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Janeiro, RJ, Brasil)

Abstract. We generalize the Abstract Interpolation Lemma proved by the authors

in Carvajal and Neves (2010). Using this extension, we show in a more general context

the persistence property for the generalized Korteweg-de Vries equation in the weighted

Sobolev space with low regularity in the weight. The method used can be applied for other

nonlinear dispersive models, for instance the multidimensional nonlinear Schrödinger

equation.

1. Introduction. We are mainly concerned with the question of the persistence prop-

erty in weighted Sobolev spaces for dispersive partial differential equations. Thus, the

aim of this study is to generalize the Abstract Interpolation Lemma proved by the authors

in [2] and to apply this new result to show, in a more general context, the persistence

property of the initial-value problem for the nonlinear dispersive equations. To be more

precise, let us recall the persistence result we established in [2] for the Cauchy Problem

for higher order nonlinear Schrödinger equation, that is,{
∂tu+ i a ∂2

xu+ b ∂3
xu+ i c |u|2u+ d |u|2∂xu+ e u2∂xū = 0, (t, x) ∈ R2,

u(x, 0) = u0(x),
(1.1)

where u is a complex valued function, a, b, c, d and e are real parameters and u0 is a given

initial data. We restate the main theorem of [2]:
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494 X. CARVAJAL AND W. NEVES

Theorem 1.1. The IVP (1.1) is globally well-posed in X2,θ for any 0 ≤ θ ≤ 1 fixed.

Moreover, the solution u of (1.2) satisfies, for each t ∈ [−T, T ],

‖u(t)‖2L2(dμ̇θ)
≤ C

(
‖u0‖2L2 + ‖u0‖2L2(dμ̇θ)

+ 1
)
,

where C = C(θ, ‖u(t)‖Hs, ‖u(0)‖L2 , ‖ux(0)‖L2 , ‖uxx(0)‖L2 , T ), s > 1/2.

The notion of well-posedness for dispersive equations is given below, and the particular

notation used throughout this paper is given in Section 1.1. Therefore, one of the main

issues of this article is to extend the persistence property proved before for θ ∈ [0, 1]

to more general values of the exponent θ. In particular, we explore our strategy on

the generalized KdV equation (see (1.2) below); i.e., we consider the 1-dimensional case.

However, the extension of the Abstract Interpolation Lemma proved in this paper to show

the persistence property for more general exponents θ also allows us to demonstrate the

persistence property for multi-dimensional equations as presented in this paper.

Consider the initial value problem (IVP){
∂tu+ a(u)∂xu+ ∂x

3u = 0, (t, x) ∈ R2,

u(0, x) = u0(x),
(1.2)

where u is the real valued function we are seeking, u0 is the initial data given in some

convenient space, and a(u) is a given C∞ (weaker differentiability is sufficient for most

results) real value function. Moreover, we may assume that a(u) satisfies, as in Kato [4],

the following condition:

lim sup
|λ|→∞

2

|λ|6
∫ λ

0

(λ− s) a(s) ds ≤ 0. (1.3)

Now, we introduce the typical notion of well-posedness that we are going to use

throughout this paper. First, we consider the integral equation associated with (1.2),

u(t) = U(t) u0 +

∫ t

0

U(t− τ ) a(u(τ )) ∂xu(τ ) dτ, (1.4)

where U(t) is the unitary group solution of the linear KdV equation. It is not difficult to

show that if u is a solution for the Cauchy Problem (1.2), then it satisfies (1.4). Then,

we have the following.

Definition 1.2. Let X, Y be two Banach spaces such that X is continuously embed-

ded in Y . Suppose that, for each u0 ∈ X, there exists T > 0 and a unique function

u ∈ C([0, T ];X) (1.5)

satisfying (1.4) for all t ∈ [0, T ], and also ∂tu ∈ C((0, T ];Y ). The Cauchy Problem (1.2)

is said to be locally well-posed in X when the map u0 �→ u is continuous from X to

C([0, T ];X). If T can be taken arbitrarily large, then (1.2) is said to be globally rather

than locally well-posed in X. Moreover, (1.5) implies the persistence property of the

initial data.

If we consider the initial data in Sobolev spaces with sufficient regularity, for example

in Hs(R), s ≥ 2, it is not difficult to prove the unique existence of the solution of the

IVP (1.2) in the weighted Sobolev spaces. However, proving the persistence property,
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PERSISTENCE PROPERTY IN WEIGHTED SOBOLEV SPACES 495

also continuous dependence, is not so easy and it is quite involved when we are working

in weighted Sobolev spaces. Our main focus in this paper is to show the persistence

property with respect to more general exponents, as explained below. To accomplish

this, in the present paper we establish an extension of the Abstract Interpolation Lemma

proved in [2]. In fact, the interpolation extension proved here is quite general and applies

to several dispersive equations provided they satisfy certain a priori estimates. These a

priori estimates are related to the conserved quantities and are as follows:

‖u(t)‖L2 ≤ C‖u0‖L2 , (1.6)

‖u(t)‖Ḣa(r) ≤ A1(‖u0‖Ha(r)), (1.7)

and

‖u(t)‖L2(dμ̇r) ≤ C‖u0‖L2(dμ̇r) +A2(‖u0‖Ha(r)), (1.8)

where a(r) ≥ 1, r ∈ Z+, Aj are nonnegative continuous functions with A1(0) = 0,

A2(0) = 0. Here, we consider that the IVP (1.2) satisfies (1.6)–(1.8) (for that we refer

the reader to Kato [4]) as we are going to explain below. A typical equation that satisfies

the properties (1.6)–(1.8) is the IVP associated to the generalized Korteweg-de Vries

(gKdV) equation,{
∂tu+ uk∂xu+ ∂3

xu = 0, (t, x) ∈ R2, k = 1, 2, 3, · · · ,
u(x, 0) = u0(x).

(1.9)

Before stating the main result of this work, we discuss some similar results previously

obtained in the same direction of the main issue of this paper. The IVP associated to

the nonlinear Schrödinger (NLS) equation{
i∂tu+Δu = μ|u|α−1u, μ = ±1, α > 1, x ∈ Rn, t ∈ R,

u(x, 0) = u0(x)
(1.10)

has been studied in [3] for given data in the weighted Sobolev spaces. More precisely,

the following theorem which deals with the persistence property has been proved in [3]:

Theorem 1.3. Suppose that u0 ∈ Hs(Rn) ∩ L2(|x|2mdx), m ∈ Z+, with m ≤ α− 1 if α

is not an odd integer.

A. If s ≥ m, then there exist T = T (‖u0‖s,2) > 0 and a unique solution u = u(x, t) of

the IVP (1.10) with

u ∈ C([−T, T ];Hs ∩ L2(|x|2mdx)) ∩ Lq([−T, T ];Lp
s ∩ Lp(|x|2mdx)). (1.11)

B. If 1 ≤ s < m, then (1.11) holds with [s] instead of m, and

Γβu = (xj + 2it∂xj
)βu ∈ C([−T, T ];L2) ∩ Lq([−T, T ];Lp), (1.12)

for any β ∈ (Z+)n with |β| ≤ m.

The power m of the weight in Theorem 1.3 is assumed to be a positive integer. In the

recent study of Nahas and Ponce [9], this restriction in m is relaxed by proving that the

persistence property holds for positive real m. To be more precise, the result in [9] is the

following.
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496 X. CARVAJAL AND W. NEVES

Theorem 1.4. Suppose that u0 ∈ Hs(Rn)∩L2(|x|2mdx), m > 0, with m ≤ α− 1 if α is

not an odd integer.

A. If s ≥ m, then there exist T = T (‖u0‖s,2) > 0 and a unique solution u = u(x, t) of

the IVP (1.10) with

u ∈ C([−T, T ];Hs ∩ L2(|x|2mdx)) ∩ Lq([−T, T ];Lp
s ∩ Lp(|x|2mdx)). (1.13)

B. If 1 ≤ s < m, then (1.13) holds with [s] instead of m, and

ΓbΓβu ∈ C([−T, T ];L2) ∩ Lq([−T, T ];Lp), (1.14)

where Γb = ei|x|
2/4t2btbDb(e−i|x|2/4t) with |β| = [m] and b = m− [m].

In the next section (see the IVP (1.20), Theorem 1.11 and Remark 1.12) we establish

the conditions to apply our technique, and hence we obtain similar results for the above

NLS equation.

Now, we recall that Kato [4] studied the IVP (1.2) for the given initial data in the

weighted Sobolev spaces and proved the following result.

Theorem 1.5. Let r be a positive integer. Then, the IVP (1.2) is locally well-posed in

weighted Sobolev spaces X2r,r and globally well-posed in X2r,r if the initial data satisfies

‖u0‖L2 < γ, for some positive γ.

The proof of Theorem 1.5 is given in Kato’s Theorem 8.1 and Theorem 8.2; see [4].

In fact, it seems that the persistence property for dispersive equations has been widely

discussed recently, as in Nahas [7] and Nahas and Ponce [8]. Moreover, the results in [7]

were extended recently by Nahas to the generalized KdV equation; see [6]. In this paper

we are interested in removing the requirement that the power of the weight in Theorem

1.5 be an integer by proving that a similar result is obtained for noninteger values of r.

The main result of this article is the following.

Theorem 1.6. Assume r ≥ 1. If the IVP (1.2) is locally well-posed in Hs for s ≥ 2r

and satisfies the a priori estimates (1.6)–(1.8), then the IVP (1.2) has the properties of

the unique existence and persistence in weighted Sobolev spaces Xs,θ, for s ≥ 2r and

θ ∈ [0, r].

One observes that in the above theorem r is a real number. Moreover, from the proof

of Theorem 1.6, it can be inferred that if one has the local well-posedness result for

given data in Hs and if the model under consideration satisfies a priori estimates (1.6)–

(1.8), then with the help of the Abstract Interpolation Lemma, it is easy to prove the

persistence property in weighted Sobolev spaces.

As an application of Theorem 1.6 we have the following result.

Theorem 1.7. Let r ≥ 1 be a real number. Then, the IVP for the gKdV equation

(1.9) is locally well-posed in weighted Sobolev spaces Xs,θ, for s ≥ 2r and 0 ≤ θ ≤ r.

Moreover, it is globally well-posed in Xs,θ, for 0 ≤ θ ≤ r and s ≥ 2r, when the initial

data satisfies ‖u0‖L2 < γ for some positive γ.

The paper is organized as follows: In the rest of this section we fix the notation and

some background used throughout the paper. The Abstract Interpolation Lemma is

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



PERSISTENCE PROPERTY IN WEIGHTED SOBOLEV SPACES 497

given in Section 2. In Section 3, we first show some conserved quantities and prove a

nonlinear estimate. Then, we formulate the approximate problems associated to the IVP

(1.2) from them; then we gain continuous dependence in Hs norms, which is used to

show mainly Theorem 1.7 at the end of this section.

1.1. Notation and background. We follow the notation introduced in our earlier paper

[2]. For the sake of clarity we recall most of it here, clearly adapted for the multi-

dimensional setting and for the more general case of θ ∈ [0, r], r ≥ 1. Moreover, we

present some results used through the paper.

We use dx to denote the Lebesgue measure on Rn and

dμθ(x) := (1 + ‖x‖2)θ dx,

dμ̇θ(x) := ‖x‖2θ dx

to denote the Lebesgue-Stieltjes measures on Rn. Hence, given a set X, a measurable

function f ∈ L2(X; dμθ) means that

‖f‖2L2(X;dμθ)
=

∫
X

|f(x)|2 dμθ(x) < ∞.

When X = Rn, we write: L2(dμθ) ≡ L2(Rn; dμθ), and for simplicity

L2 ≡ L2(dμ0), L2(dμ) ≡ L2(dμ1)

and similarly for the measure dμ̇θ. We will use the Lebesgue space-time Lp
xL

q
τ endowed

with the norm

‖f‖Lp
xL

q
τ
=

∥∥‖f‖Lq
τ

∥∥
Lp

x
=

(∫
R

(∫ τ

0

|f(x, t)|qdt
)p/q

dx
)1/p

(1 ≤ p, q < ∞).

When the integration in the time variable is on the whole real line, we use the notation

‖f‖Lp
xL

q
t
. The notation ‖u‖Lp is used when there is no doubt about the variable of

integration. We adopt similar notation as above when p or q is ∞. As usual, Hs ≡
Hs(Rn), Ḣs ≡ Ḣs(Rn) are the classic Sobolev spaces in Rn, endowed respectively with

the norms

‖f‖Hs := ‖f̂‖L2(dμs), ‖f‖Ḣs := ‖f̂‖L2(dμ̇s).

We study in this work the solutions of dispersive equations in the weighted Sobolev

spaces Xs,θ, defined as

Xs,θ := Hs ∩ L2(dμθ), (1.15)

with the norm

‖f‖Xs,θ := ‖f‖Hs + ‖f‖L2(dμθ).

We remark that Xs,r ⊆ Xs,θ, for all s ∈ R and θ ∈ [0, r]. Indeed, using Hölder’s inequality,

we have

‖f‖L2(dμ̇θ) ≤ ‖f‖1−θ/r
L2 ‖f‖θ/rL2(dμ̇r)

. (1.16)

Moreover, we recall the classical notation of pseudo-differential operators. For any real

number m, we define the set

Sm := {a ∈ C∞(R2n;C) : |∂α
x ∂

β
ξ a(x, ξ)| ≤ Cα,β(1 + |ξ|)m−|β|, ∀α, β ∈ (Z+)n}.
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498 X. CARVAJAL AND W. NEVES

For a ∈ Sm, we consider the differential operator a(x,D), defined for any f ∈ S(Rn) in

the following sense:
̂(a(x,D)f)(ξ) = a(x, ξ)f̂(ξ).

The proof of the next two lemmas can be found in [9].

Lemma 1.8. If a ∈ S0, then for each b > 0,

a(x,D) : L2(Rn; dμb) → L2(Rn; dμb)

is a bounded differential operator.

Lemma 1.9. Let a, b > 0. If Daf ∈ L2(Rn) and f ∈ L2(Rn; dμb), then for each θ ∈ [0, 1],

‖D(1−θ)af‖L2(dμθb) ≤ C ‖f‖θL2(dμb)
‖Daf‖1−θ

L2 . (1.17)

Now, applying Lemma 1.8 we have the following:

Lemma 1.10. Let β ∈ (Z+)n be a multi-index and b > 0 fixed. If f ∈ S(Rn), then

‖∂βf‖L2(dμ̇b) ≤ C‖D|β|f‖L2(dμ̇b) + C‖f‖L2(dμ̇b). (1.18)

Proof. Let us consider a(x, ξ) =
ξβ

(1 + |ξ|2)|β|/2 ; we can see that a ∈ S0. Then, applying

Lemma 1.8, the associated operator a(x,D) is bounded in L2(Rn; dμb). Therefore, it

follows that

‖a(·, D)g‖L2(dμ̇b) ≤ C‖g‖L2(dμ̇b). (1.19)

If Ĵβf(ξ) = (1 + |ξ|2)|β|/2 f̂(ξ), considering g = Jβf , then a(D)g = (1/i|β|)∂βf , and the

lemma is proved. �
Now, we consider the following evolution equation:{

∂tu+ Lu+ F (u,∇xu) = 0, (t, x) ∈ R× Rn,

u(0, x) = u0(x),
(1.20)

where the linear part of the equation Lu is defined by

L̂u(ξ) = i h(ξ) û(ξ),

for some polynomial symbol h(ξ) real valued, and F (x, y) is a function with F (0, 0) = 0

(for the KdV equation h(ξ) = −ξ3, ξ ∈ R, F (x, y) = a(x)y, and for the nonlinear

Schrödinger equation h(ξ) =
∑n

k=1 ξ
2ek = |ξ|2 where ek is the k-th unit vector, ξ ∈ Rn,

F (x, y) = |x|α−1x, α > 1).

Theorem 1.11. Let r ≥ 1 and u ∈ C([−T, T ];Xs,r) be a smooth solution of the linear

IVP {
∂tu+ Lu = 0, (t, x) ∈ R× Rn,

u(0, x) = u0(x),
(1.21)

where the linear operator L is defined with symbol h(ξ) =
∑p

j=1 Cjξ
βj , ξ ∈ Rn, βj ∈

(Z+)n, |βj | > 1, j = 1, . . . , p. Then, u satisfies the inequality (1.8) with

a(r) = ( max
j=1,...,p

|βj | − 1) r. (1.22)
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Proof. By the Bona-Smith approximation argument, we can suppose that u(t) ∈
S(Rn) or in some Xs0,r with s � s0. Moreover, without loss of generality, we can

suppose that h(ξ) = ξβ, for some multi-index β, |β| > 1. Multiplying (1.21) by |x|2ru,
taking the real part and integrating, we have

0 = ∂t

∫
|x|2r|u|2dx+ 2Re

∫
(x · x)ruLudx. (1.23)

Using the notation of multi-indices α = (α1, . . . , αn), αj ∈ Z+, j = 1, . . . , n, we have

respectively the multi-nomial and Leibniz formula⎛⎝ n∑
j=1

x2
j

⎞⎠r

=
∑
|α|=r

(
r

α

)
x2α, ∂α(f(ξ)g(ξ)) =

∑
η≤α

(
α

η

)
∂ηf(ξ)∂α−ηg(ξ). (1.24)

Applying the definition of the Fourier transform, we obtain

∂α
ξ û(ξ) = (−i)|α|x̂αu(ξ), (1.25)

and by the multi-nomial formula, Plancherel equality and (1.25), we can write∫
|x|2r|u(x)|2dx = (−1)|α|

∫ ∑
|α|=r

(
r

α

) ∣∣∂α
ξ û(ξ)

∣∣2 dξ. (1.26)

Now, considering the second term in (1.23), we have∫
(x · x)ruLudx =

∫ ⎛⎝ n∑
j=1

x2
j

⎞⎠r

uLu dx

=

∫ ∑
|α|=r

(
r

α

)
x2α uLu dx

=
∑
|α|=r

(
r

α

)∫
xα uxα Ludx

=
∑
|α|=r

(
r

α

)∫
x̂α u x̂α Ludξ, (1.27)

where in the last equality we used Plancherel equality. By the Leibniz formula, identity

(1.25) and definition of L with h(ξ) = ξβ, we have∫
x̂α u x̂α Ludξ = (−1)|α|

∫
∂α
ξ û(ξ) ∂

α
ξ L̂u(ξ)dξ

= i (−1)|α|
∫

∂α
ξ û(ξ) ∂

α
ξ (h(ξ)û(ξ) )dξ

= i (−1)|α|
∫

∂α
ξ û(ξ)

∑
η≤α

(
α

η

)
(∂ηξβ) (∂α−η

ξ û(ξ) )dξ. (1.28)

One observes that when η = (0, . . . , 0) := 0 in (1.28), we obtain

i (−1)|α|
∫

|∂α
ξ û(ξ)|2dξ,
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500 X. CARVAJAL AND W. NEVES

and thus this term in (1.23) is equal to zero. We conclude from (1.26), (1.27) and (1.28)

that

2Re

∫
|x|2r uLu dx

= 2Re i (−1)|α|
∑
|α|=r

(
r

α

)∫
∂α
ξ û(ξ)

∑
η≤α

η �=0

(
α

η

)
(∂ηξβ) (∂α−η

ξ û(ξ) )dξ

≤
∑
|α|=r

(
r

α

)∫ ⎛⎜⎜⎝|∂α
ξ û(ξ)|2 + Cr

∑
η≤α

η �=0

(
α

η

)2 ∣∣∣∂ηξβ ∂α−η
ξ û(ξ)

∣∣∣2
⎞⎟⎟⎠ dξ

≤
∫

|x|2r|u(x)|2dx+ Cr

∑
|α|=r

(
r

α

)∑
η≤α

η �=0

(
α

η

)2 ∫ ∣∣∣∂ηξβ ∂α−η
ξ û(ξ)

∣∣∣2 dξ. (1.29)

In order to estimate the second term in (1.29), we consider a multi-index η ≤ α, η �= 0,

and the expression J(α, β, η) = ‖∂ηξβ ∂α−η
ξ û(ξ)‖L2

ξ
. Then, for 0 �= η ≤ α, η ≤ β, using

(1.25), Plancherel equality, and the Leibniz formula, we obtain

J(α, β, η) = ‖(∂ηξβ) ∂α−η
ξ û(ξ)‖L2

ξ
=

β!

(β − η)!
‖ξβ−η ∂α−η

ξ û(ξ)‖L2
ξ

=
β!

(β − η)!
‖ξβ−η ̂(xα−ηu)(ξ)‖L2

ξ

=
β!

(β − η)!
‖∂β−η

x (xα−ηu)‖L2
x

≤ β!

(β − η)!

∑
ν≤β−η

(
β − η

ν

)
‖(∂νxα−η) (∂β−η−ν

x u)‖L2
x
. (1.30)

Now, we proceed to estimate ‖(∂νxα−η) (∂β−η−ν
x u)‖L2

x
. We know that the function

∂νxα−η �= 0 if ν ≤ α−η and zero otherwise. Thus we suppose that ν ≤ α−η, ν ≤ β−η,

and since η �= 0, we have

r0 = |α− η − ν| = |α| − |η| − |ν| = r − |η| − |ν| < r

and

r1 = |β − η − ν| = |β| − |η| − |ν| < |β|.
Therefore, applying Lemma 1.10 we obtain

‖(∂νxα−η) (∂β−η−ν
x u)‖L2

x
=

(α− η)!

(α− η − ν)!
‖xα−η−ν ∂β−η−ν

x u‖L2
x

≤ (α− η)!

(α− η − ν)!
‖|x|r0 ∂β−η−ν

x u‖L2
x

≤ Cα,η,ν

(
‖|x|r0 Dr1

x u‖L2
x
+ ‖|x|r0u‖L2

x

)
. (1.31)

We observe that η �= 0 implies |η|+ |ν| ≥ 1, and this inequality implies

1− |η|+ |ν|
r

≤ 1− |β| − |η| − |ν|
(|β| − 1)r

.
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Now we choose θ such that 1− |η|+ |ν|
r

≤ θ ≤ 1− |β| − |η| − |ν|
(|β| − 1)r

; it follows that θ ∈ [0, 1].

Thus applying the Intermediate Value Theorem, there exist b ∈ [0, r] and a ∈ [0, (|β|−1)r]

such that r0 = θb and r1 = (1− θ)a. Using Lemma 1.9 and the interpolation (1.16), we

obtain

‖(∂νxα−η) (∂β−η−ν
x u)‖L2

x
≤ C‖u‖θL2(dμr)

‖u‖1−θ
H(|β|−1)r + C‖xru‖(1−κ0)

L2
x

‖u‖κ0

L2 ,

where κ0 = r0/r, and this concludes the proof of the theorem. �
Remark 1.12. i) One observes that for the generalized KdV equation, we have a(r) =

2r and for the nonlinear Schrödinger equation a(r) = r.

ii) In order to obtain the estimate (1.8) for the Cauchy problem (1.20), we multiply (1.20)

by |x|2ru, take the real part and integrate to obtain

0 = ∂t

∫
|x|2r|u|2dx+ 2Re

∫
(x · x)ruLudx+ 2Re

∫
(|x|ru) |x|rF (u,∇xu)dx. (1.32)

Then, by Theorem 1.11 we only need to estimate the third term in (1.32) (for the non-

linear Schrödinger this term is zero). Using the Cauchy-Schwartz inequality,

2Re

∫
(|x|ru) |x|rF (u,∇xu)dx ≤ 2‖|x|ru‖L2

x
‖|x|rF (u,∇xu)‖L2

x
. (1.33)

Thus we need an estimate of the following form:

‖|x|rF (u,∇xu)‖L2
x
≤ C‖|x|ru‖L2

x
A(‖u‖Ha(r)), (1.34)

and it is possible if for example F (x, y) = xG(x, y), where G is a polynomial function

and a(r) > n/2 + 1, in order to use immersion of u and ∇xu in L∞
x and therefore

|G(u,∇xu)| ≤ A(‖u‖Ha(r)).

2. The Generalized Interpolation Lemma. In this section we generalize the Ab-

stract Interpolation Lemma established by the authors in [2]. In fact, we extend in two

directions: First, we generalize to the multi-dimensional setting. The second extension

is concerned with the exponent θ of the weight.

Let s > n/2, r ≥ 1 be fixed. For each T > 0, we consider a family A of functions f

from [−T, T ] in Hs(Rn), satisfying the following conditions:

(C1) The measure Ln
(
{ξ ∈ Rn; f(t, ξ) �= 0}

)
is positive, where Ln

(
E
)
is the Lebesgue

measure of a measurable set E ⊂ Rn.

(C2) There exist positive constants C0, C̃0 and a function A0 ≥ 0 which do not depend

on f and t such that

‖f(t)‖2L2 ≤ C0 ‖f(0)‖2L2 , (2.35)

‖f(t)‖2L2(dμ̇r)
≤ C̃0 ‖f(0)‖2L2(dμ̇r)

+A0(‖f(0)‖Ha(r)). (2.36)

(C3) For all θ ∈ [0, r], there exist Θ > 0, which does not depend on f and t, and

γ1 ∈ (0, 1/2) such that∫
{|f(t)|2<Θ}

|f(t)|2 dμ̇θ ≤ γ1

∫
Rn

|f(t)|2 dμ̇θ. (2.37)
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(C4) There exist R > 0 and γ2 ∈ (0, 1) (both independent of f) such that∫
Rn\B(0,R)

|f(0)|2 dμ̇r ≤ γ2

∫
Rn

|f(0)|2 dμ̇r. (2.38)

Clearly the set A depends on the constants C0, C̃0, R, γ2, and also the functions A0,

Θ(θ). In the following, we present two different families which satisfy the conditions

(C1)–(C4). The former example is a nonenumerable set of functions which are not

necessarily solutions of a partial differential equation. On the other hand, the elements

of the family in the second example are solutions of the dispersive equation (1.20).

Example 2.1. Let R0, T > 0, r ≥ 1 be constants and b > 0 such that, for each

θ ∈ [0, r], ∫
{R0≤|ξ|≤R0+b}

|ξ|2θdξ ≤ 1

3(T + 1)2

∫
{|ξ|≤R0}

|ξ|2θdξ. (2.39)

Let B0 be the set of continuous functions in Rn such that

g(ξ) =

{
0, if |ξ| > R0 + b,

L, if |ξ| ≤ R0,

and 0 ≤ g(ξ) ≤ L, where L is any positive real number, fixed. Now, we set

B1 = {f(t, ξ) = g(ξ)(1 + |t|); t ∈ [−T, T ], g ∈ B0}.

Then, the family B1 satisfies the (C1)–(C4) conditions. Indeed, condition (C1) is clearly

satisfied. The condition (C2) is satisfied with C0 = C̃0 = 1 + T . The condition (C4) is

satisfied with R = R0 + b for all γ2 ∈ (0, 1), since the first integral in (2.38) is null. And

the condition (C3) is satisfied with Θ = L2 and γ1 = 1/3, since (2.39) implies∫
{|f(t)|2<L2}

|ξ|2θ|f(t, ξ)|2dξ ≤ (1 + T )2L2

∫
{R0≤|ξ|≤R0+b}

|ξ|2θdξ

≤ (1 + T )2L2

3(1 + T )2

∫
{|ξ|≤R0}

|ξ|2θdξ

=
1

3

∫
{|ξ|≤R0}

|ξ|2θ|g(ξ)|2dξ

≤ 1

3

∫
{|ξ|≤R0}

|ξ|2θ|f(t, ξ)|2dξ

≤ 1

3

∫
Rn

|ξ|2θ|f(t, ξ)|2dξ.

We remark that the following example will be used in the proofs of Theorems 1.6 and

1.7.

Example 2.2. We consider the evolution equation (1.20) under the conditions in

Remark 1.12. We assume that

u0(x) ∈ Xs,r, u0 �= 0. (2.40)

Now, let (uk
0) be a sequence of regular functions (in S(Rn) or in some Xs0,θ, with s � s0)

such that

uk
0 → u0 in Xs,θ when k → ∞. (2.41)
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If the IVP (1.20) satisfies the conditions (1.6)–(1.8), and it is well-posed in C([−T, T ];Hs),

then the set of solutions

C = (uk(t))
(
k > N0, for some N0 > 0

)
(2.42)

of the IVP (1.20) with initial data uk
0 satisfies the conditions (C1)–(C4). Indeed, we have

the following:

Condition (C1)

We prove this by contradiction. First, we suppose that

∀N0, ∃k ≥ N0, ∃t ∈ [−T, T ]; Ln
(
{x ∈ Rn;uk(t, x) �= 0}

)
= 0.

Then, there exist km ≥ m, m = 1, 2, · · · , and tm ∈ [−T, T ] such that

ukm(tm, x) = 0, x− a.e. (2.43)

By (2.41), (2.43) and the continuous dependence of the initial data, the sequence of

solutions uk(t), associated to IVP (1.20) and initial data uk
0 , satisfies

‖u(tm)‖Hs = ‖ukm(tm)− u(tm)‖Hs ≤ sup
t∈[−T,T ]

‖ukm(t)− u(t)‖Hs
m→∞→ 0. (2.44)

As u ∈ C([−T, T ];Hs), tm ∈ [−T, T ], by compactness we can assume that tm → t0 ∈
[−T, T ]. Thus ‖u(tm)‖Hs → ‖u(t0)‖Hs and by (2.44), it follows that ‖u(t0)‖Hs = 0,

which implies

u(t0, x) = 0, x− a.e.

By uniqueness of solutions, we have for any t ∈ [−T, T ], u(t, x) = 0 almost everywhere.

In particular, u(0, x) = u0 = 0, which is to say a contradiction with (2.40).

Condition (C2)

It is a direct consequence given from the fact that the solution u of the IVP (1.20)

satisfies the conditions (1.6) and (1.8).

Condition (C3)

We must prove that

∀θ ∈ [0, r], ∃Θ > 0, s.t. ∀k > N0, ∀t ∈ [−T, T ] and for some γ1 ∈ (0, 1/2),

we have ∫
{|uk(t)|2<Θ}

|uk(t)|2 dμ̇θ ≤ γ1

∫
Rn

|uk(t)|2 dμ̇θ. (2.45)

Again, we prove this condition by contradiction. We suppose that

∃θ ∈ [0, r], ∀Θ > 0, ∃k > N0, ∃t ∈ [−T, T ] and ∀γ1 ∈ (0, 1/2)

and we have ∫
{|uk(t)|2<Θ}

|uk(t)|2 dμ̇θ > γ1

∫
Rn

|uk(t)|2 dμ̇θ.

Then, there exist kj > N0, tj ∈ [−T, T ], j ∈ Z+ and γ0 ∈ (0, 1/2) such that∫
{|ukj (tj)|2<1/j}

|ukj (tj)|2 dμ̇θ > γ0

∫
Rn

|ukj (tj)|2 dμ̇θ. (2.46)

Now, without loss of generality, we can suppose that

tj → t0 ∈ [−T, T ] when j → ∞. (2.47)
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Further, we consider the map

Φ : Z+ → V = {kj ; j ∈ Z+}, Φ(j) = kj , (2.48)

and the following cases:

Case I, the set V is not finite: In this case we can suppose that kj → ∞ when j → ∞.

By the immersion (s > n/2), (2.41) and continuous dependence of the initial data, the

subsequence of solutions ukj (tj), associated to IVP (1.20) and initial data u
kj

0 , satisfies

|ukj (tj , x)− u(t0, x)| ≤ C‖ukj (tj)− u(tj)‖Hs + C‖u(tj)− u(t0)‖Hs

≤ sup
t∈[−T,T ]

‖ukj (t)− u(t)‖Hs + C‖u(tj)− u(t0)‖Hs
j→∞−→ 0, (2.49)

where we have used that u ∈ C([−T, T ];Hs).

Then, using (2.49), the Dominated Convergence Theorem and (2.46), we obtain a

contradiction.

Case II, the set V is finite: In this case, concerning the application Φ, there exists kq ∈ V

such that V0 := Φ−1{kq} = {q1, q2, · · · } ⊆ Z+ must not be finite, with qj < qj+1, for

each j ∈ Z+. Therefore, by (2.46) we get∫
{|ukq (tqj )|2<1/qj}

|ukq (tqj )|2 dμ̇θ > γ0

∫
Rn

|ukq (tqj )|2 dμ̇θ. (2.50)

If j → ∞, then qj → ∞ and by (2.47) tqj → t0. As ukq ∈ C([−T, T ];Hs), by immersion,

we have for any x ∈ Rn,

|ukq (tqj , x)− ukq (t0, x)| ≤ C‖ukq (tqj )− ukq (t0)‖Hs
j→∞−→ 0. (2.51)

Therefore, arguing as previously in Case I and taking the limit in (2.50), we obtain a

contradiction.

Condition (C4)

We prove: There exist R > 0 and γ2 ∈ (0, 1) such that for any k > N0,∫
Rn\B(0,R)

|uk(0, x)|2 |x|2rdx ≤ γ2

∫
Rn

|uk(0, x)|2 |x|2rdx.

Again by contradiction, we suppose that

∀R > 0, ∀γ2 ∈ (0, 1), ∃k > N0, such that∫
{|x|>R}

|uk(0, x)|2 |x|2rdx > γ2

∫
Rn

|uk(0, x)|2 |x|2rdx. (2.52)

In particular, this proposition implies for any m ∈ Z+ that there exists km > N0 such

that ∫
{|x|>m}

|ukm
0 (x)|2 |x|2rdx >

(
1− 1

m

)∫
Rn

|ukm
0 (x)|2 |x|2rdx. (2.53)

Let us consider the map

Γ : Z+ → W = {km; m ∈ Z+}, Γ(m) = km, (2.54)
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and the following cases:

Case I, the set W is not finite: In this case we can suppose that km → ∞ when m → ∞,

and thus by (2.41), we obtain∫
{|x|>m}

|ukm
0 (x)− u0(x)|2 |x|2rdx ≤

∫
Rn

|ukm
0 (x)− u0(x)|2 |x|2rdx m→∞→ 0 (2.55)

and ∫
Rn

|ukm
0 (x)|2 |x|2rdx m→∞→

∫
Rn

|u0(x)|2 |x|2rdx. (2.56)

Moreover, as∫
{|x|>m}

|ukm
0 (x)|2 |x|2rdx ≤

∫
{|x|>m}

|ukm
0 (x)− u0(x)|2 |x|2rdx

+

∫
{|x|>m}

|u0(x)|2 |x|2rdx m→∞−→ 0, (2.57)

from (2.53)–(2.57), we arrive at a contradiction.

Case II, the set W is finite: In this case, again concerning the application Γ, there exists

kp ∈ W such that W0 := Γ−1{kp} = {p1, p2, · · · } ⊆ Z+ is not finite, with pi < pi+1,

i ∈ Z+. Therefore, by (2.53) we get∫
{|x|>pm}

|ukp

0 (x)|2 |x|2rdx >

(
1− 1

pm

)∫
Rn

|ukp

0 (x)|2 |x|2rdx. (2.58)

Similarly to Case I before, taking the limit in (2.58) when m → ∞ (pm → ∞), we obtain

a contradiction.

Now we pass to the Generalized Abstract Interpolation Lemma.

Lemma 2.3. Let r ≥ 1 be a real number, and A a family satisfying the conditions (C1)–

(C4). Then, for each θ ∈ (0, r), there exists a positive constant ρ(θ, r) such that, for each

t ∈ [−T, T ],

‖f(t)‖2L2(dμ̇θ)
≤ ‖f(t)‖2ρHs

(
K0 ‖f(0)‖2L2 +K1 ‖f(0)‖2L2(dμ̇θ)

+K2

)
(2.59)

for all f ∈ A, where

K0 = C0 R
2θ

(
4

Θ

)ρ+1

, K1 =
C̃0

ρ(1− γ2)

(
4

Θ

)ρ

, K2 =
A0(‖f(0)‖Ha(r))

ρR2θρ
.

Proof. The technique is similar to the proof of Lemma 2.2 in [2], but we give a proof

for the sake of completeness. For simplicity, we write f(t, ξ) ≡ f(ξ) and f(0, ξ) ≡ f0(ξ).

Let κj > 0 (j = 0, 1) be constants independent of t, and for θ ∈ [0, r], we set

Iκ1
1 :=

∫
Rn

‖ξ‖2θ |f(ξ)|2 χ{|f(ξ)|2>κ1} dξ,

Iκ1
2 :=κ1

∫
Rn

‖ξ‖2θ χ{|f(ξ)|2>κ1} dξ,

Iκ1
3 :=

∫
Rn

‖ξ‖2θ |f(ξ)|2 χ{|f(ξ)|2≤κ1} dξ,
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where χE is the characteristic function of the set E. Then, we have

I :=

∫
Rn

‖ξ‖2θ |f(ξ)|2 dξ = Iκ1
1 + Iκ1

3 = Iκ1
1 − κ0I

κ1
2 + Iκ1

3 + κ0I
κ1
2 .

It is not difficult to show that Iκ1
2 < Iκ1

1 , hence κ0I
κ1
2 < κ0 (I

κ1
1 + Iκ1

3 ) = κ0 I. Conse-

quently, we have

(1− κ0) I < I − κ0I
κ1
2 = Iκ1

1 − κ0I
κ1
2 + Iκ1

3 . (2.60)

Now, we show that there exist θ1 > 0 independent of f , t ∈ [−T, T ], and a positive

constant β < 1 such that Iκ1
3 < βIκ1

1 . Indeed, we have∫
Rn

‖ξ‖2θ |f(ξ)|2 χ{|f |2≤κ1} dξ ≤ β

∫
Rn

‖ξ‖2θ |f(ξ)|2 χ{|f |2>κ1} dξ

= β

∫
Rn

‖ξ‖2θ |f(ξ)|2 dξ

− β

∫
Rn

‖ξ‖2θ |f(t, ξ)|2 χ{|f |2≤κ1} dξ,

and hence, we must have∫
Rn

‖ξ‖2θ |f(ξ)|2 χ{|f |2≤κ1} dξ ≤ β

1 + β

∫
Rn

‖ξ‖2θ |f(ξ)|2 dξ,

which is satisfied since f ∈ A. Consequently, we take κ1 = Θ in inequality (2.37). One

observes that since β < 1, it follows that β/(1 + β) < 1/2. It follows that there exists a

positive constant α < 1/2 such that

Iκ1
3 < α(Iκ1

1 + Iκ1
3 ) = αI. (2.61)

Hence we fix κ0 = (3/4− α) > 1/4 and, from (2.60), (2.61), we obtain

I <
Iκ1
1 − κ0I

κ1
2

1− (κ0 + α)
= 4 (Iκ1

1 − κ0I
κ1
2 ) . (2.62)

At this point, we claim that, there exist N1 ∈ N and a constant C1 > 0 both indepen-

dent of f and t, such that, for all η ≥ N1∫
{‖ξ‖<η}

|f(ξ)|2‖ξ‖2r dξ ≤ C1

∫
{‖ξ‖<η}

|f0(ξ)|2‖ξ‖2r dξ + C̃1.

In order to prove the claim, we show that∫
Rn

|f(ξ)|2‖ξ‖2r dξ −
∫
{‖ξ‖≥η}

|f(ξ)|2‖ξ‖2r dξ

≤ C1

∫
Rn

|f0(ξ)|2‖ξ‖2r dξ − C1

∫
{‖ξ‖≥η}

|f0(ξ)|2‖ξ‖2r dξ + C̃1,

for each η ≥ N1. Therefore, from (2.36) and supposing C1 > C̃0, it is enough to show

that

C̃1 + C̃0

∫
R

|f0(ξ)|2|ξ|2r dξ −
∫
{|ξ|≥η}

|f(ξ)|2|ξ|2r dξ

≤ C1

∫
R

|f0(ξ)|2|ξ|2r dξ − C1

∫
{|ξ|≥η}

|f0(ξ)|2|ξ|2r dξ + C̃1.
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By a simple algebraic manipulation, it is sufficient to show that∫
{‖ξ‖≥η}

|f0(ξ)|2‖ξ‖2r dξ ≤ C1 − C̃0

C1

∫
Rn

|f0(ξ)|2‖ξ‖2r dξ,

which is true for each f ∈ A, and we take N1 = R of inequality (2.38).

Now, we proceed to estimate Iκ1
1 − κ0I

κ1
2 . If θ ∈ {0, r}, then by (2.35) and (2.36), it

is obvious that

Iκ1
1 − κ0I

κ1
2 ≤ C0

∫
Rn

‖ξ‖2θ |f0(ξ)|2 dξ.

Then, we consider in the following θ ∈ (0, r). Denoting κ = (κ0κ1)
1/2θ, it follows that

Iκ1
1 − κ0I

κ1
2 =

∫
Rn

(
‖ξ‖2θ |f(ξ)|2 − κ2θ ‖ξ‖2θ

)
χ{|f(ξ)|2>κ1} dξ

=

∫
Rn

(
( ‖ξ‖ |f(ξ)|1/θ )2θ − κ ‖ξ‖ )2θ

)
χ{|f(ξ)|2>κ1} dξ

=

∫
Rn

∫ ‖ξ‖ |f(ξ)|1/θ

κ ‖ξ‖
ϕ′(η) dη dξ

= 2θ

∫ ∞

0

η2θ−1 Ln
(
E(η)

)
dη,

where for each η > 0, ϕ(η) = η2θ and

E(η) :=
{
ξ ∈ Rn / |f(ξ)|1/θ‖ξ‖ > η

}⋂{
ξ ∈ Rn / κ ‖ξ‖ < η

}
.

One observes that for each η > 0, E(η) �= ∅ (in the geometric measure sense). Indeed,

assume to the contrary that E(η) = ∅; then Ln
(
E(η)

)
= 0 and thus I < 0 from (2.62),

which is a contradiction by condition (C1) and the definition of I. Moreover, we observe

that since

1 <
|f(ξ)|2r/θ ‖ξ‖2r

η2r
,

we could write

Ln
(
E(η)

)
≤

∫
{‖ξ‖<η/κ}

|f(ξ)|2r/θ‖ξ‖2r
η2r

dξ.

Therefore, we have

Iκ1
1 − κ0I

κ1
2 ≤ 2θ

∫ ∞

0

η2θ−1

∫
{ ‖ξ‖<η/κ}

|f(ξ)|2r/θ ‖ξ‖2r
η2r

dξ dη

≤ 2θ ‖f(t)‖(2r/θ)−2
Hs

∫ ∞

0

η2θ−2r−1

∫
{ ‖ξ‖<η/κ}

|f(ξ)|2 ‖ξ‖2r dξ dη,
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where we have used the Sobolev Embedding Theorem. Hence applying (2.35), we obtain

Iκ1
1 − κ0I

κ1
2 ≤ 2θ ‖f(t)‖(2r/θ)−2

Hs

∫ N1

0

η2θ−2r−1

∫
{ ‖ξ‖<η/κ}

|f(ξ)|2 η2r

κ2r
dξ dη

+ 2θ ‖f(t)‖(2r/θ)−2
Hs

∫ ∞

N1

η2θ−2r−1

∫
{ ‖ξ‖<η/κ}

|f(ξ)|2 ‖ξ‖2r dξ dη

≤ C0 N2θ
1

κ2r
‖f(t)‖(2r/θ)−2

Hs

∫
Rn

|f0(ξ)|2 dξ

+ 2θ C1 ‖f(t)‖(2r/θ)−2
Hs

∫
Rn

|f0(ξ)|2 ‖ξ‖2r
∫
{η>κ ‖ξ‖}

η2θ−2r−1 dη dξ + Ξ

≤ C0

(
4

κ1

)r/θ

N2θ
1 ‖f(t)‖(2r/θ)−2

Hs

∫
Rn

|f0(ξ)|2 dξ

+ C1

(
4

κ1

)(r−θ)/θ
θ

r − θ
‖f(t)‖(2r/θ)−2

Hs

∫
Rn

|f0(ξ)|2 ‖ξ‖2θ dξ + Ξ,

where

Ξ = C̃1
θ

r − θ

‖f(t)‖(2r/θ)−2
Hs

N
2(r−θ)
1

.

�

3. Statement of the well-posedness result. This is the section where we prove

the well-posedness of the Cauchy problem (1.2) in weighted Sobolev space Xs,θ, for s ≥ 2r

and θ ∈ [0, r].

3.1. Proof of Theorems 1.6 and 1.7.

Proof of Theorem 1.6. Consider r ≥ 1, u0 ∈ Xs,θ, s ≥ 2r, θ ∈ [0, r], with u0 �= 0.

We know that there exists a function u ∈ C([−T, T ], Hs) such that the IVP (1.2) is

globally well-posed in Hs. It is well known that S(R) is dense in Xs,θ. Therefore, for

u0 ∈ Xs,θ there exists a sequence (uλ
0 ) in S(R) such that

uλ
0 → u0 in Xs,θ. (3.63)

By continuous dependence, the sequence of solutions uλ(t) associated to IVP (1.2) and

with initial data uλ
0 satisfies

sup
t∈[−T,T ]

‖uλ(t)− u(t)‖Hs
λ→∞→ 0. (3.64)

Now, assuming conditions (1.3), suppose temporarily that the solutions uλ of the IVP{
∂tu

λ + a(uλ)∂xu
λ + ∂3

xu
λ = 0, (t, x) ∈ R2,

uλ(x, 0) = uλ
0 (x)

(3.65)

satisfy the conditions (C1)–(C4) of Section 2. Therefore Lemma 2.3 gives∫
R

|ξ|2θ|uλ(t, ξ)|2 dξ ≤ C
( ∫

R

|uλ(0, ξ)|2 dξ +
∫
R

|ξ|2θ|uλ(0, ξ)|2 dξ + 1
)
,
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where C = C(θ, ‖uλ(t)‖Hs , ‖uλ(0)‖L2 , ‖uλ
x(0)‖L2 , ‖uλ

xx(0)‖L2 , T ), and taking the limit

when λ → ∞, (3.64) implies∫
R

|ξ|2θ|u(t, ξ)|2 dξ ≤ C
( ∫

R

|u(0, ξ)|2 dξ +
∫
R

|ξ|2θ|u(0, ξ)|2 dξ + 1
)
,

where C = C(θ, ‖u(t)‖Hs, ‖u(0)‖L2 , ‖ux(0)‖L2 , ‖uxx(0)‖L2 , T ). Thus u(t) ∈ Xs,θ, t ∈
[−T, T ], which proves the persistence. The local well-posedness theory in Hs implies the

uniqueness, and thanks to that we obtain uniqueness in Xs,θ.

Finally, following the proof in Example 2.2, we prove that the sequence of solutions

(uλn(t)) satisfies the conditions (C1)–(C4). �
Proof of Theorem 1.7. By Theorem 1.6 is sufficient to prove continuous depen-

dence in the norm ‖ · ‖L2(dμ̇θ). Let u(t) and v(t) be two solutions in Xs,θ of the IVP (1.2)

with initial data u0 and v0 respectively, let uλ(t), vλ(t) be the solutions of the IVP (1.9)

with initial data uλ
0 and vλ0 respectively such that uλ

0 , v
λ
0 ∈ S(R), uλ

0 → u0, v
λ
0 → v0 in

Xs,θ and with λ � 1, so we have

‖u(t)− v(t)‖L2(dμ̇θ) ≤‖u(t)− uλ(t)‖L2(dμ̇θ) + ‖uλ(t)− vλ(t)‖L2(dμ̇θ)

+ ‖vλ(t)− v(t)‖L2(dμ̇θ).

Convergence in (3.64) implies for λ � 1 that

|u(x, t)− uλ(x, t)| ≤ 2|u(x, t)| and |v(x, t)− vλ(x, t)| ≤ 2|v(x, t)|,

and Lebesgue’s Dominated Convergence Theorem gives

‖u(t)− uλ(t)‖L2(dμ̇θ) → 0 and ‖vλ(t)− v(t)‖L2(dμ̇θ) → 0.

Let wλ := uλ − vλ; then wλ satisfies the equation

wλ
t + wλ

xxx + (uλ)kwλ
x + vλxA(uλ, uλ)wλ

x = 0,

where A(x, y) = xk−1 + xk−2y + · · ·+ xyk−1 + yk−1.

Then, we multiply the above equation by w̄λ, integrate on R and take two times the

real part to obtain

∂t

∫
R

|wλ(t, x)|2 dx ≤ h(‖u0‖H2 , ‖v0‖H2)

∫
R

|wλ(t, x)|2 dx,

where h is a polynomial function with h(0, 0) = 0 and we have used (1.6)–(1.8) and

convergence (3.63). Therefore, by Gronwall’s Lemma, we have

‖wλ(t)‖L2 ≤ exp
(
T h(‖u0‖H2 , ‖v0‖H2)

)
‖wλ

0‖L2 ,

which gives the continuous dependence in case θ = 0. Moreover, when θ = r with an

analogous argument as used in the proof of Theorem 1.5 in Section 1,

‖wλ(t)‖L2(dμ̇r) ≤ exp
(
T h1(‖u0‖H2r , ‖v0‖H2r)

)
×

(
‖wλ

0 ‖L2(dμ̇r) + h1(‖u0‖H2r , ‖v0‖H2r)
)
,

where h1 is a continuous function with h1(0, 0) = 0.

Consequently, applying the Abstract Interpolation Lemma, we obtain the continuous

dependence for θ ∈ (0, r), where we have assumed that the family (wλ) satisfies the
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hypothesis of the Abstract Interpolation Lemma. Indeed, these properties for the family

(wλ) are demonstrated in a similar way as in the proof of Theorem 1.6. �
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