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,4hsfrac[: This paper develops output reachability characterizations of linear finite dimensional multivwiate systems, so as tt~

translate excitation properties of system inputs to excitation properties of system outputs. states, or associated regression vectors.

Such properties are of fundamental concern for convergence of algorithms involving on-tine identification, adaptive state estimation,

prediction and control, Persistence of excitation guarantees convergence without a priori stability assumptions and ensures robustness

properties.
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1. Introduction

Recent work (e.g. [1–5]) has shown the convergence and robustness properties of adaptive estimation
and control algorithms to be closely related to persistence of excitation of regression vectors (equivalently
that they have a sufficient number of spectral lines [5]). For parameter convergence it is required that
signals which are generated inside the time varying feedback loop of the unknown plant (i.e. the regression
vectors) be persistently exciting. Since this is not verifiable, it is necessary to study how persistence of

excitation transfers from one signal to another through a linear system (for example from the inputs to the
regression vectors). This will allow verifiable input persistence of excitation conditions to guarantee the
persistence of excitation of the internal regression vector, and hence parameter convergence. In the single
input, single output case such input conditions appeared in [6,7,8] where it is required that the regression
vector be reachable from the input. The above theory has, however, been confined to single input, single

output systems. Multivariable results on translation of persistence of excitation in linear systems appeared
in [9] where it is shown that with [A, B] completely reachable, and the input regression vector ii,, where
—, ‘ ] persistently exciting, then the state vector x, will also be persistently exciting.u, =[u:_l, u:–*, . . ..un–n

This result holds irrespective of whether the system is stable or unstable. We aim to extend and develop
this result so as to guarantee excitation of multivariable regression vectors.

The organisation and contribution of the paper is as follows: In Section 2, the relationship between
excitation and reachability is reviewed and generalized, to mtdtivariable and possibly unstable systems,
using reachability characterizations in terms of rank conditions. It is shown that reachability is the only
requirement on the system which is relevant. Section 3, the main contribution of the paper, develops new
results on the reachability of regression vectors. It is shown, using our new characterization of reachability,

how the reachability of certain regression vectors is related to coprimeness. In so doing we provide

compact coordinate free proof of some known results and develop new results. These results are applied to
the generation of persistently exciting inputs, and the study of excitation of regression vectors employed in
adaptive estimation and control configurations. In particular we develop results on the reachability of
pseudo linear regression vectors arising from extended least squares identification.

2. Excitation and reachability

Consider a linear, finite dimensional, discrete time system with state space description

xL+l=Axk+Buk, yk = Cxk + Duk (2.la)

3510167-691 1/86/$3.50 01986, Elsevier Science Publishers B.V. (North-Holland)



Volume 7, Number 5

with XLG Rn, UAE Rm, y~ G Rp, and

Z-(Z)= C(ZI-A)-’B+D.
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associated proper transfer function

(2.lb)

Definition. The system (2.1) will be called output reachable (equivalently yk is reachable from UA) if, for
any y G R p and arbitrary initial state, these exists an input sequence { u,, i = 0,. ... k < cc} to the system

(2.1) such that its output at time k, y,, satisfies y,= y.
Let v be the McMillan degree of the system (1.1) and let MO) Ml, . . . . &lp,. . . . be its Markov

parameters. Define the matrix M by

M= [MO M, . . . MV]=[D CB CAB . . CA””lB]. (2.2)

Recall [10] that M has full row rank p if and only if the system is output reachable. Observe that (2.1) has
the following input/output description:

Iv’ii, =[y, y,_, . . . Y,-vl~

where d, = coefficient of z “” in d(z), a monic minimal polynomial for A, and

J

N]= ~ d,., M,, do=l,
[=0

N’= [NO N, . . . NV]) d’=[1 d, . . . d.],

~:=[u; u:_, . . u:-”].

A matrix fraction description of (2.4) is

d(z)y(z)=N(z)u(z)

where

d(z) =z”+dlz”-l+ . . . +d,, N(Z) =NOZ”+NIZ”-l+ . . . +NV,

d-l(z) N(z) =T(z).

The following lemma is now apparent:

Lemma 2.1. The following statements are equivalent:

(a) The system (2.1 ) is output reachable, i.e. y~ is reachable from u~.
(b) M has full row rank.

(c) N’ has full row rank.
(d) N(z) has full row rank over R. That is, a’N( z ) = O for all z implies a = O.

(e) T(z) has full row rank over R.

Excitation and output reachability

Definition. An infinite q-vector sequence [z, ] is said to be persistent~ exciting if

I

(1lim inf + ~ z,z~ >0,
[+m ,=1

(2.3)

(2.4)

(2.5a)

(2.5b)

(2.6)

(2.7a)

(2.7b)

A signal z~ will be said to be exciting over an interval [k + 1, k + 1] if for some constant K1 >0,

(2.8)

k+[

(2.9)
,=k+l
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Note that if 1< q, (2.9) cannot hold. A stronger excitation condition, which

exitation, is that of uniform persistence of excitation. The signal z~ is l-uniformly

these exists K < m such that (2.9) holds for all k > K.

A generalization of a result from [9] is now studied.

Theorem 2.1. Consider the system (2.1).

(1) For the output vector y, to be exciting over an interval [k+ 1 – v, k + 1],

September 1986

implies persistence of
persistently exciting if

independent of initial
conditions, it is necessary and sufficient that the ( p dimensional) vector N ‘ii, (see (2.5)) be exciting over

[k+l, k+l].

(2) For the output vector y, to be persistently exciting, independent of initial conditions, it is sufficient that

the ( p dimensional) vector N ‘ii, be persistently exciting.

Proof. Sufficiency. Let a G R‘, a # O. Premultiply (2.3) by a’ and apply the Cauchy–Schwarz inequality to
obtain

For part (l), sum over the interval [k + 1, k + /] to obtain

[

k+l

1[
k+l I

a’ ~ N’ii,ii;N a<lldll’a’ 1~~Y, Y/’ a<(v+l)lld112a’ [l=:i-Yy”la(2.10)
i=k+l /=k+l J=(– V

The left hand side is strictly positive since N ‘ii, is exciting over [k + 1, k + 1]. Also 1< IId 1]2< m. Hence

y, is exciting over [k + 1 – v, k + l]. For part (2), sum from 1 to 1, divide by I and take lim inf instead of
summing over [k + 1, k + t’].

Necessity: Suppose N ‘ii, is not exciting over [k + 1, k + 1]. Then there exists a non-zero a ~ R p such
that a’N’ii, = O, for all i E [k + 1,k + /]. From (2.5a) we have

a’y, + dla’y, –l + . . . +dUa’yl_, = O, foralli~[k+l, k+l]. (2.11)

Now we can choose initial conditions such that a’y, = O for i = k + 1 – v,..., k + 1, and the recurrence
(2.11) implies a’y, = O for all i E [k + 1 – v, k + 1]. Thus y, is not exciting over [k+ 1 – v, k + 1]. To see

that such a choice of initial conditions is possible, consider an observable realization of the transfer
function from u to a’y. ❑

Remarks. Clearly if the system (2.1) is stable, condition (2) of the theorem is also necessary. Without the
stability assumption, particular initial conditions, or input excitation over finite time, can lead to
persistently exciting outputs without the inputs being persistently exciting.

Lemma 2.2. A necessary condition for N ‘D, to be exciting (over an interval or persistent~ ) is that N‘ be full
row rank, i.e. the system (2.1) is output reachable.

Remark. Itfollows that any system which is not output reachable cannot have exciting output.

Corollary 2.1. A necessary and sufficient condition for the output of every output reachable time invariant
linear system (2.1 ) of McMillan degree v to be exciting over [k+ 1 – v, k + I] ( resp. persistently exciting)

independent of initial conditions is that ii, be exciting over [k + 1, k + 1] ( resp. persistently exciting).

Proof. The conditions of Theorem 2.1 must hold for all possible N‘. Note that part (2) of Theorem 2.1 is
necessary for stable systems. This implies the result. ❑

Remarks. 1. It is Corollary 2.1, rather than Theorem 2.1, which is relevant to adaptive estimation. This is

because Theorem 2.1. though much less restrictive on the inputs, requires complete and exact knowledge of
the system.
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2. If D = O, then N(, = O. Thus we may replace fil in the theorem with ii, = [u;_l u:_z u:_ U]’. If in

addition C = 1 so that the outputs y, are the states x{ and the output reachability condition becomes a
state reachability condition, then the sufficiency part of Theorem 2.1 specializes to the result of [9].

3. Observe that since the output reachability condition is invariant under constant state variable
feedback UL= Lxk + u~, then the results of Theorem 2.1 hold for this case, with U, replacing ii,.

4. Consider the effect of introducing an additive disturbance signal WLto a plant with output y~ and an

external input UL. For simplicity assume that d(z)y(z) = N(z)u(z) + N,, (z)w(z). Of course, if yL is
reachable from [u, w,] and [u: fi,’]’ is persistently exciting, then .v, is persistently exciting. This follows
from Corollary 2.1. However when UL, WA are uncorrelated it is easily shown that the outputs .Y, are
persistently exciting if either y, is reachable from u, and ii, is persistent/~ exciting, or v, is reachable from w,

and k, Is persistent(~’ exciting.

3. Excitation of regression vectors

Corollary 2.1 reduces the question of the transfer of excitation from inputs to outputs to one of
reachability of the outputs from the inputs. In adaptive estimation the vectors which one requires to be
exciting are regression vectors involving past outputs, inputs and possibly noise estimates (in extended
least squares). Thus the focus of this section is on conditions for these regression vectors to be reachable.

Reachability of regression vectors

Here we build on the reachability characterizations of Lemma 2.1 in order to give conditions for the

reachability of regression vectors in terms of coprimeness conditions arising from matrix fraction system

descriptions.
Let T(z) be a p X m proper rational matrix with Markov expansion T(z) = z~() M,z ‘. Define T’(z)

to be i-th row of T(Z), M,’ the i-th row of M, and y; the i-th component of y~. Because of the

applications of interest (adaptive identification), we need to consider regression vectors in which each .v~,
1=1 ,. ... p, can have a different number of delays. For example we will not have the same number of
delays for inputs and outputs in input/output regression vectors. Thus, for 1, >1 arbitrary integers, we
define the general regression vector

+/,. /,,(~)=[Y} ““” A,,+, i ““” .P;_/,+l ““” 1
,y: ““” yf /,,+I . (3.1)

Now let

~, /r(Z)= [T’(Z)’ Z-’T’(Z)’ Z-’’+ ’T’(Z)’ ~~~ T“(z)’ Z-’’+lTP(Z]’]’ (3.2)

and

M(/, . ../.,)=
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Define also

P(ll . . l, J=(a(z)G P/’, a(z) =[a, (z) . . . a,, (~)] ’,withdeg a,(z) </, –1} (3.4)

and

I 1
z’”” 7-’(Z)

H(z)= ; I=min{ l,}

2/–/,, T{’(z)

(3.5)

Theorem 3.1. With the definitions (3. 1) to (3.5), the following are equi[’ulenr:

(1) ill I,(k) is reuchubie from UA.
(2) T,, . /,(Z) is full row rank Oler R.
(3) M(/, . 1P) is fuil rank.

(4) P(1, ~. ~ 1[,) f’ N( H ) = 0, the zero pol~nomial, and N(H) denotes the left nullspuce of H( z ).

proof. Observe +/, I,,(z) = T,, /,,(: )u( z ). The matrix of Markov parameters defined in (2.1) for this
system is M(ll . . . lP). Applying Lemma 2.1 gives (1) ~ (2) = (3).

We now prove (2) = (4). Let a’ = {a{, . . . . aj}, a, G R’, and

I–l+. ..+a,(Y, (Z)= CY,,,Z’ -+ HI,,,,,
1, , ,~

so that a(z) = [a,(z) a,,(z)]’ = P(II . ~. lP), arbitrary. Observe now

a(z) ’H(z)=O - a’~, ... ,,,(z)=O.

Hence T,, ,,, ,,(z) full row rank over R is equivalent to P(I, . ~ l,, ) n N(H) = O. ❑

Remarks. 1. This new result is the natural extention to output regression vectors of the results of Lemma
2.1 and forms the basis of subsequent derivations where we use condition (4) of the theorem to
characterize reachability. Condition (4), although it may appear impractical. combines very nicely with
Forney’s characterization of minimal polynomial bases for the nullspace of rational matrices [11] to
produce regression vector reachability results with comparative ease. In fact the technique quickly becomes

routine. The equivalence of conditions (3) and (4) can also produce some interesting results, and in
particular provides a method for calculating when condition (4) is satisfied. We now summarize the
relevant facts of Forney’s theory, which is also discussed in Section 6.5-4 of [12].

Recall the definition of the left minimal index v] of T(z),

J’l[nz)l =min{d%~(z): ~(~)=p”, ~(~)’nz)=o} (3.6)

Let r=p–rank(T(z)) and a,(Z) GPJ’, i=l, . . ..r. such that F(z) T(I)=O, where F(:) =[al(J)

a2(z) . . . a,(z)]’. The a, (z), i = 1,..., r, form a minimal (polynomial) basis for N( T), the left

nullspace of T(z), if and only if F’(z) is row reduced and irreducible (see Theorem 6.5-10, [12]). The left
minimal indices v,, i = 1, . . . . r, are the degrees of the corresponding a~ ( z). This definition of VI agrees

with that in (3.1) if we order the v, [i.e. shuffle the rows of F(z)] so that v, < v,+], i = 1. . . . . r— 1. If T(z)
has full row rank (over P), then there are no left minimal indices. For convenience, however. we shall say

that if T(z) has full row rank, then v, = m.

Persistently exciting input signals

Consider input signals UL derived from white noise WL (which is persistently exciting) via a linear
system. In order for ii~ to be persistently exciting, Corollary 2.1 tells us that UL must be reachable from
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WA.Let us introduce the notations

fi(z)=T(z)w(z), (3.7a)

T(Z) =[T’(Z) Z-’T’(Z) . . Z-’T’(Z)]’, (3.7b)

where U(z) = T( z )w( z ). Relevant reachability results are now derived as a corollary to Theorem 3.1:

Corollary 3.1. With definitions above,

i.i~ is reachable from w~ = V,[T(Z)] >1, (3.8)

ti~ is reachable from w~ for any 1 H T(z) is right invertible. (3.9)

Proof. By reorganizing rows, observe ilk is reachable if and only if $,+, ....+,(k) is reachable (see (3.1)).
Hence, applying Theorem 3.1, ilk is reachable if and only if P(~ + 1. ~. I + 1) n N(T) = O. Let a(z) be a

left minimal (polynomial) vector for N(T) of degree VI(T) (see (3.6)), so a(z) G P(u1 + 1 . . . VI + 1) and

hence v,(T)= Max{l: P(I . . l)n N(T) =O}. Thus I’(1+ 1 ~. . l+l)f)N(T) =Oifand only if l< v,(T),
establishing (3.8). For (3.9), note that P(1 + 1 . 1+ 1) n N(T) = O for arbitrary 1 if and only if N(T) = O,
i.e. T(z) has full row rank or equivalently, is right invertible. ❑

Remark. The condition that ilk is reachable for any 1 is the definition, for the discrete case, of output
function reproducibility. Thus we have proved directly the known result [10] that T(z) is output function

reproducible if and only if T(z) is right invertible. In fact, Corollary 3.1 can be viewed as stating the

extent to which a given system is output function reproducible.

Excitation of input/output regression vectors

Let us consider a regression vector of interest in deterministic adaptive identification, prediction, and
control. Thus define

@m(k) =[y:_, y;_2 . . y;_H uj_, . ..uj_m]’ (3.10)

where y(z) = T(z)u(z), T(z) proper, and yk and u~ are p and m vectors respectively, as in (2.1).

Now consider u and y related by the multivariable ARMA model

yk+A, yk_*+ .. . +’4Ryk_n=B, uk_, + ... +Bmuk_m (3.11)

with transfer matrix

T(z) =A-l(z)B(z)z’-fi (3.12a)

where

B(Z) =BIZR-l+ . . . +Bmm A(z) =zz”+ . . . +A, (3.12b)

and AH, Bm are not zero. Applying Theorem 3.1 to this model, we obtain the following result, which we
state as a corollary to Theorem 3.1.

Corollary 3.2. With the definitions (3.10), (3.1 1), (3.12) above, @m(k) is reachable from u~ if and ordj ~
[A(z) B(z)] is irreducible (has full row rank for all z ) or, equivalently, A(z), B(z) are left coprime.

Proof. Let l=min(R, ii) and H(z) =[z’-n T(z)’ z’-~Z]’. By Theorem 3.1 all we need prove is P(ii . ~.
fi x... =) n N(H) = O if and only if A(z), B(z) are left coprime.

Observe [–A(z) B(z)] H(z)=O. Hence the rows of [–A(z) B(z)] GN(H), and the rows of [–,4(z)
B(z)] GP(ti+l. .. fi+l m... R). Thus A(z), B(z) left coprime ([A(z) B(z)] irreducible) is a neces-
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sary condition for P(ii . . ~ FiEi . . . Ei) n N(H) = O. For sufficiency, note that with A(z), B(z) left
coprime, the rows of [A(z) B(z)] form a basis for IV(H) (possibly nonminimal if El > Z), and A(z) is row

reduced. By the predictable degree property of row reduced matrices (see Theorem 6.3-13 of [12]), [a(z)’

/3(z) ’]= N(H), a(z) =Pp, P(z)=Pm, implies deg a(z) >fi, so we must have P(ti ~~~ ZZ ~~~ fi)n

fv(H)=o. ❑

Remarks. 1. This result is known, the multivariable result being in [13], where it is proved using a state

space and system equivalence approach, while we have used a purely transfer matrix one resulting in a
considerably shorter coordinate basis free proof.

2. In some situations, it would be desirable to have the components of the u and y vectors delayed by
varying amounts (e.g. when the transfer matrix (3.12) is diagonal). This situation can clearly be handled by

Theorem 3.1, as the generalization from output to input/output regression vectors merely involves

augmenting the transfer matrix by an identity matrix.
3. Consider a plant T(z), for example as in (3.12), with the regression vector @tiZ(k ) reachable from UL.

Now consider the dynamic output feedback law U(Z) = – G(z)y( z) + U(z), with G(z) a proper, rational
m x p transfer matrix. Provided only that the transfer matrix from U(Z) to U(z), 1,,, + G(z)T( z ), is
nonsingular (as a rational matrix), we see that @~(k ) is reachable from UAiff A(z), B(z) are left coprime.
This follows immediately, since the transfer matrix from u(z) to [y(z)’ U(z)’]’ has the same left nullspace
as the transfer matrix from u(z) to [y(z)’ u(z)’]’.

We conclude that excitation of a regression vector @im( k ) is invariant under time invariant dynamic
feedback controllers C(z).

Excitation of pseudo linear regression vectors

In stochastic adaptive identification, prediction, and control, improved algorithms are obtained by
using pseudo linear regression vectors which include noise estimates.

Thus define

@7rn(k)=[y~_1 . . . y[-. fiI(_l “ il’[ / U[ ... ... ‘ 1’u~–m (3.13)

where y~ E Rp, %~E Rp, UA G R“’. The associated signal models to work with in this case are autoregres-

sive, moving average exogenous input (ARMAX) models with representations

Yk+~YL-l +””” +~iiYk-H=Blu~_, + . . . +BRuA_m+wA+c,wL_, + . . +c/w~_/. (3.14)

The noise estimates ti~ are generated in terms of parameter estimates 8 = { ~,, i = 1. . . . . Z, ~,. i = 1,..., fi.
~,, i=l ,. ... i}, via

. ,. A A
tik+t,ii_, + .“” +&_j=yk+A,yL_, + . . . +Afiy~-H-B, u~. ,– ““”–BmuA

In transfer function notation we have

,m. (3.15)

[1[Y(z) = ~-l(z) B(z)zn-m ~-l(z) ~(z)z’-/ ![ 1u(z)

k(z) &( Z)[~(Z)A-l (Z) B(Z) -~(Z) ]Z’-m ~-’(z) [i(z) f’(z) c(z)] ~’(z)

[ 1[1T,,(z) T,,(z) u(z)——
T,,(z) T,,(z) w(z)

where

A(Z) =IZ’+A, Z’-’+ .. +.4,, B(z) =l?, zm-’+ . . . +Bm,

c(z) =zz~+c, zi-’+ . . . +C,,
AA(z) =Izfi+AA, zn-’+ ““”+Jn, 3( Z)=3, Z‘i-’+ . +ilfi.

e(z)= lzi+e,z’-’+ . +e,.

(3.16)

(3.17)
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The focus for the remainder of this subsection is to seek conditions on 8 (equivalently ~, ~, ~) which

ensure the persistence of excitation of @=(k) when the inputs are persistently exciting. By Corollary 2.1,
we need conditions which ensure @fi( k ) is reachable, which we do by applying Theorem 3.1 as follows.

Corollary 3.3. With the definitions (3.13), (3.16), (3.17) aboLw:

(1) @iT;,;(k ) is reachable from [u; W;]‘ if and on[v if A( z ), 3(z), ~( z )Aare Iefr cop~ime.

(2) @=(k) is reachable from ML if and on!)’ if both A(z), B(i) and C(z). ,4(:)B(z) – ~(z)B(z) are

each left coprime.

(3) @;Z,,(k ) is not reachable from w~ for any 8 selection:
(4) @flx( k ) of (3.10) is reachable from [u: W[] fbr all d selections.

Proof. (1) Let

L::‘;:l’;l‘=min(’m’)H(z) = z’-k2, (z)

By Theorem 3.1, all we need prove is P(ii . . El. . /zi. ..m)n N(H) =i(z), z), ~(z), d(z) left
coprime. Observe that the rows of [–A”, (?, 8] ● N(H) and the rows of [–AA, ~. b] ● P(FI + 1 . . . ii + 1

I + 1 ...1 + 1 R . R). Proof now proceeds as per the proof of Corollary 3.3.
(2) Let

1“1
z~-”l-,, (z)

H(z)= Z’-’TZ1(Z) , l=min(i?, /, iii).

~l–m Im

By Theorem 3.1, all we need prove is P(ii . . . ii i , ~. l~. .~)m N(H)= Oifalldc>nlyif A. Band ~,

A~ – ~B are left coprime. Observe that

[

–i(z) t(z) ~(z)

–A(z) o B(z) 1
H(z)=o.

“..
As before, it is necessary that [ j ~’ j] Fe irredu~ble, or, equivalently, I?’, A&– ~B and A, B be left
coprime. For sufficiency, with ,4, B. and C, A} – AB left coprime, note that since ~(z) is row reduced,
[a(z), ~(z), y(z)] =N(H), a(z) =P”, ~(z)ePp, y(z) ~Pn’=~(z) =Oordeg /?(z)>/. Ifdeg ~(z)>~.
then P(Z . . iii.. ~ /iii . ti)niv(ff)=o. If ~(z)=O, we must have [a(z), y(z)]= {space spanned by
rows of [–A(z), B(z)} -deg a(z)> ii as ,4(z) is row reduced. Hence F’(rI . ii ; . . . j~ ~ fi)m
N(H)=O.

(3) Let

[

z “~T2,(z)-

H(z)= z’ ~T22(z)

o_

Observe

I=min(E, 1, ii7)

[

–i e F’(z)

1
H(z)=o,

o 0 E(z)

where F(z), E(z) are arbitrary. Hence P(R . . . iii...iiti)nN(H)+OH)+O forany~, l,%, andany~.
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(4) Let

[

Z’””T,,(Z) Z’-T,2(Z)
H(z)= Z[–ril

1

I=min(Zl, Z).
In1 o’

Observe that H(z) has full row rank so that A’(H) = O, and @,,,fi(k ) is reachable from [u;

❑

I$marly. 1. Observe that vector [v[ _,, . . . . y~ _fi, fl’~ ,,..., ti~ _,]’ will be reachable from WA

A(z), C(z) are left coprime by virtue of Corollary 3.2.

September 1986

w~]’ for all B.

if and only if

2. By part (3) of Corollary 3.3, persistently exciting noise WLwill not ensure the pseudo linear regression

vector @.lZ(k) to be persistently exciting. This is because WAcannot effect UA.Suppose, however. that UA
is determined from yk by dynamic output feedback, i.e. U(z) = E-1(z) F( z )Z”- “. where E(z) = Iz’ +
E, Z’-l+ . . . +E, and F(Z) =FIZY-l + . . . + F<,, E,, Eq not zero. Necessary and sufficient conditions for
@rti( k ) to be reachable from Wk can be established using the techniques developed above, and are as
follows:

AA(z), ~(z), ~(z) are left coprime and, g,(z) n F’(ti... fiZi. ..i7i)= Ofori=l, m,. ,m, where {gl(z)
•P[’~’”, i= l,..., m } is a minimal polynomial basis for the rational vector space spanned by the rows of
[F(z) E(z)z’], where K= fi-fi+ q-r.

There are three cases, depending on the controller order (i.e. on q and r), which are profitable to

consider, as they simplify the above condition on E(z), F(z).

(i) If q <ii and r K Ei, then @=(k) isnot reachable from WL.
(ii) If q <ii and r < Z, then the E(z), F(z) condition is equivalent to E(z), F(z) left coprime and

q=iiorr=~.

(iii) If q and r are unconstrained, no simplification is possible.
Notice that the order of the controller is crucial in deciding reachability. In particular, low order

controllers (i.e. case (i) above) mean that persistently exciting system noise (e.g. white noise) is not enough
to provide persistence of excitation of the pseudo linear regression vector.

3. To ensure reachability of @~(k) from system inputs for all ~ selections, additional inputs could be
used, as suggested in the modified adaptive schemes of [14], where dither signals are added at the output.

It is easy to see that in this case the pseudo linear regression vector is reachable for any O, thus ensuring

convergence.

5. Final remarks and conclusions

The theory of this paper exposes the relationship between reachability properties of a linear discrete
time system and the translation of excitation properties of system inputs and outputs. The theory is
applied to specific signal models and ARMA and ARMAX based adaptive schemes such as are of interest
in adaptive identification and control. In particular, a theory for excitation of regression and pseudo
regression vectors is developed for polynomial matrix representations. The underlying reachability condi-

tions are expressed as coprimeness conditions on polynomial matrices, confirming some known results
with a co-ordinate basis free proof and providing new results.

These reachability results extend to continuous time systems, with delays replaced by differentiation.

Unfortunately the basic result relating reachability and excitation, Theorem 2.1, does not easily extend to

continuous time, the main problem being to bound the derivatives of y(t) in terms of y(t).However,
results analogous to Theorem 2.1 have been obtained for continuous time systems in [7,8].

The results of this paper, in particular Corollary 2.1, can be extended to piece-wise constant and slowly
time varying systems [15]. For piece-wise constant systems the persistence of excitation condition is
replaced by uniform persistence of excitation. Slowly time varying systems are then handled by approxi-
mating them with piece-wise constant systems using an output error criterion, the level of input excitation
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required being proportional to the output error bound. For the special case of a constant system with a

time varying feedback controller this means that the allowable deviation from a piece-wise constant
controller is inversely proportional to the norm of the system state.

The results of this paper are seen to be useful in guiding the design of adaptive schemes so as to ensure
persistence of excitation and thereby consistent parameter identification and asymptotic optimality.
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