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Persistence of Excitation in Extended
Least Squares

JOHN B. MOORE, FELLOW, IEEE

Abstract —In least-squares parameter estimation schemes, “persistency

of excitation” conditions on the plant states are required for consistent

estimation. in the case of extended least Squar% the persistency condi-

tions are on the state estimates. Here, these “persistency of excitation”

conditions are translated into “sufficiently rich” conditions on the plant

noise and inputs. In the case of adaptive minimum variance control
schemes, the “sufficiently rich” conditions are on the noise and specified
output trajectory. With sufficiently rich input sigrmf~ guaranteed conver-
gence rates of prediction errors improve, and it is conjectured that the

algorithms are consequently more robust.

I. INTJtODUCTION

1N LEAST-SQUARES identification schemes, when the
underlying assumption is that the measurements y~ are
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linear in both the unknown parameters 8 and the states of
the plant x~, it is not surprising that consistent estimation
of 0 from the measurements demands that the states be
persistently exciting in some sense [1]. Since the plant
states x~ cannot be manipulated directly, but only via the
plant inputs tf~, it is important to translate “persistency of
excitation” conditions on the states of the plant, to “per-
sistence of excitations” or “sufficiently rich” conditions on
the plant inputs and noise.

In extended least squares, when state estimates are em-
pIoyed in lieu of the states, then the “persistency of
excitation” conditions for consistent estimations are given
in terms of the state estimates [2]. Again, it is important to
translate these into conditions on the plant inputs and
noise.

Consistent parameter estimation is obviously important
in the case of plant identification. It is less obviously
important in the case of N-step-ahead prediction or in
closed-loop least-squares tracking error control. In [2], [3],
the convergence of prediction of prediction errors/tracking
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ij=ik_l– bk_,ik2;PL_l(yL-’+.?;kk_,ik) -1

()
–1

= ;f)is: (2.4b]
o

where i~ is given from the inverse system of (2.3) as

~k+, = (F+G1~~)2, +G,@, +G,uk +G4Z, (2.5a)
.

}Ok= Zk—Zk,k , ik,k = i;ik . (2.5b)

For the ARMAX model (2.1) we have x; = [zk _ ,z~_2 . . .
zk–#k-\uk_I -1.. ..uk_~wk_ .wl–2. -.wc–c

iii) Stability Assumption: For open-loop estimation, the
plant is assumed for convenience to be asymptotically
stable with inputs bounded in L~.

iv) Positive Real Condition: For the convergence theory
of [2], we require that {~1 + O’[z] –(F+ G19’)- ‘G]}- 1- {[l
–6’(zl– F)-’G]-i - j]} is strictly positive real where
G = G, – G2 and z is the z-transform variable. For the
ARMAX specialization, this is precisely equivalent to
[C-l(z)–+] is strictly positive real where C(z)= 1+ CIZ-’
+C2Z–*+ . . . CFZ-‘.

v) Convergence Results. The relevant results which can
be extracted from the theoretical approach of [2] are now
summarized.

Theorem 2.1: Consider the models (2. 1)-(2.3) and
estimation schemes (2.4), (2.5) under the stability and
positive real condition, taking ~k =1. Then with ~k = Xk–
~k, ‘k/k– ~

.= .?k — .zk,k_,,

k

fimsup~i-illi,112 <co as.
k+m Q

~k-’llZk,k_,- W,112<m as.
o

Moreover, with the persistently exciting condition

Then, denoting ok = d – ~k,

Iim 0~ = O as.
k+co

(2.6)

(2.7)

(2.8)

(2.9)

Also, with the related persistently exciting condition bound,
for some c >0

m

o

together with (2.8); then (2.7), (2,9) are strengthened as
w

o

lim k(’-’)\l~~l12 <co as.. (2.11)

Prooj Follows from Theorem 3.1 of [2]. The result
(2.1 1) requires, in the notation of [2], the selection YA= ~~
= k-’ as suggested from the work of [9]. Note that with
this yk selection, (2.10) ensures that the conditions for the
Theorem 3.1 of [2] are satisfied. Vvv

Remarks:
1) The above results extend, as in [2], to the N-step-ahead

prediction case. Details are not included here.
2) The result (2.7) can be strengthened in the absence of

persistence of excitation using a more sophisticated ~~
selection— as for adaptive control in Section IV.

3) The result (2.6a) and Assumption (2.8) in effect
bounds the condition member of }k.

4) The specific yk, dk selection in the above proof and
persistence condition (2.10) is not studied in [2], but is
motivated here by the desire to exploit the advantages of
sufficiently rich inputs. Thus, the specific results of the
above theorem are novel, although they are derived using
essentially the same techniques as in [2].

ui) Sufficiently Rich Plant States: Here, we translate the
persistence conditions (2.8), (2. 10) on ik to persistence
conditions on the plant states Xk as an intermediate step
for translation to sufficiently rich conditions on the inputs
Uk and wk.

Lemma 2.1: Under the condition of the first part of
Theorem 2.1, the plant state persistence implies estimator
state persistence as

(2.12)

~k++’)llxk112 < m
o

k

1

~ ~k-Ci~Pk3k < co as.

liminf ~ ~xix: >0 0
k-m k ~

(2.13)

Proof: From (2.6), application of the Kronecker lemma
[12] gives Iim l/kX~lli,112 = O as. Also, adding (i+ i)(.?
i- 1) ’=xx’ to (i –i)(j – i)’> O gives 2ii’+2.ii’> xx’
from which 2/kZ~i,_ij > l/kX{xix; - 2/kX~lli,]12. Tak-
ing limits, the results (2. 12) follows. Likewise, since .i = .Y

– i, then ~1.i\12< 211~112+211i112and thus,

~k-(i+’)ll~kl[2<2~k-(1+’)l\Xk{12+2~k-(’+’)llikl\2
o 0 0

<CO as. (2.14)

The last inequality follows from (2.6) and the lemma
assumption. Now applying (2.8), then for some K >0

~k-’.i;~~jk < Kjj-(’+’)[l,i,[12,
o 0

From (2.14), the result (2.13b) follows. VFW
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theory and indeed appears more concise than the scalar
variable theory of [5], [6], [8].

2) The following lemma is useful when [here are sto-
chastic inputs such as WAin model (2.3).

Lemma 3.3; The “sufficiently rich” conditions on the
plant inputs and noise are implied as follows:

(
-1

lim ~E[6LO~lFA_i]
)

=0
m-m o

()

–1
= lim ~ S& = O as. (3.9)

m-+co o

The implication (3. 10) requires also that E[ll tik114]is
bounded in terms of E[ll fi~112].

Proo~ Follows from standard arguments (see Ap-
pendix).

Remarks:
1) For the signal model (2.3) when vi = [u~w~] and ULis

known and w~satisfies (2.2), then, since E[ wklFk_j] = O for
j>l,

‘+’k+pi+fk-1] =diag{uk+ju~+,, ‘[wk+,w; +llFk-l 1}.
Thus, the contributions of Uk and Wkto E[ F~fi~lFk_,] are
disjoint so that the contribution of w~ and Uk can be
studied separately. Thus, consider the case when all the
states are controllable through the input w~ and we can
apply the theory above with v~ = wk. Then a sufficient
condition for persistence is that WAbe “white” zero-mean
noise with a nonsingular covariance, or, more precisely,
that

and zero otherwise. (3.11)

For the case of periodic or almost periodic inputs, Uk, then
it is well known [7] that if there are a sufficient number2 of
frequencies present, the inputs UA are persistent in the
required sense.

2) The above lemmas and remarks, and those in Section
II, allow the persistence conditions on the state estimates
.i~ for ~he schemes of sections II, namely, (2.8), to be
translated to conditions on the plant inputs u~ and noise
wk. For the related condition (2. 10), then Lemma 2.2
suggests that we seek bounds on the control u~ and noise
Wkto achieve the state bound as in the following lemma.

3) Although the derivations of the above lemma apply
standard arguments, there are, to our knowledge, no such
results in the literature and yet the need for such is clear as
noted in the above remarks.

2The number is the smallest integer bounded below by n/2 where )1is
the dimension of XL.

Lemma 3.4: For the asymptotically stable plant (2.3),
with (2.2a) satisfied, then

~k-(’+c)lluk112 <m== ~k-(’+’)l[xk112 <co. (3.12)
o 0

Proof: First, we claim that (2.2a) implies that
~y~-(l+c) llw~llz< co. To see this, note that (2.2a) gives

~k-(1+’)E[IIwk1121Fk_,]su:~k-(’+c) < ~.
o 0

Also, since

&++ ’)(llwk112- E[IIw,112{F,-,]) <m,
o

by virtue of a result in the Appendix, the claim is estab-
lished.

Next, perceive that (3.12), under the condition
~yk-o+ollwkllz < m, is merely a bounded-input,
bounded-output (state) property of asymptotically stable
linear systems. The property is a variation on the standard
one [10], and is proved using the same approach as the
standard one, but, in addition, exploiting the fact that
k ‘(1+‘) is monotonically decreasing. A critical intermediate
step is that with A= F’+(GI +Gd)6’,

fi,,(k+])-1/2(l+dAk-ii]/2(1+’)11< ~ lj/!]lk-i <K<~

i-O i-O

for some K and all k. Vvv
Extended Least Squares: Summarizing the above results

for the extended least-squares schemes of Section 11 gives
an extension to Theorem 2.1 as follows.

Theorem 3.1: Consider the scheme of Theorem 2.1,
namely, models (2. 1)–(2.3) and estimation scheme (2.4),
(2.5) with ~k = 1. Then:

i) sufficiently rich inputs Uk and noise Wk to achieve
persistence of excitation of the state estimate as in (2.8),
and consequently the consistency result (219) via Theorem
2.1, satisfy

.,-m ;: E[fiAti;lFk_,]>OIiminf (3.13)
o

where 62 = [v~v~+, ...o~+~_,] anduk is given in terms of
uL and Wksuch that the states Xk are reachable from ok as
illustrated in (3.1):

ii) with persistence conditions (3. 12) and (3. 13) on the
plant inputs and noise satisfied, the persistence condition
(2.10) on the state estimates and consequent results (2.11)
are satisfied.

Remarks:
1) To our knowledge, these are the first results translat-

ing extended least-squares persistence conditions on the
state estimates to sufficiently rich conditions on the noise
and plant inputs.

2) It is important to stress that persistence of excitation
gives stronger guaranteed convergence rates of prediction
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t’s before, U: = [u~o~+, “““uj+._l], but now with uk, in
terms of z~, w~ rather than in terms of Uk,wk. This gives
sufficiently rich conditions on z~, w~ to assure persistence
of the states Xk and thereby those on the state estimates ik
of (2.8).

The next step is to translate the sufficiently rich condi-
tions on z~, Wk to sufficiently rich conditions of z:, w~.
There is no corresponding step required for the open-loop
case. The key obsemation is that the adaptive scheme of [2]
guarantees from (2.7), the Kronecker lemma, and the fact
(hat z; = 2k,k_,.

~&@ ~~llzk -z: - ~kll’ = O as. (4.10)

Consequently, z; can be used in lieu of (zk – Wk) in the
sufficiently rich conditions guaranteeing the persistence
condition (2.8). To see this, and to clarify the above
approach, let us consider special cases.

Special Care: Consider the signal model (2.3). If now
u~ = O, then Xk can be generated from Zk via an inverse
system

xk+, = [F+(G, +G4)6’]x, +( G2+G4)[zk-d’xk]

=[F+(G, -G2)tY]Xk +( G2+G,)Z,.

This system has the structure of (3.1) with ok= Zk so that
applying the theory of Section 111, if Zk is “sufficiently
rich,” then Xk is “persistently exciting.” More generally,
when UL* O, a recursion on (2.3) gives

zk+, =8’[F+(G, +G4)(7’]xk+(?’G3uk

+fV(G2+G4)wk+wk+,.

To keep the ideas simple, let @’G~be full rank; otherwise
further recursions will be involved. Now observe that an
inverse system can be designed to generate (xk} driven by
{zk} rather than {u~} as follows:

X,+, =[F+(G, +G4)0’]X, +G3U,

u,= (fYG3)-i{zk+, - wk+, -a’(Gz+G,)w,

–&[ F+(G, +G4)6’]xk}.

This system has the structure of (3.1) with definitions for
u~ in terms of (zk+, – Wk+ I) and wk, rather than in terms
of Ukand Wkas in Section HI. Let us define

>..\ [tij= (zk–wk)’(z~_, –wk_, )’. ..(z~_n ‘Wk_n)’.*
,.

.WL–IW;–2. . . w:-n_, 1
qy=[z:’Z:: , 1. . .z~:nw; _,w~_2. , . w~_”_, .

Then for some K >0,

1983

Taking limits as m ~ co and applying (4.10) gives that

likewise with conditioned expectations. For this example
then, the claims made earlier are substantiated. More gen-
eral results can be derived via the linear system inverse
theory of [10], for example.

The results for adaptive control are now summarized.
Theorem 4.2: For the adaptive control %heme of Theo-

rem 4.1, the persistently exciting condition bound (4.3) is
satisfied almost surely if

and

where S; =[u~u~+l . . . u~+n_l], and Ukis in terms of (zk –
Wk ) and Wk and such that Xk are the states of an inverse

system driven by ok. Moreover, z; can be used in lieu of
(Zk – w~).

Remarks:
1) The results of this section can be extended via the

theory of [1] to adaptive control of nonminimum phase
plants.

2) The above adaptive control results are dual in some
sense to the open-loop estimation results of Section III.
The interpretation of the condition (4.11) for the control
case is more difficult than for the open-loop case.

3) It might be argued that z: is a desired trajectory and
is thus not available for manipulation so as to improve
convergence rates (or robustness) as suggested is possible
in the results of this section. This may be so, but then the
possibility of adding to the specified z; a dither signal
which is not objectional in its effects could be explored. A
tradeoff may be necessary between tracking error for the
nominal model structure (perhaps partly due to an added
dither signal) and its robustness (enhanced by a dither
signal addition).

4) For the control of known linear plants, the separation
theorem is a powerful tool. When the plant parameters
must be identified on lie as here, this theorem does not
apply and there is inevitably a tradeoff between quaiity of
state and parameter estimation, and the achievement of the
control objectives. Also included in the tradeoffs can be
robustness of the algorithm to cope with real plants having
possibly higher dirnensionality than the model, and/or
time delays and nonlineanties. There has been built up
over the years some theory, much empirical wisdom, and
certain notions supported by simulation experience to as-
sist in such tradeoffs. The results of this paper serve only to
give aspects of this accumulated “knowledge” a firmer
theoretical base.
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Simultaneous Identification and Adaptive
Control of Unknown Systems Over

Finite Parameter Sets

p. R. KUMAR, MEMBER, IEEE

Ahrtract —The problem considered is one of simrrftammusly identifying

an unknown system while adequately controlling it. The system can be any

fairly general discrete-time system and the cost criterion can be either of a

discounted type or of a long-term average type, the chief restriction being

that the unknown parameter lies in a finite parameter set. For a previously
introduced scheme of identification and control based on “biased” maxi-

mum tiketiiood ewimat~ it is shown that 1) every Cesaro-limit point of

the parameter estimates is “closed-loop equivalent” to the unknown parasn-
eteq 2) for both the discounted and long-term average cost criteri~ the

adaptive control law Cesaro-converges to the set of optimal control laws;

and 3) in the case of the long-terms average cost criterion, the actual cost
incurred by the use of the adaptive controller is optimat and cannot he

bettered even if one tinew the vaJrseof the unknowm parameter at the start.

I. INTRODUCTION

w

E CONSIDER the problem of simultaneously iden-
tifying an unknown system while controlling it ade-

quately. The significant features are as follows.
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ported by the U.S. Army Research Office under Contract DAAG-29-80-
KO038.

The author is with the Department of Mathematics, University of
Maryland Baltimore County, Baltimore, MD 21228.

i) There is a finite set of possible values that the un-
known parameter in the system may assume;

ii) the state and control spaces are Polish spaces; and
iii) the underlying cost criterion can be either a dis-

counted cost criterion or a long-term average cost criterion.
The systems studied here are thus fairly general and subject
mainly to restriction [i]. As shown in the section on appli-
cations, two examples of systems covered are:

a) Nonlinear stochastic systems of the type

)X,+, =f(X,, U,,a)+ U(Xrj~rja w

with observations of the complete state x,.
b) Markoo chain models with countable or finite state

spaces.
We focus our attention on a -particular simultaneous

identification and control scheme of the “certainty-equiva-
lence” type where, periodically, an “estimate” of the un-
known parameter is made, and a control corresponding to
the “estimate” is then applied to the unknown system. The
criterion used in selecting the estimate is, as in [1], [2], a
particular modification of the likelihood function which is
well suited to situations where interest centers not only on

00 18-9286/83/0 100-0068$01.00 983 IEEE


