in 1) and 2).
For each m & M, there is a number T(m) such that

HBT(m)(m)” < aT(m),
HAT™ @m)|] |[B™™ (m)]]* < 1.
For each m e M, there is a neighborhood U(m) of m in M, such that for all
m’ e U(m),
IB™(m)]| < a7,
HAT™ @m)]] |B"™ (m))]* < 1.
M, is compact, so we may choose finitely many points m, , -+ , my such that
M, CUm)\J - \J Ulmy). Choose @ < a and § < s such that for m’ e U(m,)
BT )| < "=,

[[A7 () || 1B () < 1.

Let m ¢ M, be given. We choose a (non-unique) sequence of integers (1),
£(2), -+, as follows. Choose (1) such that m ¢ U(m.,). I 2(1), --- , i(§) have
been chosen let 7(j) = T{m;u,) + -+ + T{mi). Choose i(j + 1) such that
F—’(i)(m) & U(m.-(,u,l)).

Let ¢t > O be given. It is possible to write ¢ = (j) + r for some j, where
0 £ r < max T(m,).

HBt(m)H = HBr(F—r(i)(m))_BT(me(i))(F—f(i—l)(m))_“BT(mi(n))(m)”
< ”Br” dT(mi(s‘)) dT(mi(n)
< cdf,

where ¢ = sup ||B(m)||/d" and the supremum is taken over all m ¢ M, and
all7, 0 = r < max T(m,).

In a similar fashion we estimate ||4°(m)|| ||B*(m)||’. In place of the powers
of 4 we get 1; the constant is C = sup |[[A"(m)|| || B"(m)||}, where the supremum
is taken over all me M, and 0 < r < max T(m,).
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III. 1. Theorem 1: Construction of the invariant manifold.

Theorem 1. Let X be a C" vector fieldon R*,r = 1. Let M = M \J dM be a
C™ compact, connected manifold with boundary, properly embedded in R" and
overflowing tnvariant under X. Suppose v(m) < 1 and o(m) < 1/r for all me M.
Then for any C" vector field Y in some C* neighborhood of X there is a manifold
M overflowing tnvariant under Y and C" diffeomorphic to M.

One might hope to represent M, as a section of the normal bundle N in-
troduced in II.1. This is not fine enough, as N is of class C"™*. To control the
r-th derivative we jiggle N slightly, retaining transversality to TM. For the
proofs of the next two propositions see Whitney [22, Lemma 23]. &k = n — dim M
is the fiber dimension of N.

Proposition 2. There is a C” k-dimenstonal bundle N’ C TR"|M, transversal
to TM, .

Elements of N’ are pairs (m, v), where m e M, is a point in B™ and v is a tangent
vector to R" at m, transversal to TM, . Identifying TR" to R" in the usual
fashion, we define ¢: N’ — R", o(m, v) = m - v,

Proposition 3. Let K C M, be any compact subset. ¢ is a C" diffeomorphism
from a neighborhood of the zero section of N’ to a neighborhood of K in R”.

We use N’ and ¢ to define local coordinates in R™ near M. Each point in M
has a neighborhood in M, on which N’ possesses a C" orthonormal basis. Cover
M by finitely many such neighborhoods, and call them U, ¢ = 1, --- | 5. With-
out loss of generality we may assume there are C” diffeomorphisms o, : US — ©°
where ©° is the dise about the origin of radius 6 with the same dimension as M.
Let ©,j = 1, - -+, 5 denote the concentric dises of radius §, and Ul = o7*(D%).
We may assume further that 4 C \U:_, Ui foreachj = 1, --- , 6.

N’ inherits the norm of TR". Let N/ = {(m, v) e N': |p]| < €}. It follows
from Proposition 3 that there is an ¢ > 0 such that for 0 < ¢ < ¢ , ¢ maps
N | \ Ui, US diffeomorphically onto a neighborhood of \_Ji., U? in R*. We
generally will not distinguish between N7 | \_!., U? and this neighborhood.

For each 7 choose a C" orthonormal basis for N’ | US . This is possible by
the choice of US . Define 7; : N’ | U — R* by 7.(m, v) = vector of coordinates
of v with respect to the chosen basis at m. Because the basis is orthonormal we
have ||r;(m, v)|| = ||v||. Now define o; X 7, : N’ | U} — R X R* by ¢: X
7i(m, v) = (o:(m), 7:(m, v)). Clearly o; X 7, is a (" diffeomorphism. If € is small
enough N/ | U? is a neighborhood of Uj in R". Thus ¢; X 7, specifies a local
coordinate system in R" near part of M. Points in M are characterized by
vanishing of the second component. This completes our construction of a local
coordinate system near M.

In our construction of the manifold My we have to measure flows and their
derivatives in local coordinates. The derivatives along fibers of N’ don’t give
much trouble because we use an orthonormal basis for N’ in defining each =, .
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Derivatives along M bring in factors Do; and Ds;'. As long as we consider
compact sets these factors remain bounded. There is a constant ¢ such that
for all 4, and all m e U3, ||Do;(m)|| < ¢ and |[|Do;"(s:(m))|] < c.

Let =’ denote the projection on N’ complementary to TM,. For any
veTR" | M,,7ve N andv — 7#'ve TM, . Let F* denote the flow of X. Recall
from II.1 that A'(m) = D(F ‘| M,)(m) and B'(m) = «DF'(F~'(m)). Let
B'*(m) = #/DF*(F~*(m)). As in the proof that » does not depend on the metric
of TR" we see that ||B’*(m)||/||B'(m)]| is uniformly bounded for all £ = 0 and
all m e \ U, US. Hence by the Uniformity Lemma, ||B’*(m)|]| — 0 and
At m)||" || Bt (m)|| — 0, uniformly for m e\, U3 ast— «. For large enough T

1B (m)|] < 1/4,
AT 1B m)ll < 1/4

for all m e \J:_, US . Choose any T > 1 such that these inequalities hold, and
keep T fixed for the remainder of this construction. Note that if 0 < k = r,

AT 1B (m)]| < 1/4.

The condition ||B’"|| < 1/4 means that to first order, F* decreases lengths
by at least a factor 4. Hence if € is chosen small enough,

"INUIFTUT - N Us
Denote the flow of any C' field Y by Fy . For all ¥ in some C" neighborhood of X,
FY(N.|F"US) C N US.
Define
e, v) = oiF (o X )7 (2, ¥)
gii@, v) = 7 F (o: X 77 (2, 9)
fil@, ) = o:iFy(e: X 7)7'(2, ¥)
gii@, ¥) = 7 Fy(ec X 7)7'(x, v).
These are the local expressions for F” and Fy . They are defined for
@ 9) e (0: X rINI| U N F'U

g93;(x, 0) = 0 because M is invariant under X. Denote partial differentiation
with respect to z and y by Dy and D, . {D,f};(x, 0)} ™" is the local representative
of A at F™(s7'(%)). Dagi;(x, 0) is the local representative of B” at F7o7'(z).
Hence for (z, y) e {o: X )N/ | UNF"U%and 0 < &k < 7,

D2, (x, 0)} 7 H* | Dagl; (z, 0)]] < 1/4,
Hg?i(x) Nl < ¢/3.

Let 5 > 0 be given. If ¢ is small enough and Y is C* close enough to X, we have,



MANIFOLDS FOR FLOWS 207

forall (,y) e (o; X )N/ | U'NF"U%and 0 £ k < 7,
IH{Dufsiw, 1)} 1" NDagii(, I < 1/2,
Hgaix, wIl <
[1Digii(e, P < 9.

The last inequality comes from ¢?%;(z, 0) = 0. The norms of all first partial
derivatives of f2,, g%, fii, gii, as well as (Dif;)™", are bounded on
(c: X )N | Ut N\ F7'UL, for all 4, j, say by Q.

Let S denote the space of sections of N7 | \_U:., U? . Elements of § are maps
u: U3=1 U? — N’ taking each point m into the fiber over m. Corresponding
to any u € S there are coordinate functions u,; : ©* — R"* defined by u.0; = 7.u.
Define

: — Hui(x) — ui(x’)U
Lip u m?x zius% =]
if this exists. Let S; = {ue S: Lip u = §}.

The image in B* of any u £ S; is a Lipschitz continuous manifold. In co-
ordinates near U? the image is the graph of u, , so we call it graph u. Suppose
Y is a vector field near X with flow Fy . A necessary condition for graph u to
be overflowing invariant under Y is, for all ¢ > 0, graph v C Fj (graph u).
We define below a graph transform G: S; — S; associated with Y. G has the
property that Gu = u if and only if graph v C F% (graph u). We show that G
has a unique fixed point u, and that for all £ > 0, graph v C F; (graph w).
Later we show that v is differentiable. Then it is clear that the graph of u | M
is overflowing invariant under Y.

We need the following version of the Implicit Function Theorem, which we
use without proof. It may be proved by using the contraction mapping theorem,
or by noting that this is one step in the usual proof of the Implicit Function
Theorem. (See Dieudonné [1, pages 259-266].)

’

Implicit Function Theorem. Let i(x) = x denole the inclusion map from
D* into R**. There is a neighborhood W of 4 in the Lipschitz topology for maps
from D* into B*™*, such that for all o e W,

1) pisl—1

2) D C (D C () C D°.

Corollary. Proposition 4. Let p: N — M, denote the fiber projection. Define

o(m) = pFIuF~"(m). There is a C" neighborhood ¥ of X and a & > 0 such that
forYeXandueS;,

1) ¢(m) is defined for all me\J U},
2) UUS Co(UTU;) Co(UU)CVYUT,
3) Each point in \J U3 1s the ¢ émage of only one point in \J U? .

Proof. T > 1,s0ifmeJ U C M,,F"m)e M C\U U3, and F " (m)
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lies in the domain of definition of u. ||[u(F~"(m)|| < e so ||[Fyu(F~"(m))|| < e
so pFyuF~T(m) is defined. 2) follows directly from the Implicit Function
Theorem. If ¥ and § are small enough and ¢(m) e U?, then m ¢ U% and uniqueness
also follows from the Implicit Function Theorem.

From Proposition 4 we see that Fy induces a map G: 8; — S defined in
coordinates by (Gu);(f:;(x, v.(®))) = g:;(®, u:(z)). We show below that ¢ maps
S; into S; , that G is a contraction in the C° norm, and that the graph of the
unique fixed point of @ is a C" manifold overflowing invariant under Y.

Proposition 5. G: S; — S; .

Proof. It is sufficient to show that if w e S; , [[(Gu);(¢¥) — (Gu);E)|| =
5 |l — || for all £, ¢ ¢ D It even is sufficient to show, for each ¢ that this
inequality holds for all £ in some neighborhood of ¢ Then for any &, £ ¢ °
the segment joining & to ¢ lies in D*® and is covered by finitely many
such neighborhoods.

Take any m, say m ¢ Us . By Proposition 4 there is a point m_ such that
pFhu(m_) = m, say with m_e U? . Let x = o,(m_) and 2’ ¢ D°, near x. Looking
at Gu in local coordinates, we have

(Gu);(®) = guilx, ui(x))

and
(Gw;() = g, ui@"),
where
£ = filx, u@)
and

g = fi(a', us2)).
We introduce some new notation:
A = D1gu(ﬁ3, uz(x));
B = Dyg,(z, ui(x)),
C = D\f(x, u:(2)),
E = D,f(z, u(x)).

A, B, C, E depend on z, %, j, w and Y. All of |[A]], ||Bl}, ||C]], [IC”*|| and ||E||
are bounded by Q. Furthermore, ||4|| < #, ||B]| < 1/2, ||B]] lICTY|| < 1/2.
We use the “little o’ notation; o(s) is any term such that as s — 0, o(s)/s — 0.
These terms oceur when we use derivatives to approximate functions. Similarly
0O(s) is any term such that O(s) — 0 as s — 0.

llg — & [1fis, wa(@)) — fue’, wi@))|]

z [lfii(w, wi@) — 0", w@)|| — [fui@’, wi@) — fii(@’, w@NI
HCTI™ e — 2"l + o(lle — 2"|D) — NIE]] Hui) — ui@)]|
He™ ™ @@ — 28Q°) |lw — 2']].

v

v
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‘We have chosen ||z — /|| small enough so that [o(J|z — &'||)] < 8Q ||z — &'||
(G — G| = |lgui(®, u@) — g4 @', ulz))|]

HAll llz = 2'[| + |IB]] 8 |le — 2’|} + o({lz — 2’[])
< @0+ 3 |1B|D llz — 2'||

s @+ o 181D iS50 1l = ¢l

We have taken ||z — z’|| small enough so that |o(]lz — 2'||)| < 9 ||z — ||

§ is chosen so small that 1 — 26Q® > 3/4. 5 is chosen less than §/8Q. Then the
factor multiplying ||¢ — &'|| is less than §, so Gue S; .

IIA

Proposition 6. @G is a contraction on S; in C° norm.

Proof. Let u, w' ¢ 8; . Let £ e o;U? be given. Choose ¢, z and z’ such that
£ = [, wi@) = £, wi@)).

1(Gwi® — @)@l = llgss(@, ui(@)) — g:@", u:(@))]|
= Al llz — &[] + |1BI] [lu(@) — wi@)]]
+ 1B [lu:@)" — wi@)|] + o(lle — 2’|}
= @0+ Q) llo — a’|[ + 11BI] llus — ul]lo.

|l — «'|| is small if ¢ is small. We have used this to estimate the o(|[z — 2'||)
term. It remains to estimate || — z'|] in terms of ||ju — %', .

[[fei(, i) — fur@’s we@)|] = [IC7H]7 [le — 2'|] — o(f]z — 2’[])
z 3 IC7 e — 2]
[Ifiie’, ui(e”)) — ful@’, w@)|] = Q5 ||z — #'|| + [lus — uillo).

Noting that f:;(x, u:(z)) = f:;(x, ui{z')) we combine these estimates to find
|l — 2’| = constant-|lu; — uf]lo. Taking & and » small enough we find
HGu — Gu'|ly = 8/4 |lu — u||o . (Note that the norm of a section may be

measured in N or in coordinates because the coordinates r; are defined in terms
of orthonormal bases.)

Corollary. There is a unique u & S such that Fy (graph w) C graph u for
all t > 0. Furthermore, ue S; .

Proof. 8 is closed under C° convergence so ( has a unique fixed point in S; .
Call this 4. Uniqueness in S follows from the proof of Proposition 6, noting
that only one of 4 and #' is required to be Lipschitz continuous. Arguing as
in Proposition 4, for small £ > 0, Fy (graph u) N\ N, | U U? is the graph of
an element u, £ S; . Graph «w C F5 (graph u) so Fy (graph u) C F{F% (graphu) =
FTF} (graph u). By Proposition 6, 4, = u.



210 NEIL FENICHEL

IIT. 2. Smoothness of the invariant manifold. Now u denotes the invariant
section of the preceding corollary. A, B, C, E are defined as in Proposition 5,
using this u. In coordinates u is represented by s maps u, : D* — R*. If u e C*,
Du; assigns to each point in ©° a linear map from R"™* to R*. Thus Du is repre-
sented by s maps v; ¢ C°(D°, L(R"™*, R")). The candidates for Du are of the
formov = (v, -+, ) e [C(D°, LR, R*))]’. If v is such an s-tuple define

bl = max sup jo(z)]
if this exists, where ||v;(2)|| is the operator norm.
In coordinates u satisfies the functional equations u;(¢) = g¢.;(x, u.(z)),

where f;;(x, u.(x)) = & Differentiate these formally; v must satisfy v; = H, v, ,
where

H;p,(6) = [A + Bo.@)[C + Evi(x)]™.

The principal term in Hw; is Bv,C™, and ||B]| ||C7'|| < 1/2, so H;; is suitable
for iteration methods. H,; has no coordinate-free significance, however, so we
combine all possible H,;’s to form a new functional equation.

Choose C" functions ¢, : \U U? — [0, 1] with support of o; C U2and Y ¢; = 1
on \J U} . Define

=O j:l’...,s

and
Q) = X edm)Hl®),
where Fiu(m_) = u(o;'(¢)). Note that m_e M, s0 Y, ¢;(m_.) = 1.

Proposition 7. |[v"|| < & for each n.

Proof. Proceeding by induction, it is sufficient to prove |[H,2t(®)|] < &
for each %, j, n and ¢ such that pF3 u(e;'(€)) e U . This is the sort of estimate
used in Proposition 5, so details are omitted.

Proposition 8. |7 — v}|| < 8/4 ||v; — v77Y|.

Proof. It is sufficient to show that ||H,»; — H, 07| £ 8/4 ||v; — o77|]
We simply indicate how to break up the differences into terms which readily
are estimated.

H.vt — H.07°
= [4 + Bi]IC + B} — [A + Bi'|[C + BT
= [A + BAC + B} (IC + Eot™'] — [C + EDIC + B
+ ([A + Bi] — [A + B 'DIC + BT
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Corollary. The sequence v" converges to a solution v of the equations

v; = Z%'Huvi .
i=1
Proposition 9. For all me U3, Du;(o;(m)) exists and equals v,(c;(m)). Hence
ueC andv; = H;v; .

Proof. We use the definition of derivative, along with the functional equa-
tions for % and v. Define an increasing function v: (0, 1) — R,

’Y(a) = man Su%a ”ul(f,) - Ulzl(‘? : gﬁ(g)@, - E)ﬂ

£,8e
o< é~E"11<a

According to Propositions 5 and 7, v is bounded by 28. To prove Proposition 9
we show that y(a) - 0asa — 0.

Suppose y(a) satisfies an inequality
v(@) £ a-y(Ba) + r(a)

for small @, where r(a) decreases to zero as ¢ —» 0, and 0 S a < 1.If B £ 1
we have y(a) £ (1 — «)™-r(a) so we are through. If 8 > 1, we replace ¢ suc-~
cessively by aB8™%, a8, --- , aB™", weight the terms with o™, &%, --- | 1,
and add:

(@8 £ o™y(@) + (@) + ar(@™) + -+ + & r(@f)
< 280" + (1 — @) 'r(@f™).

From this it follows that v(a) — 0 as ¢ — 0.
Now let £ ¢ D* be given and suppose for some ¢, j, £ = fi;(x, u:(x)), with
z ¢ O If d is chosen small enough and ¢ ¢ D° with ||¢ — &|| < d, there is an
2’ &£ D such that & = f,;(2, v:(z")). d may be chosen independent of £, <, j.
To show that vy satisfies the functional inequality above it is sufficient to
show that

llu; (&) — ui®) — Hip:(®)- ¢ — 9 £ {ov(eB) + r(@)} [[£ — &l
for all &, &, 4, j as above, for || — #|| £ ¢ < d. But
g — & =1, w@)) — fu@, u(@)
= C@@' — 2) + BE() — w(@) + o(lle" — (],
(&) — ;) = 9@, wi(@)) — g:i(®, ui))
= A@@ — 2) + Bu;(@") — w.(x) + o(||z" — z|]).

From the first equation it follows that ||z’ — || < [|C7'|| |l¢ — &|l/Q — 26Q7),
and that

g —t=(C+ Ev(x))(@ — )
+ E(ui(a) — uiz) — v:(@)- @& — 2)) + o(|lz" — 2||).

IA
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We use this expression to eliminate £ — £ below.
[[ui®) — u; () — Hipix)- ¢ — )]
= ||[A@" — 2) + Bu(') — w (x)) + o([lz" — =|)
— [4 + Bui@)][C + Bv(2)]7"- ¢ — 8l
= [[4@" — 2) + B () — w@) — (4 + Bo(@)(@" — 2)
— (4 + Boi@)(C + Ev(@)) " El(’) — ui@) — v:a)- (@' — 2))

+ o(lla" — =Dl
= [[[B — (4 + Bo.@)(C + Ev())™ B [ui(@') — w(@) — 0:(@)@" — 2)]
+ o(lle" — (DI

= (1Bl + 0t + v(lle’ — 2l [l — =[| + llo({|ls" — =[DI]

s (B 00 £ BTl — ol 1l - #ll + 1o = .
IBII ICT'| < 1/2, so we take & = (||B|| 4+ O(z + )) ||C7']|/(1 — 26Q%), and
a < 1if 5 and & are small enough. Take 8 = Q/(1 — 25Q*), so that ||z’ — z|| <
BIE" — &]| < Ba, and theny(||2’ — z|f) = ¥(Ba). We have ||& — £| Z 87 ||’ —al|
so o(||z’ — z||) may be bounded by r(a) || — £||, where r(a) > 0 asa — 0.
This completes the proof of Proposition 9.

Proposition 10. wue C'.

Proof. We suppose u e C?, 1 < p < r, and show that u ¢ C**'. Note that
the C" size of the neighborhood of X in Theorem 1 may depend on r.

Du,(x) is a p-linear map from R** to R*. D”u is represented as an s-tuple
(Dpul y Tt Dp“a)} 80

D u e [C°(D°, L*(R™™*, R*))]'.
The spaces L°(R"*, R*) have natural operator norms. See Dieudonné [1, sections
V.7 and VIIL.12]. Forw = (w,, - -+ , w,) & [C°(D°, L*(R*™*, R*)))*, define ||w|| =
max sup ||w;(z)||, where the max is taken over 4 and the sup is taken over

z ¢ ©°, if the suprema all exist. We use this norm to prove convergence of the
p-th derivatives.

The functions »” used in the construction of » depend on u, so a priori there
are not differentiable. Now we known that u is differentiable, however, so it is
clear that each v" is differentiable. We prove, in fact, that the sequence Dv"
converges. By construction,

0i®) = 2 et [A + Bi@)][C + Evi@)]™
where ¢ = §,;(z, u;(z)). Hence
Dj @) = 22 ¢it [BD(@)(C + Evi@)™
— [4 + Bi@)]C + Evi@)] " EDvix)-[C + Evi(@)] ' [C + Ev,(x)]™

-+ (terms not involving derivatives of ¢’s).
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The factor (C 4+ Ev.(z))™" equals dx/df. The “terms not involving derivatives
of ’s” include derivatives of u, ¢; , 4, B, C, E. Second derivatives of F} appear
only here. These terms converge as n — o because " converges. Note that
the operators 4, B, C, E depend on 4.

It is an easy estimate, using the equation above, to show that for large enough
n?

[|1Dv"™** — Dv"|| < a ||Dv* — DV Y| + 7,

where r, < constant-|[v” — v"7*|| < constant- (3/4)". & = ||Bl| ||C7||* + O(n+9),
80 a < 1 if 5 and & are chosen small enough. As in Proposition 9, it follows from
this inequality that {Dv"} is a Cauchy sequence. Hence u ¢ C°.

Suppose w = D’y exists, 2 £ p < r. Differentiate the functional equation
for 4 p times. w must satisfy

wi®) = 22 ¢i- (Bwi@) — (A + Bo@)(C + Evi(@) " Ewy(@)} - (C + Evi(x))™

-+ (terms not involving w).

Call the right-hand side of this equation J(w)(§). 3 is a contraction operator,
and so has a unique fixed point. The coefficient governing the contraction
properties is ||B|| [[C™*||” -+ O(y + §), and depends only on the C" size of ¥ — X.

Let w’ = 0, w™*' = 3(w,). w" converges to the unique fixed point of 3, that is,
to D’u. Arguing as for Dv, Dw" also converges. The coefficient governing the
contraction is ||B|| [|C7*|”** -+ O(y + §), and depends only on the C" size of
Y - X.

By induction we have u ¢ C", completing the proof of Proposition 10 and
Theorem 1.

III. 3. Persistence of the type numbers. For each Y in a " neighborhood
of X we have constructed an overflowing invariant manifold My as the graph
of a function uy : ¥ — R". Type numbers vy and oy : My — R are defined.
If v» < 1and oy < 1/r we can apply Theorem 1 to ¥ and My to extend the
neighborhood of X in which every field has an invariant manifold diffeomorphic
to M. This extension breaks down at any field Y such that vy = Lor gy = 1/r
anywhere in My .

The backward limit set of the orbit through any point may change radically
under small perturbations of the field, so we don’t expect vy(uy(m)) and
ay(uy(m)) to be continuous in ¥ even for fixed m. Define

v(Y) = sup vy
o(Y) =sup oy .
Theorem 2. v(Y) and ¢(Y) are upper-semicontinuous.

Proof. If Y is close to X, F% is close to F” and the tangent planes and
normals of My are close to the tangent planes and normals of M. Hence for
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any ¢ > 1, if Y is close enough to X,

NDEY My @(m)|] < C ||[DE"|M)(m)]|
and

|lry DFy(Fy "u(m))|| < C |l=DF"(F~"(m))|].

From the second inequality we have »(Y¥) £ CY%»(X). The two inequalities
together imply that for any ¢ > o) and ¢ = 0,

llr e DFy(F (m)||" |DEY" | Mp)(u(m)||
< (constant) C'*¢ [« DF*(F~*(m))||* || DF*|M)(m)|].

Taking C close enough to 1, the right-hand side goes to zero uniformly in M
as ¢t — o, This completes the proof of Theorem 2.

o(x) measures the best smoothness we can guarantee throughout My , for
Y near X. It may happen, however, that parts of My are quite smooth even
though wrinkles develop elsewhere in My . This may be described in terms of
overflowing invariant manifolds.

Suppose M C M is an overflowing invariant manifold of the same dimension
as M, and that X and Y are C". If o(m) < 1/r for all m e § then u is C" on I,
even though ¢ may exceed 1/r on M.

IV. Hyperbolic splittings. Let X be a C' vector field on R", with flow
F'. et M be a compact, connected C' manifold properly embedded in R",
invariant under X. Let TR" | M = TM @ N~ @ N* be a continuous splitting
such that TM @ N~ and TM @ N are invariant under DF* for all ¢. Let
m, = and 7" denote the projections on TM, N~ and N, respectively. Define

v"(m) = Tim || DF'(F~*(m) | N™|'",

v'(m) = lim |j="DF'(F~'(m)) | N*||7"*.
treeeo

The splitting is called hyperbolic if »"(m) < 1 and »*(m) < 1 for all m e M.

Invariant manifolds with a hyperbolic splitting possess many properties
of asymptotically stable invariant manifolds. Compactness is required because
there is no preferred time direction. Only a compact manifold is overflowing
invariant under both the forward and the backward flow.

Define

o w—  log [[D@ | M)(m)|
o (m =1 e e DF@(m) | N1’

ooy = _log [[D(F”* | M)(m)||
o m = in e DF @ (m) | V7]

If N* is absent »~ and ¢~ agree with » and «. As in Proposition 1, »~, »*, ¢~ and

o* are independent of the metric of B*. Of course, they generally depend on
the splitting of TR"|M.
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Theorem 3. Let X be a C" vector field on R", r = 1, M a compact, connected C”
manifold properly embedded in R* and invariant under X. Suppose a hyperbolic
splitting of TR*|M <s given, with o~ (m) < 1/r and " (m) < 1/r for all m ¢ M.
Then for any C" vector field Y in some C" neighborhood of X there is a C" manifold
My invariant under Y and C” diffeomorphic to M.

Proof. TFor the proof of Theorem 1 we introduced a C” bundle N’ transversal
to TM, and (z, y) coordinates in which points with y = 0 lie in M/ and fibers
of N’ correspond to z = constant. For Theorem 3 we introduce C" bundles
N~ and N'* close to N~ and N*, and (=, y, 2) coordinates in which points
y = 0,2z = 0 lie in M, fibers of N'~ correspond to £ = constant, 2z = 0, and
fibers of N’* correspond to z = constant, ¥ = 0. x is a variable in D°, the disc
of radius 5 of the same dimension as M. We use an orthonormal basis to define y
and 2z so that elements of N~ @ N’* may be measured in coordinates. Define
N =N"@N={n,n)eN DN |n7|| <e¢lln*]| < e}. N!is dif-
feomorphic to a neighborhood of M if ¢ is small enough.

Let n > 0 be given. Choosing T large enough, N’~ and N'* close enough to
N~ and N*, e small enough and Y sufficiently C" close to X, Fy has local repre-
sentatives for ||y|] < ¢ |l2]] < ¢

(x7 y) Z) - (f<x7 y’ z)’ g(x7 y! z)’ h(xi y) Z))

such that

1) NN 1IDogll < 1/2, 0=k =,
UDAF D' < 1/2, 0=k =

2) Dugll <,

[[Duh]] <,

[[Dsgl] < m,

[|D:h]| < 1,

llg(z, 0, 0)]] < m,

l|h(z, 0, 0)|| < 7.

3) All first partial derivatives of f, g, h, as well as (D,f)”" and (D.g)~' are
bounded by Q.

The subscripts ¢, § have been omitted to reduce the clutter.
The invariant manifold My is constructed as the graph of a pair (u, v) of
sections of N~ and N'* satisfying

F% (graph (u, v)) = graph (u, v).

Let S denote the set of pairs (u, v) of continuous sections of N'~ @ N'*, with
|lw, »|]] = max (||u[|, |[v]]). As in Theorem 1, there are local representatives u;
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and v; . The invariance of graph (u, ») is expressed in coordinates by
£ = f(z, ul), v(x),
u(i—) = g(x, u(x), v(m))x
v(t) = Mz, u(x), v(@)).
Again, the subscripts have been omitted. Let Lip (u, v) be the largest of the
Lipschitz constants of u; and v, restricted to D° if these exist. Let S, =
{(u, v) £ S: ||u, v]] < € = ¢/2Q, Lip (u, v) < §}. We will show that F7 induces

a contraction map G: 8; — S; . The presence of expansion introduces an asym-
metry in the construction of G. Later we use a trick to remove this asymmetry.

Proposition 11. Let p: N! — M denote the fiber projection. Let o(m) =
pF3(u, v)(F~7(m)). Then there is a & > 0 and a C* neighborhood % of X such that
if YeXand (u,v) e S;

1) ¢ 45 defined,

2) ¢18 1 — 1 and onto.

Proof. See Proposition 4.

Proposition 12. Let p*: N'~ @ N'* — N'* be the projection. If 5 and X in
Proposition 11 are small enough, there is a section v': M — N'* such that

o(pF3(u, v')(m)) = p*Fy(u, v')(m)
for all m e M.
Proof. In coordinates v}(z) is the unique solution of
hii(@, wi(@), vi(x)) — v:(fui (2, w:(@), vi(2))) = 0.

Foru = 0,v = 0and ¥ = X, we have h;;(z, 0, 0) = 0. D;h is invertible, and
the second term is Lipschitz small, so the existence of a continuous solution »*
follows from the implicit function theorem for Lipschitz continuous funections.
Solutions determined in different coordinate patches are compatible because
the solutions are unique.

Define G: S; — S as follows. Let (u, v) ¢ S, . Find w' such that u}(f;;(x, u.(z),
0:(2))) = g::(x, u:(x), v:(2)). u' exists by Proposition 13. Find " as in Proposition
14. Let G(u, v) = (u', v*). The next two Propositions and the Corollary are
proved as in Theorem 1. The fixed point of G is invariant under the flow of ¥
and is the only continuous section of N7~ @ N’.* whose graph is invariant
under the flow of V.

Proposition 15. G: S; — S; .
Proposition 16. G is a contraction on S; in the C° norm.

Corollary. @G has a unique fixed point (u, v). In coordinates (u, v) satisfies
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u(f(xr u(@), v(@))) = g(=, u(x); v(x)),
v(f(z, u(@), v(@)) = h(x, u@), v(z)).

Now we could study the smoothness of 4 and » as we did for Theorem 1.
This approach is complicated substantially by the asymmetry introduced to
handle the expanding directions. We resort to a trick to avoid this problem.

The map F3” has the same properties as F} , with the roles of N~ and N*
interchanged., Using the same coordinates, denote the local representatives
of F3¥ by (f', ¢', 1'). We readily show that there is a unique (%', ¢') ¢ S; such
that graph (W', v') = F3” graph («/, v’). But then F} graph (v, v') = graph (v, v")
80 by uniqueness in the Corollary above (u, v) = (/, ¥'). In coordinates (v/, v’)
satisfies

u'(f'(z, w)2), v'(2)) = ¢'(z, w'(2), v'(x)),
V(' W' (@), v'(@)) = B'(z, w(x),v'(@).

Finally, we take one set of equations for F3 and one set for F37 and look
at the functional equations

u(fe, u''(2), v"'(2)) = g, u''(2), v"'(2)),
V(' (@, w @), v @) = W (z, u' (@), v (@).

(u, v) is a solution of this system and the solution is unique in S; .

Now we have a system of functional equations in which % and v appear
symmetrically. This system is of the form studied in III.2, so its solution is
of class C".

V. Stable and unstable manifolds. Under the hypotheses of Theorem 3 we
will construct local stable and unstable manifolds., The compact invariant
manifold persists under perturbation if both the stable and the unstable mani-
fold persist. It is as smooth as the rougher of the two.

We offer an example to show that the unstable manifold may persist even
though the compact invariant manifold develops a singularity. Define a field
in cylindrical coordinates for R®, deleting the z axis:

o= —clr — 1), c>1,
Z =2z,
6 = sin 0.
See Figure 7.
The cireley: {r = 1,z = 0} is invariant. It has a hyperbolic structure specified
by the r and z directions. The cylinder U: {r = 1, —1 £ z £ 1} is overflowing
invariant, a local unstable manifold of v. The annulus S: {£ = r £ 2,2z = 0}

is overflowing invariant under the flow with time reversed. S is a local stable
manifold of v.
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All type numbers are computed easily.

On v:
o= e ",
A
st =1 at 0 =0
= —1, 650,
o = —1/e, 0+~
= 1/e, 6 = .
On U:
y =¢e°,
¢ = 1/c, 6 #=
= —1/c, 0 =nr
On S:
v=e,
o =1, =20
= —1, 8 = 0.

Note that the type numbers for S are computed with time reversed.

Theorem 1 guarantees that U persists under perturbation, and is C" for any
r < c¢. The perturbation theorems do not apply to ¥ and 8 because ¢* and o
equal 1 at § = 0. Indeed, a spiral can develop in U, as shown in Figure 8.

We formulate the unstable manifold theorem so that U may be studied even
though v becomes singular under perturbation. In dealing with unstable mani-
folds there is a preferred time direction, so we consider overflowing invariant
manifolds again.

Let X be a C" vector field on R*, M = M \U dM a compact, connected C*
manifold, overflowing invariant under X. Suppose a continuous splitting
TR*|M = TM @ N~ @ N"is given, with TM (@ N and TM @ N invariant
under DF* for any ¢t < 0. Define

A (m) = lim ||=*DF™*(m) | N*||'",

tm

(m) = Tim || DF'@™"(m) | N7,

= log [|[DF™ | My(m)]]
o lm) =l e DFF G (m)) | NT|

The splitting is called hyperbolic if A*(m) < 1 and »“(m) < 1 for all m ¢ M.
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If M is compact we claim this agrees with our previous definition. A* < 1
and »* < 1 both signify that N* consists of vectors diminished at an exponential
rate by the flow. \* is measured along backward orbits; v* is measured looking
backward from the forward orbit. The Uniformity Lemma lets us tie these
together.

Suppose M is compact and »*(m) < a =< 1 for all m ¢ M. There is a constant
C such that

|l=*DF~*(F'(m)) | N*|| < Ca'
for all me M and all ¢ = 0. But then
||#*DF~*(m) | N*|| < Ca'

for all m e M and all t = 0. Hence A" (m) < a for all m ¢ M. This argument is
extended easily to show that A* and »* have the same supremum on M.

Theorem 4. Let X be a C" vector field on R, r 2 1, M = M \J oM a C”
compact connected manifold with boundary, overflowing invariant under X. Suppose
a hyperbolic splitting of TRM s given, with ¢~ (m) < 1/r for all m e M. Let
N* denote the set of vector of length less than e in N*. Then if € is small enough
and Y is a C7 vector field C* close enough to X, there is a C" manifold overflowing

invariant under Y and homeomorphic to N¥.

Proof. The proof follows the same lines as the proofs of Theorem 1 and
Theorem 3, so we omit most details.

N~ and N7 are perturbed to C" bundles N'~ and N’*. These are used to set
up (, y, 2) coordinates. Some large value of T' is chosen, and FZ has the form

r = f(l', Y, 2)7
y' = gz, y,2),
2 = hiz,y,?).

The invariant manifold is constructed as the graph of a section u of N~ over
N'’*. In coordinates u satisfies

u(f(xl u(m) z)’ 2)7 h(xl u(x) z)} z)) = g(x) u(xi z)) z)‘

If ¢ is small and u is Lipschitz small the arguments f(z, u(x, 2), z) and
h(z, u(z, 2), z) cover all of N.*. As in Theorem 1, the functional equation has
a unique solution u, and u e C".

Theorem 4 also may be proved in two stages. Taking this approach we show
first that X has a C" unstable manifold. Then we show that the unstable mani-
fold satisfies the hypotheses of Theorem 1.

We have seen that under the hypotheses of Theorem 3 the stable and unstable
manifolds of My exist and are C". It is easy to see that their tangent spaces
over My are transversal and intersect in My . Let @~ and @ be the orthogonal
complements of TM ¢ in the tangent space over My of the stable and unstable
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manifolds. Then
TR”[MY = TMY @ Q— @ Q+.

We compute the type numbers of Y with respect to this splitting, and let
v (¥), »"(¥), ¢ (Y), ¢*(Y) be the suprema of the type numbers. Arguing as
in Proposition 1 and Theorem 2, we see that these are upper semicontinuous
functions of Y. Summarizing, we have

Theorem 5. Under the hypotheses of Theorem 3 there is a C"™' hyperbolic
splitting TR* | My = TMy@® Q™ @ Q*. The functions v (Y), »*(¥), o (Y¥), a" (¥)
are upper-semicontinuous.

VI. 1. Invariant transversals. We have not needed to assume the splitting
of TR"|M is invariant under the flow. Invariant splittings should be useful,
because they let us set up coordinates in which the flow has an especially simple
form. In this section and the next we study existence and smoothness of in-
variant splittings.

Let X be a C" vector field on R, with flow F'. Let M be a compact, connected
C' manifold, properly embedded in R" and invariant under X. Let TR"|M =
TM @ N~ @ N* be a continuous splitting such that TM @ N~ and TM G N*
are invariant under DF’ for all . Let «, »~ and =»* be the projections on TM,
N~ and N*. Define

Ri(m) = ||[DF™" | M)(m)|| ||=~ DF*(F~*(m)) | N"||,
Ri(m) = ||DF™" | M)(m)|| |[=*DF*(F~"(m)) | N*|],
p~(m) = lim (B7(m))"",
p*(m) = lim (R;(m)™".
Theorem 6. If p-(m) < 1 and p™(m) < 1 for all m € M, there are bundles

I" and I in TR\M, homeomorphic to N~ and N* and inwariant under DF*
forallt. I" @ I" is transversal to TM.

Proof. We construct I as the graph of a continuous family of linear operators
u(m): N, — T,.M. The condition for invariance of the graph of « is

w(F*(m))- (x"DF'(m)(x + u(@m)z)) = «DF'(m)(z + u(m)z)

for all m e N, . We may omit x and deal with this as a functional equation for
the family of operators u.

As in the previous theorems we prove uniqueness of a solution invariant
under the flow at some fixed time. This guarantees the invariance under the
flow at arbitrary time. Using an extension of the Uniformity Lemma we choose
a large T such that

Rz(m) < 1/2
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for all m ¢ M. Noting that # DF‘y = 0 because TM is invariant, we write the
condition for invariance at time T':

u(m) = D" |M)(F" (m))u(F" (m))x”DF" (m)
— D(F"|M)(F" (m))xDF" (m).

This is in the form of a linear contraction scheme for u, using the supremum
over M of the operator norms of u(m) to norm families u. Hence there is a
unique solution u, and I~ exists. The construction of I is similar to the con-
struction of I~. Transversality to TM is clear from the construction, so the
theorem is proved.

If M is overflowing invariant and N is absent, the arguments of the scheme
for I” are carried inward, not outward. The construetion of continuous splittings
gives rise to a boundary value problem which does not, in general, have a
unique solution.

Note that Theorem 6 does not assume a hyperbolic splitting. It is applicable
to the flow shown in Figure 9, as long as the normal attraction at P is stronger

than the tangential attraction, and the normal rejection at @ is weaker than
the tangential rejection.

VL 2. Smooth invariant transversals. Any C' transversal bundle of appro-
priate dimension defines a coordinate system near M, as in Proposition 3.
If the invariant transversals are C', they define preferred coordinates which
may simplify the study of the flow near M. To simplify our construction we
assume the given splitting is €"7*. This is true, for example, if N* is absent
and N7 is the normal bundle of M, or if N* and N~ are constructed as
in Theorem 5.

Let A“(m) = D(F~*|M)(m). Define

oy _ = log [[(A (m) 7|
Z (m) = ltl—l:l: —log Ry(m) °’

ey _ T log [[(A'(m) "]
2.'(m) = lim —log Ri(m)

As with ¢, we may define
2.7 (m) = inf {S: [[(4'm)7"|| B7(m))* —0 as t — =},

with a similar definition for _*. If >, (m) < 1, we have [|(4*(m))7*]| [|4*(m)]|]-
||="DF'(F~*(m)) | N7|| — 0 as { —» . But for any invertible linear map L,
UL LY = 1, so ||="DF*(F~*(m)) | N7|| — 0. Hence if >, (m) < 1 and
> * (m) < 1 for all m ¢ M the splitting is hyperbolic.

Theorem 7. Let X be a C" vector field on R", r = 2. Let M be a compact, con-
nected C" manifold invariant under X. Suppose a C~* splitting of TR"|M s
given, with p~(m) < 1, p*(m) < 1, 2,7 (m) < 1/(r — 1) for all m e M. Then
the bundle I~ of Theorem 6 s C™ ™.
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Figure 9

Proof. Using N~ and N* we set up C"~* coordinates (x, ¥, 2z) near M, where
el < 1, |lyll < ¢ |l2l] < e zliesin R, where I is the dimension of M. y and
z lie in R” and R* where p and q are the fiber dimensions of N~ and N*. In
coordinates F'” is expressed as
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£ = f(-’l:, Y, Z),
g9(x, y, 2),
{= h(x: Y, z)°

=
[

If T is large enough we have
Dufe) I I Dagasll [IDof sl < 1/2

for 0 = k < r — 1, where all the derivatives are evaluated at y = 0,z = 0.

The invariant transversal is constructed as the graph of a family of maps
u; , where u,(z) is a linear map from R” to B'. Let

Tiui(@) = (Difiilz, 0, 0)) 'u;(f:i(z, 0, 0))Dag.;(z, 0, 0)
- (leii(x} 0) 0))_1D2fii(x; 0; 0)~

The condition for invariance of the transversals is u; = T,;u; , wherever this
makes sense. As in the smoothness proof in Theorem 1 we combine the T';’s
using a partition of unity to get a contraction scheme for the u,’s. Each time
this scheme is differentiated the highest order term gains a factor of D,f,;(z, 0, 0).
Thus the derivatives up to the (r — 1)-st of the u,’s satisfy linear contraction
relations, and u,; e C"%.
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