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Persistency Model and Its Applications in Choice Modeling∗

Karthik Natarajan† Miao Song‡ Chung-Piaw Teo§

September 2006

Abstract

Given a discrete optimization problem Z(c̃) = max{c̃′x : x ∈ X}, with objective coefficients

c̃ chosen randomly from a distribution θ, we would like to evaluate the expected value Eθ(Z(c̃))

and the probability Pθ(x
∗

i
(c̃) = k) where x∗(c̃) is an optimal solution to Z(c̃). We call this

the persistency problem for a discrete optimization problem under uncertain objective, and

Pθ(x
∗

i
(c̃) = k), the persistence value of the variable xi at k.

In general, this is a difficult problem to solve, even if θ is well specified. In this paper,

we show that a subclass of this problem can be solved in polynomial time. In particular, we

assume that θ belongs to the class of distributions Θ with given marginal distributions, or given

marginal moments conditions. Under these models, we show that the persistency problem for

θ∗ ∈ argmaxθ∈Θ Eθ[Z(c̃)] can be solved via a concave maximization problem.

The persistency model solved using this formulation can be used to obtain important quali-

tative insights to the behaviour of stochastic discrete optimization problems. We demonstrate

how the approach can be used to obtain insights to problems in discrete choice modeling. Using

a set of survey data from a transport choice modeling study, we calibrate the random utility

model with choice probabilities obtained from the persistency model. Numerical results sug-

gest that the persistency model is capable of obtaining estimates which perform as well, if not

better, than classical methods such as logit and cross nested logit models. We can also use the

persistency model to obtain choice probability estimates for more complex choice problems. We

illustrate this on a stochastic knapsack problem, which is essentially a discrete choice problem

under budget constraint. Numerical results again suggest that our model is able to obtain good

estimates of the choice probabilities for this problem.
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1 Introduction

Consider a discrete optimization problem:

Z(c̃) = max{c̃′x : x ∈ X}, (1)

where the feasible region X is given as:

X =
{

x

∣

∣

∣ Ax ≤ b, xi ∈ Xi ⊆ Z+ ∀i ∈ N
}

, (2)

The decision variables xi are indexed in i ∈ N = {1, 2, . . . , n} where the set Xi consists of non-

negative integer values from αi to βi that xi can take:

Xi = {αi, αi + 1, . . . , βi − 1, βi} (3)

For a given distribution θ of the objective coefficients, the expected value of the discrete opti-

mization problem in (1) can be expressed as:

Eθ

(

Z(c̃)

)

= Eθ

(

∑

i∈N

c̃ix
∗
i (c̃)

)

,

where x∗
i (c̃) is an optimal value for the xi decision variable for the objective c̃. When c̃ is random,

x∗
i (c̃) is a random variable. For ease of exposition, we will assume that the set of c̃ such that Z(c̃)

has multiple optimal solutions has a support with measure zero. We can then rewrite the expected

value as:

Eθ

(

Z(c̃)

)

=
∑

i∈N

∑

k∈Xi

kEθ

(

c̃i

∣

∣

∣

∣

x∗
i (c̃) = k

)

Pθ

(

x∗
i (c̃) = k

)

.

In this paper, we are interested in finding the value Eθ(Z(c̃)) and in particular Pθ(x
∗
i (c̃) = k)

where the latter is called the persistence value of xi at the value k1. We call this the persistency

problem for discrete optimization under uncertain objective.

For many fixed choices of the distribution θ (e.g. c̃i’s are independently and uniformly generated

in [0,1]), there is by now a huge literature on finding approximations and bounds to the expected

value of stochastic discrete optimization problem (cf. [13], [3], [8], [7]). However, finding precise

persistence values for stochastic discrete optimization problems appears to be even harder, since

we now need probabilistic information on the support of the optimal solutions. We propose instead

an approach to compute Eθ∗(Z(c̃)) and Pθ∗(x
∗
i (c̃) = k), where

θ∗ ∈ argmaxθ∈ΘEθ

(

Z(c̃)

)

,

1In an earlier work, Adams, Lassiter and Sherali studied the question of to what extent the solution to an LP

relaxation can be used to fix the value of 0-1 discrete optimization problems. They termed this the persistency

problem of 0-1 programming model. The motivation of their work, however is different from ours. See Adams, W.P.,

Lassiter, J.B., and Sherali, H.D., Persistency in 0-1 Polynomial Programming, Mathematics of Operations Research.,

Vol. 23, No. 2, 359-389, (1998).
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and Θ is the set of joint distributions with a prescribed set of information on the marginal dis-

tributions. In this regard, θ∗ can be viewed as an “optimistic” solution in the set Θ, as it is the

distribution which attains the largest expected objective value. We guard against over-optimism

by prescribing the entire marginal distributions (termed as Marginal Distribution Model, MDM),

or a finite set of marginal moments (termed as Marginal Moments Model, MMM). To illustrate our

interest in the persistency problem, we describe two applications next.

Application 1: Bounds For Stochastic Combinatorial Optimization Problems

As our model focuses on finding a “best case” probability distribution, we can provide bounds

for various stochastic combinatorial optimization problems. Lyons, Pemantle and Peres [8], for

instance, showed that whenever c̃i are exponential and independently distributed random variables

with means µi, we have:

E

(

min

{

∑

i∈N

c̃ixi : x ∈ Q
})

≥ min

{

∑

i∈N

µix
2
i : x ∈ Q

}

,

where Q denote the dominant of all s − t paths in a graph G (refer to Lovasz [7] for the gener-

alization to log-concave distributions). Using the results in this paper, we can obtain analogous

bounds. Under the assumption that the c̃i are exponentially distributed, but without assuming

independence, we obtain:

E

(

min

{

∑

i∈N

c̃ixi : x ∈ Q
})

≥ min

{

∑

i∈N

µi

(

xi + (1 − xi) log(1 − xi)

)

: x ∈ Q
}

,

E

(

max

{

∑

i∈N

c̃ixi : x ∈ Q
})

≤ max

{

∑

i∈N

µi

(

xi − xi log(xi)

)

: x ∈ Q
}

,

when Q denote a polytope with 0-1 vertices (the dominant of all s− t path solutions being a special

case). While our bound applies to general 0-1 problems, it is nevertheless weaker than the bound

proposed in Lyons, Pemantle and Peres [8] since we drop the assumption of independence (see

Figure 1). Our bounds have the advantage though that they can be shown to be tight, i.e., we

can find the distribution, with suitable correlations built into the random variables, such that the

expected optimal objective value approaches that obtained by our model.

Application 2: Choice Probability In Discrete Choice Models

Discrete choice models deal with problem of estimating the probability that a random customer

will choose a particular product from a finite set of products. Assume that the utility function that

a random customer attaches to product i ∈ N is expressed as

Ũi = Vi + ǫ̃i,
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Figure 1: Comparison of Lyons, Pemantle and Peres [8] and MDM bound.

where Vi is the deterministic component that relates to the known attributes of the product and ǫ̃i

is the random error associated with the product due to factors not considered. Under the random

utility maximization model, the probability that product i will be chosen is basically the persistence

value P (x∗
i (c̃) = 1), where the problem of interest is:

Z(c̃) = max

{

c̃′x :
∑

i∈N

xi = 1, xi ∈ {0, 1} ∀i ∈ N
}

,

with c̃i = Vi + ǫ̃i. The classical logit model (see McFadden [9]) starts with the assumption that the

error terms ǫ̃i’s are modeled by independent extreme value distributions, so that an elegant closed

form solution for the choice probabilities can be obtained:

P (x∗
i (c̃) = 1) =

eVi

∑

j∈N eVj
.

However, this approach has some drawbacks. For example, the formula implies the Independence

of Irrelevant Alternatives (IIA) property wherein the relative ratio of the choice probabilities for

two alternatives is independent of the remaining alternatives. This property is not always observed

in practise wherein the entire choice set helps in determining the relative probabilities. The probit

model, using correlated normal distributions, can be used to overcome this shortcoming, but at the

added cost of finding choice probabilities through extensive simulation. Using the results in this

paper, we can obtain simple new formulas for the choice probabilities.

Suppose the cumulative distribution function for the utility c̃i is Fi(c), we obtain:

Pθ∗(x
∗
i (c̃) = 1) = 1 − Fi(λ

∗)
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where λ∗ is found by solving the equation:

∑

i∈N

(1 − Fi(λ
∗)) = 1.

Alternatively, suppose we know the mean Vi and variance σ2
i of the utility c̃i but the exact distri-

bution function is unknown, we obtain:

Pθ∗(x
∗
i (c̃) = 1) =

1

2



1 +
Vi − λ∗

√

(Vi − λ∗)2 + σ2
i





where λ∗ is found by solving the equation:

∑

i∈N

1

2



1 +
Vi − λ∗

√

(Vi − λ∗)2 + σ2
i



 = 1.

It is easy to verify that the IIA property does not hold under our model due to the dependence on

λ∗. Interestingly, the choice probabilities obtained under the persistence model and the logit model

are strikingly similar for many numerical examples we have experimented on. Figure 2 compares the

choice probabilities for a simple five product example using logit (closed form), probit (simulation)

and the mean-variance MMM (root finding). The first example assumes that each product has a

common variance of π2/6, with mean:

V1 = 1.2, V2 = 1.5, V3 = 1.8, V4 = 2, V5 = 2.3.

The choice probabilities obtained from the three models are strikingly similar, although they are

obtained under very different assumptions. The product with the higher mean attribute will have

a higher chance of being selected. The second example plots choice probabilities when the error

terms related to the products are non identically distributed. We use the mean values as before

but the variances are set to:

σ2
1 = 4, σ2

2 = 4, σ2
3 = 3, σ2

4 = 3, σ2
5 = 0.1.

In this case, products with lower mean attributes may in fact have a higher chance of being selected.

Surprisingly, product 5 with the highest mean attribute (2.3) and smallest variance (0.1) is now

the product least likely to be selected. The model predicts accurately that the preferences for the

products are in the order 4,3,2,1 and 5.

2 Problem Formulation

In this section, we discuss the model for the set of distributions Θ. The basic model assumes

that the distribution function Fi(c) is known for each objective coefficient c̃i. No assumptions on
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Figure 2: Choice Models Comparison: Constant Variance and Different Variance Case

independence of the marginal distributions is made. We term this as the Marginal Distribution

Model (MDM). The earliest study of combinatorial optimization problems under this model was

carried out by Meilijson and Nadas [10] and Nadas [11] for the stochastic project management

problem. Their main result shows that the problem of finding the tight upper bound on the

expected project duration can be obtained by solving a convex optimization problem. Weiss [15]

generalized this result to network flow problems and reliability problems. Bertsimas, Natarajan

and Teo [3], [4] considered 0-1 optimization problems under partial moment information on each

objective coefficient and initiated the study of the persistency problem. In a similar spirit, the

central problem that we focus on is:

Z∗ = max
θ∈Θ

Eθ

(

max{c̃′x : x ∈ X}
)

, (4)

where X is the feasible region of a general discrete optimization problem, and we evaluate the

persistence of variables under this model.

Since our interest lies in general discrete optimization problems, a formulation that is partic-

ularly useful is the full binary reformulation for general integer variables. We can represent any

variable xi in the set Xi as:

xi =
∑

k∈Xi

kyik

1 =
∑

k∈Xi

yik

yik ∈ {0, 1} ∀k ∈ Xi.

Defining y = (yik)k∈Xi,i∈N , the feasible region X for the discrete optimization problem can be

6



transformed to Y using the full binary expansion:

Y =







y

∣

∣

∣

∣

∣

A





∑

k∈Xi

kyik





i∈N

≤ b,
∑

k∈Xi

yik = 1 ∀i ∈ N , yik ∈ {0, 1} ∀k ∈ Xi ∀i ∈ N







.

There is an unique one to one correspondence between the extreme points of X and Y, that is

xi = k if and only if yik = 1. Such binary reformulations have also been used in Sherali and Adams

[12], though in a different context.

We expand upon the earlier work by Meilijson and Nadas [10], Weiss [15] and Bertsimas,

Natarajan and Teo [4] in three ways.

(1) We generalize the persistency results to arbitrary discrete optimization problems. Particularly,

the decision variables can assume more than two values which allows for more complicated

problems. The key idea is to project the variables from the original space X into the higher

dimensional space Y, so that we can impose restrictions such that the expanded set of variables

assumes only two possible values (0 or 1). For the formulation to be tight, however, we require

an explicit characterization of the convex hull of the higher dimensional space Y. The new

facets identified in the projected polytope can now be interpreted as probabilistic inequalities

associated with original problem.

(2) The work of Bertsimas, Natarajan and Teo [4] focuses on the case when the information given

are marginal moments. Our work generalizes the approach to complete marginal distribution

information. In this setting, our work can be viewed as a dual approach to the results of

Meilijson and Nadas [10] in the 0-1 case. More importantly, instead of invoking duality

results from infinite dimensional optimization, we obtain the results through a more direct

constructive approach. We also indicate techniques to incorporate information on the shape

of the distributions into our formulation.

(3) We investigate the use of the persistency model on a variety of new applications. For the dis-

crete choice model, we perform both estimation and prediction using a real-life transportation

data set. The predicted choice probabilities are comparable to logit and cross-nested logit

models under weaker assumptions. In the case of choice modeling under budget constraints,

the problem reduces to a stochastic knapsack problem. Through numerical simulations, we

show that the persistence values obtained are close to the choice probabilities in this instance

too.

3 Main Results

3.1 Marginal Distribution Model (MDM)

Assume that each objective coefficient c̃i in the discrete optimization problem is a continuously

distributed random variable with marginal distribution function Fi(c) and marginal density function

7



fi(c), i.e. c̃i ∼ fi(c). Let Θ denote the set of multivariate distributions θ for the objective coefficients

with the given marginal distributions.

Define the following sets of non-negative variables2:

yik(c) = P

(

x∗
i (c̃) = k

∣

∣

∣

∣

c̃i = c

)

and yik = P

(

x∗
i (c̃) = k

)

∀k ∈ Xi ∀i ∈ N .

Using conditional expectations, the objective function in (4) can be expressed as:

Eθ

(

Z(c̃)

)

= Eθ

(

∑

i∈N

c̃ix
∗
i (c̃)

)

=
∑

i∈N

∫

cE

(

x∗
i (c̃)

∣

∣

∣

∣

c̃i = c

)

fi(c)dc

=
∑

i∈N

∑

k∈Xi

∫

cE

(

x∗
i (c̃)

∣

∣

∣

∣

c̃i = c, x∗
i (c̃) = k

)

P

(

x∗
i (c̃) = k

∣

∣

∣

∣

c̃i = c

)

fi(c)dc

=
∑

i∈N

∑

k∈Xi

∫

kcP

(

x∗
i (c̃) = k

∣

∣

∣

∣

c̃i = c

)

fi(c)dc

=
∑

i∈N

∑

k∈Xi

k

∫

cyik(c)fi(c)dc.

By the definition of the variables as conditional expectations, we have:

yik =

∫

yik(c)fi(c)dc ∀k ∈ Xi ∀i ∈ N .

Furthermore, for each realization c, the optimal value for xi is one of the values in Xi, implying

that:
∑

k∈Xi

yik(c) = 1 ∀c ∀i ∈ N .

Lastly, since the decision variables lie in CH(Y) for all realizations, taking expectations we have:

y =
(

yik

)

k∈Xi,i∈N
=

(

P

(

x∗
i (c̃) = k

))

k∈Xi,i∈N

∈ CH(Y).

It is clear from the previous discussion that we can obtain an upper bound on (4) by solving:

Z∗ ≤ max
∑

i∈N

∑

k∈Xi

k

∫

cyik(c)fi(c)dc

s.t.

∫

yik(c)fi(c)dc = yik ∀k ∈ Xi ∀i ∈ N
∑

k∈Xi

yik(c) = 1 ∀c ∀i ∈ N

yik(c) ≥ 0 ∀c ∀k ∈ Xi ∀i ∈ N
y ∈ CH(Y).

(5)

2We extend the definition of yik from Section 2 for simplicity of exposition.
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For a given set of values of y ∈ CH(Y), the upper bound in (5) is separable across i ∈ N . The ith

subproblem that we need to solve is:

max
∑

k∈Xi

k

∫

cyik(c)fi(c)dc

s.t.

∫

yik(c)fi(c)dc = yik ∀k ∈ Xi

∑

k∈Xi

yik(c) = 1 ∀c

yik(c) ≥ 0 ∀c ∀k ∈ Xi.

By relabeling the points in Xi if necessary, we may WLOG assume that yik > 0 for all k ∈ Xi.

The optimal values for the variables yik(c) in the subproblem can be found using a greedy argument.

Introducing the lagrange multipliers λik for the first set of constraints, we obtain:

Z(λ) = max

∫

∑

k∈Xi

(ck − λik)yik(c)fi(c)dc +
∑

k∈Xi

λikyik

s.t.
∑

k∈Xi

yik(c) = 1 ∀c

yik(c) ≥ 0 ∀c ∀k ∈ Xi.

Thus, for a given value of c, we need to solve a linear program with a single budget constraint and

non-negativity restrictions. Given a set of values in increasing order Xi = {αi, αi + 1, . . . , βi}, the

optimal solution is:

yik(c) = I(ck − λik ≥ cj − λij ∀j ∈ Xi)

where I is the indicator function.

Let λ∗ = (λ∗
ik) denote the optimal lagrange multipliers. In the solution to Z(λ∗), our assumption

that yik > 0 ensures that for all k, yik(c) > 0 for some c. Hence we must have

yik(c) = I(λ∗
ik − λ∗

i,k−1 ≤ c ≤ λ∗
i,k+1 − λ∗

ik) ∀k ∈ Xi,

where λ∗
i,αi−1 = −∞, λ∗

i,βi+1 = ∞ (see Figure 3(a)). The Lagrange multipliers are chosen such

that:

yik = Fi(λ
∗
i,k+1 − λ∗

ik) − Fi(λ
∗
ik − λ∗

i,k−1) ∀k ∈ Xi,

with
∑

k∈Xi
yik = 1. Note that it is not possible for λ∗

ik − λ∗
i,k−1 ≥ λ∗

i,k+1 − λ∗
ik wherein yik(c) = 0

for all c and yik = 0 as indicated in Figure 3(b).

The values of the multipliers λ∗
ik that satisfy these set of equations are given as:

λ∗
ik − λ∗

i,k−1 = F−1
i





∑

j≤k−1

yk



 .

9



ci

(k+1)ci - i,k+1

kci - ik

(k+1)ci - i,k+1

i,k+1 - ikik - i,k-1

(k-1)ci - i,k-1

kci - ik

(k-1)ci - i,k-1

i,k+1 - ik ik - i,k-1 ci

Case (a): yik(c) = 1 in interval ik - i,k-1 c i,k+1 - ik Case (b): yik(c) = 0 for all c

Figure 3: Optimal values for variables yik(c).

Hence the upper bound on Z∗ in (5) reduces to solving the problem:

Z∗ ≤ max
∑

i∈N

∑

k∈Xi

(

k

∫ F−1

i (
∑

j≤k yij)

F−1

i (
∑

j≤k−1
yij)

cfi(c)dc

)

s.t. y ∈ CH(Y).

Using the substitution t = Fi(c) and dt = fi(c)dc, we can rewrite the upper bound as:

Z∗ ≤ max
∑

i∈N

∑

k∈Xi

(

k

∫

∑

j≤k yij

∑

j≤k−1
yij

F−1
i (t)dt

)

s.t. y ∈ CH(Y).

In fact, this bound is tight under the marginal distribution model.

Theorem 1 Under the marginal distribution model, Z∗ and the persistence values are computed

by solving the concave maximization problem:

Z∗ = max
∑

i∈N

∑

k∈Xi

(

k

∫

∑

j≤k yij

∑

j≤k−1
yij

F−1
i (t)dt

)

s.t. y ∈ CH(Y).

(6)

Proof. It is clear from the previous discussion that Formulation (6) provides an upper bound on

Z∗. To show tightness, we construct an extremal distribution that attains the bound from the

10



optimal y∗ in Formulation (6). Expressing y∗ as a convex combination of the extreme points of

the polytope Y (denoted as P), implies that there exist a set of numbers λ∗
p such that:

(i) λ∗
p ≥ 0 for all p ∈ P

(ii)
∑

p∈P

λ∗
p = 1

(iii) y∗ik =
∑

p:yik[p]=1

λ∗
p for all k ∈ Xi, i ∈ N ,

where yik[p] denotes the value of the yik variable at the pth extreme point. We define the intervals:

Iik =







c

∣

∣

∣

∣

∣

F−1
i





∑

j≤k−1

y∗ij



 ≤ c ≤ F−1
i





∑

j≤k

y∗ij











. (7)

We now generate the multivariate distribution θ∗ as follows:

(a) Choose an extreme point p∗ in P with probability λ∗
p

(b) For each i ∈ N with yik[p
∗] = 1, generate c̃i ∼ fi(c)I(c ∈ Iik)/y∗ik (See Figure 4).

Partition ci such that xi = k in interval Iik
Fi(c)

1

yik
*

yik-1
*

0
ciIi,k-1 Iik

Figure 4: Constructing the extremal distribution for c̃i.

Note that the cross dependency between the variables is not important here, and hence we can

assume that for each fixed p, the distribution for c̃i’s are generated independently. Under this

11



construction, if f ′
i(c) denote the density function of c̃i, then we have:

f ′
i(c) =

∑

k∈Xi

∑

p:yik[p]=1

λ∗
p

fi(c)I(c ∈ Iik)

y∗ik

=
∑

k∈Xi

fi(c)I(c ∈ Iik)

= fi(c).

Thus the distribution generated in this way satisfies the marginal distribution condition. Further-

more, under c̃, if we simply pick the pth solution with probability λ∗
p, instead of solving for Z(c̃),

we have

Eθ∗ (Z(c̃)) ≥
∑

p∈P

λ∗
p





∑

i∈N





∑

k:yik[p]=1

(

k

∫

cfi(c)I(c ∈ Iik)dc

y∗ik

)









=
∑

i∈N





∑

k∈Xi





∑

p:yik[p]=1

λ∗
p





(

k

∫

cfi(c)I(c ∈ Iik)dc

y∗ik

)





=
∑

i∈N

∑

k∈Xi

k

∫

cfi(c)I(c ∈ Iik)dc

=
∑

i∈N

∑

k∈Xi

k

∫

∑

j≤k y∗
ij

∑

j≤k−1
y∗

ij

F−1
i (t)dt

Since θ∗ generates an expected optimal objective value that is greater than or equal to the optimal

solution from Formulation (6) and satisfies the marginal distributions, it attains Z∗.

To check the concavity of the objective function, we define a new variable Yik by the affine trans-

formation:

Yik =
∑

j≤k

yij .

The objective function can then be expressed as:

∑

i∈N

∑

k∈Xi

k

∫ Yik

Yi,k−1

F−1
i (t)dt.

The first derivative of the objective function with respect to Yik is then given as:

∂
(

k
∫ Yik

Yi,k−1
F−1

i (t)dt + (k + 1)
∫ Yi,k+1

Yik
F−1

i (t)dt
)

∂Yik
= kF−1

i (Yik) − (k + 1)F−1
i (Yik) = −F−1

i (Yik).

This is a decreasing function in Yik since F−1
i is the inverse cumulative distribution function. Hence

the objective is concave in the Yik variables and therefore in the yik variables.

The result in Theorem 1 directly extends to minimization problems.

12



Corollary 1 Under the marginal distribution model, we have:

min
θ∈Θ

Eθ

(

min{c̃′x : x ∈ X}
)

= min







∑

i∈N

∑

k∈Xi

(

k

∫

∑

j≥k yij

∑

j≥k+1
yij

F−1
i (t)dt

)

: y ∈ CH(Y)







. (8)

Theorem 1 indicates that the difficulty of solving the persistency problem for general discrete

optimization problems is related to characterizing the convex hull of the extreme points in the

binary reformulation. We compare this with a compact relaxation that uses the convex hull of the

original X polytope:

Z∗
0 = max

∑

i∈N

∑

k∈Xi

(

k

∫

∑

j≤k yij

∑

j≤k−1
yij

F−1
i (t)dt

)

s.t.





∑

k∈Xi

kyik





i∈N

∈ CH(X ).

(9)

Clearly, Z∗ ≤ Z∗
0 . Note that instead of the space CH(Y), which may not be readily available, we

are now solving for the solution in CH(X ). The latter is much easier to characterize for many

problems. Hence Z∗
0 can be evaluated if CH(X ) is readily available. However, the relaxation is in

general weak with the optimal values for each variable concentrated at the two extreme values αi

and βi.

Proposition 1 An upper bound on Z∗ obtained from solving Formulation (9) is equivalent to:

Z∗
0 = max

∑

i∈N

(

αi

∫ yiαi

0
F−1

i (t)dt + βi

∫ 1

1−yiβi

F−1
i (t)dt

)

s.t. (αiyiαi
+ βiyiβi

)i∈N ∈ CH(X ).

(10)

Proof. Clearly, Formulation (10) is a restricted version of Formulation (9) at the two extreme

values αi and βi for each i ∈ N . To show tightness, consider an optimal solution to Formulation

(9) denoted as y∗ik. Now, define the variables for Formulation (10) as:

yiαi
=
∑

k∈Xi

(

βi − k

βi − αi

)

y∗ik and yiβi
=
∑

k∈Xi

(

k − αi

βi − αi

)

y∗ik.

This defines a feasible solution since:

yiαi
+ yiβi

=
∑

k∈Xi

y∗ik = 1 and αiyiαi
+ βiyiβi

=
∑

k∈Xi

ky∗ik.

Furthermore, we set

yiαi
(c) =

∑

k∈Xi

(

βi − k

βi − αi

)

y∗ik(c) and yiβi
(c) =

∑

k∈Xi

(

k − αi

βi − αi

)

y∗ik(c),

13



where y∗ik(c) = I(c ∈ Iik) in (7). The objective function to the restricted formulation can be

expressed as:

Objective function =
∑

i∈N

(

αi

∫

cyiαi
(c)fi(c)dc + βi

∫

cyiβi
(c)fi(c)dc

)

=
∑

i∈N



αi

∑

k∈Xi

(

βi − k

βi − αi

)∫

cy∗ik(c)dc + βi

∑

k∈Xi

(

k − αi

βi − αi

)∫

cy∗ik(c)f(c)dc





=
∑

i∈N

∑

k∈Xi

k

∫

cy∗ik(c)f(c)dc

=
∑

i∈N

∑

k∈Xi

(

k

∫

∑

j≤k y∗
ij

∑

j≤k−1
y∗

ij

F−1
i (t)dt

)

,

which proves the desired result.

It is clear that the upper bound in Proposition 1 is tight for 0-1 optimization problems. This

result can also be interpreted as the dual of the formulations obtained in Meilijson and Nadas [10]

and Weiss [15]. Our constructive approach however appears to be more direct and elegant. A direct

application of this result with Fi set to exponential distributions leads to the stochastic bounds for

combinatorial optimization problems discussed in Application 1 in Section 1 of this paper.

We illustrate the key ideas developed thus far with a simple numerical example.

Example: Consider the two-dimensional integer polytope given as:

X :=

{

(x1, x2) ∈ ℜ2

∣

∣

∣

∣

x1 + x2 ≥ 1, −x1 − x2 ≥ −3, x1 − x2 ≥ −1, −x1 + x2 ≥ −1

}

.

The four extreme points of this polyhedron (see Figure 5) are {(0, 1), (1, 0), (1, 2), (2, 1)} with

X1 = {0, 1, 2} and X2 = {0, 1, 2}. Assume that both c̃1 and c̃2 are independently and uniformly

distributed on [0, 1]. Note that under this model, the extreme points {(1, 2), (2, 1)} have equal

chances of attaining the optimal solution under the random objective function. We solve the case

with only the marginal distribution conditions imposed on the problem.
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x2 

 (1,2) 

x1 
(1,0) 

(0,1) (2,1) 

Figure 5: A diamond shaped polyhedron.

In this case, the upper bound in Proposition 1 reduces to

Z∗
0 = max 0.5

(

2 − y2
10 − (y10 + y11)

2 + 2 − y2
20 − (y20 + y21)

2
)

s.t. (y11 + 2y12) + (y21 + 2y22) ≥ 1

−(y11 + 2y12) − (y21 + 2y22) ≥ −3

(y11 + 2y12) − (y21 + 2y22) ≥ −1

−(y11 + 2y12) + (y21 + 2y22) ≥ −1

y10 + y11 + y12 = 1

y20 + y21 + y22 = 1

y10, y11, y12, y20, y21, y22 ≥ 0

This is a concave maximization problem over linear constraints. Solving this with CPLEX Version

9.1, OPL Studio Version 4.1 yields Z∗
0 = 1.875 with persistence values:

(y10, y11, y12, y20, y21, y22) = (0.25, 0, 0.75, 0.25, 0, 0.75).

We can use the notion of cutting planes to strengthen the above formulation. One valid equality

that is obtained from Figure 5 (or by looking at the Y polytope) which is not satisfied by the

current solution is:

y10 + y12 + y20 + y22 = 1.

This inequality says that in the optimal solution, either x1 = 0 or x2 = 0. Solving the quadratic

optimization problem with this added equality yields Z∗ = 1.75 which is the tight bound. The

corresponding optimal persistence values are:

(y10, y11, y12, y20, y21, y22) = (0, 0.5, 0.5, 0, 0.5, 0.5),
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with the optimal solutions concentrated at (x1, x2) = (1, 2) and (x1, x2) = (2, 1) respectively.

Interestingly, the persistence values obtained from our model is precisely the values under the in-

dependence model.

3.2 Marginal Moment Model (MMM)

We now relax the assumption on the knowledge of complete marginal distributions to the knowledge

of a finite set of marginal moments. For simplicity, we focus on the case when only the mean µi

and variance σ2
i of each objective coefficient c̃i is known with the support over the entire real line.

For generalization to higher order moments, the reader is referred to Bertsimas, Natarajan and Teo

[3], [4]. Let Θ denote the set of multivariate distributions θ for the objective coefficients such that

they satisfy the given mean and variances for each c̃i.

Under the marginal moment model with mean and variance information, Z∗ is computed by

solving:

Z∗ = max
∑

i∈N

∑

k∈Xi

kwik

s.t.
∑

k∈Xi

zik = µ2
i + σ2

i ∀i ∈ N
∑

k∈Xi

wik = µi ∀i ∈ N
∑

k∈Xi

yik = 1 ∀i ∈ N

zikyik ≥ w2
ik ∀k ∈ Xi ∀i ∈ N

y ∈ CH(Y).

(11)

This formulation is obtained using argument similar to Section 3.1 and is skipped here. The

variables can be interpreted as (scaled) conditional moments (refer to Bertsimas, Natarajan and

Teo [4]):







zik

wik

yik






=









Eθ

(

c̃2
i

∣

∣

∣ x∗
i (c̃) = k

)

Pθ(x
∗
i (c̃) = k)

Eθ

(

c̃i

∣

∣

∣ x∗
i (c̃) = k

)

Pθ(x
∗
i (c̃) = k)

Pθ(x
∗
i (c̃) = k)









,

with the yik variables denoting the persistency values. The first three constraints model the mar-

gianl moment conditions. The constraints zikyik ≥ w2
ik where yik ∈ [0, 1] correspond to the moment

feasibility conditions (Jensen’s inequality) in this case.
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Proposition 2 Under the marginal moment model with mean and variance information, Z∗ and

the persistence values are computed by solving the concave maximization problem:

Z∗ = max
∑

i∈N



µi

∑

k∈Xi

kyik + σi

√

∑

k∈Xi

k2yik −
(

∑

k∈Xi

kyik

)2





s.t. y ∈ CH(Y).

Proof. For given values of y ∈ CH(Y), computing Z∗ in Formulation (11) reduces to solving

subproblems of the type:

maxzi ,wi

∑

k∈Xi

kwik

s.t.
∑

k∈Xi

zik = µ2
i + σ2

i

∑

k∈Xi

wik = µi

zikyik ≥ w2
ik ∀k ∈ Xi.

A relaxation to this subproblem is obtained from aggregating the last set of constraints3:

maxzi ,wi

∑

k∈Xi

kwik

s.t.
∑

k∈Xi

wik = µi

∑

k∈Xi

w2
ik

yik
≤ µ2

i + σ2
i .

This relaxation is tight since we can generate an optimal solution to the original subproblem by

setting zik = w2
ik/yik + ǫik with appropriate perturbations ǫik ≥ 0 to ensure that the second

moment constraint is met. Furthermore this does not change the objective which is independent

of zik. Thus the ith subproblem reduces to maximizing a linear objective over a linear equality

constraint and a convex quadratic constraint. Introducing multipliers λi and νi for the constraints,

the Karush-Kuhn-Tucker feasibility and optimality conditions for this problem are:

(i)
∑

k∈Xi

wik = µi and
∑

k∈Xi

w2
ik

yik
≤ µ2

i + σ2
i

(ii) −k + λi + 2νi
wik

yik
= 0 for all k ∈ Xi

(iii) νi



µ2
i + σ2

i −
∑

k∈Xi

w2
ik

yik



 = 0

(iv) νi ≥ 0.

3We assume that all yik > 0. It is possible to extend this to allow for some of the yik = 0.
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From condition (ii), we can assume that νi > 0, else the problem is trivial with only a single value

for k ∈ Xi. Substituting wik = (k − λ)yik/2νi into the feasibility constraints yields the optimal

values:

νi =

√

∑

k∈Xi
k2yik −

(
∑

k∈Xi
kyik

)2

2σi
,

λi =
∑

k∈Xi

kyik − 2νiµi,

wik = µiyik + σiyik





k −∑k∈Xi
kyik

√

∑

k∈Xi
k2yik −

(
∑

k∈Xi
kyik

)2



 .

The corresponding optimal objective value for the ith subproblem is:

µi

∑

k∈Xi

kyik + σi

√

∑

k∈Xi

k2yik −
(

∑

k∈Xi

kyik

)2
,

which proves the desired result.

The above proposition can be simplified further in the case of 0-1 optimization problem:

Corollary 2 Given only mean and variance information, Z∗ and the persistence values for 0-1

optimization problems are computed by solving the concave maximization problem:

Z∗ = max
∑

i∈N

(

µixi + σi

√

xi(1 − xi)
)

s.t. x ∈ CH(X ).

A direct application with

X =

{

x

∣

∣

∣

∣

∑

i∈N

xi = 1, xi ∈ {0, 1} ∀i ∈ N
}

leads to the formula for choice probabilities for discrete choice models discussed in Application 2

in Section 1 of this paper.

We next provide a simple application of Corollary 2 for approximating a normal distribution.

Example: For a standard normal random variable, the distribution function is

P (c̃ ≤ z) = φ (z) =

∫ z

−∞

1√
2π

e−t2/2dt,

for which no closed form expression exists but numerical estimates are easily available. Consider

the following simple analytic approximation to the normal distribution. Let c̃ denote a random
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variable with mean µ and variance σ2. Without loss of generality, let µ = 0 and σ2 = 1. Using

Corollary 2, the persistency model for Z(c̃) = max(c̃, z) reduces to the following problem:

Z∗ = max
(

√

x1(1 − x1) + zx2

)

s.t. x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0.

We obtain:

Pθ∗(c̃ ≤ z) = Pθ∗(x2(c̃) = 1) =
1

2

(

1 +
z√

z2 + 1

)

.

Figure 6 compares these values for P (c̃ ≤ z) and Pθ∗(c̃ ≤ z) as a function of z. Clearly from the

figure, these two values are observed to be in close agreement with an absolute error of at most

0.0321. This suggests that the extremal distribution obtained from the persistency model for a

single variable is a good approximation to the normal distribution.
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Figure 6: Comparison of P (c̃ ≤ z) for normal distribution and MMM

3.3 Range and Unimodal Distribution

The approach described in this paper is flexible and can be enhanced in different ways. For instance,

the Marginal Moment Model can be strengthened further if we know the range of support for each

marginal distribution. For instance, other than the moments condition, if we know further that

c̃i ∈ [ci, ci], then using the condition:

(ci − c̃i)(ci − ci) ≥ 0,

we can capture the range conditions into the persistency model (11) through the addition of the

following inequality:

(ci + ci)wik ≥ ciciyik + zik.
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Other information concerning the distribution can also be introduced into the formulation. As

an illustration, we describe next a simple method to tighten the formulation using information on

the shape of the distribution.

The main results driving our enhanced reformulation is the following result due to Khintchine:

A random variable X̃ has a unimodal distribution if and only if there exists a random variable Ỹ

such that X̃ ∼ Ũ Ỹ where Ũ is a uniform [0, 1] random variable independent of Ỹ . Note that a

distribution is unimodal if the density function f(·) is monotonically nondecreasing on (−∞, 0] and

monotonically nonincreasing on [0,∞). Some examples of unimodal distributions are: the standard

normal, exponential, Cauchy probability densities, and the class of stable distributions.

Assume that the objective coefficient c̃i is unimodal with mean µi and variance σ2
i . We can use

Khintchine’s Theorem to refine our persistency model under the moments approach. Let c̃i = ũid̃i

where ũi is uniformly generated in [0,1] and independent of d̃i. The first and second moments for

d̃i is then given as:

Eθ(d̃i) = 2µi and Eθ(d̃
2
i ) = 3(µ2

i + σ2
i ).

Furthermore, we have

Eθ

(

c̃ixi(c̃)

)

=

∫ 1

0
Eθ

(

ũid̃ixi(c̃)

∣

∣

∣

∣

ũi = u

)

du

=

∫ 1

0
uEθ

(

d̃ixi(c̃)

∣

∣

∣

∣

ũi = u

)

du

=

∫ 1

0
u
∑

k∈Xi

(

kEθ

(

d̃i

∣

∣

∣

∣

xi(c̃) = k, ũi = u

)

Pθ

(

xi(c̃) = k

∣

∣

∣

∣

ũi = u

))

du.

Define the variables as (scaled) conditional moments:







ziku

wiku

yiku






=











Eθ

(

d̃2
i

∣

∣

∣ x∗
i (c̃) = k, ũi = u

)

Pθ(x
∗
i (c̃) = k

∣

∣

∣ ũi = u)

Eθ

(

d̃i

∣

∣

∣
x∗

i (c̃) = k, ũi = u
)

Pθ(x
∗
i (c̃) = k

∣

∣

∣
ũi = u)

Pθ(x
∗
i (c̃) = k

∣

∣

∣
ũi = u)











.

Since:
∫ 1

0
Pθ

(

xi(c̃) = k

∣

∣

∣

∣

ũi = u

)

du = Pθ

(

xi(c̃) = k

)

,

we can reformulate the persistency model as shown below.

Proposition 3 Under the marginal moment model given mean, variances and unimodal distribu-
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tions, Z∗ and the persistence values are computed by solving the problem:

Z∗ = max
∑

i∈N

∑

k∈Xi

k

∫ 1

0
uwikudu

s.t.
∑

k∈Xi

ziku = 3(µ2
i + σ2

i ) ∀u ∈ [0, 1] ∀i ∈ N
∑

k∈Xi

wiku = 2µi ∀u ∈ [0, 1] ∀i ∈ N
∑

k∈Xi

yiku = 1 ∀u ∈ [0, 1] ∀i ∈ N

zikuyiku ≥ w2
iku, ∀u ∈ [0, 1], ∀k ∈ Xi ∀i ∈ N

(∫ 1

0
yikudu

)

k∈Xi,i∈N

∈ CH(Y).

One disadvantage of this model is that there are infinitely many variables, depending on u ∈
[0, 1]. Numerically, this problem can be solved by discretizing the values of u in the range [0, 1].

The increase in the number of variables, however, allows us to bring in characteristic of the shape

of the marginal distribution into our formulation.

4 Applications: Discrete Choice Modeling

In this section, we test the performance of the persistency model on two canonical problems chosen

from the literature: discrete choice models and integer knapsack problem (i.e. discrete choice under

budget constraint). The former is selected to demonstrate estimation and prediction of choice

probabilities for discrete choice models using commercial nonlinear solvers. The latter problem is

selected to demonstrate how the projection to higher dimensional polytope can be executed for a

NP-hard discrete optimization problem.

4.1 Estimation in Discrete Choice Models

Consider a discrete choice problem, where a set of alternatives N = {1, 2, . . . , n} is considered. The

utility that an individual i ∈ I assigns to alternative j ∈ N can be expressed as:

Ũij = Vij + ǫ̃ij .

Vij = β′xij is the systematic utility where xij is the vector of attributes characterizing the individual

and the alternative and β are the parameters of the model that need to be estimated. The part of

the utility that is assumed to be random is ǫ̃ij . Let Pij denote the probability that alternative j

is selected by individual i. Under the random utility maximizing model, the choice probability is

evaluated as:

Pij = P
(

Ũij ≥ Ũik ∀k ∈ N
)

= P
(

β′xij + ǫ̃ij ≥ β′xik + ǫ̃ik ∀k ∈ N
)

.
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The traditional approach to estimating the parameters β is to use a log-likelihood estimation

technique (see Ben-Akiva and Leerman [2]). Let yij = 1 if alternative j is selected by individual

i and 0 otherwise. The probability of each person in I choosing the alternative that they were

actually observed to choose is:

L(β) =
∏

i∈I

∏

j∈N

(Pij)
yij .

The maximum log-likelihood estimator is obtained by solving the following optimization problem:

max
β

LL(β) = max
β

∑

i∈I

∑

j∈N

yij lnPij .

In this section, we compare three different models for the estimation procedure - the popular

Multinomial Logit Model (MNL), the Cross-Nested Logit Model (CNL) and our proposed Marginal

Moments Model (MMM).

(1) For MNL (see McFadden [9]), the error terms are assumed to be independent and identically

distributed as extreme value distributions. The choice probabilities are given as

Pij =
eβ′

xij

∑

k∈N

eβ′
xik

.

The log-likelihood objective is known to be globally concave under this model implying that

the optimal β can be estimated efficiently using various convex optimization solvers. A freely

available package BIOGEME (developed by Bierlaire ([5]) was used for our computations.

This is based on a sequential equality constrained quadratic programming method.

(2) For CNL (see Ben-Akiva and Bierlaire [1]), the choice set is partitioned into a set of nests

denoted as M. The parameter µm denotes the scale parameter for nest m ∈ M and αjm

denotes the cross nesting parameter for alternative j in nest m such that
∑

m∈M αjm = 1.

The choice probabilities are given as

Pij =
∑

m∈M























∑

j′∈N

αµm

j′meµmβ′
xij′





1

µm

∑

m′∈M





∑

j′∈N

α
µm′

j′m′e
µm′β′

xij′





×
αµm

jmeµmβ′
xij

∑

j′∈N

αµm

j′meµmβ′
xij′



















.

The log-likelihood function is however not concave under this model with no guarantee of

finding the global optimal solution. For our computations, we used BIOGEME to estimate

the coefficients.

(3) For MMM, we assume that the error terms ǫij has mean 0 and variance σ2
ij . The random

utility Ũij is then distributed with mean β′xij and variance σ2
ij . The variance term is used to
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captures the variability due to factors not captured by the specified attributes of the model.

The choice probabilities are given as

Pij =
1

2



1 +
β′xij − λi

√

(β′xij − λi)2 + σ2
ij





where λi is found by solving the equation:

∑

i∈N

1

2



1 +
β′xij − λi

√

(β′xij − λi)2 + σ2
ij



 = 1.

The maximum log-likelihood estimation problem under MMM is:

max
∑

i∈I

∑

j∈N

yij ln
1

2



1 +
β′xij − λi

√

(β′xij − λi)
2 + σ2

ij





s.t.
∑

j∈N

1

2



1 +
β′xij − λi

√

(β′xij − λi)
2 + σ2

ij



 = 1 ∀i ∈ I.

(12)

The log-likelihood function is again not necessarily concave under this model. For our com-

putations, we considered two versions of MMM. The first version assumed a fixed variance

σ2
ij = π2/6 for all the error terms as in logit. The second version assumed that the variances

relate only to the alternatives, namely σ2
ij = σ2

j . The variances are however not known and are

estimated. We used LOQO to solve the estimation problem using an infeasible primal-dual

interior point method applied to quadratic approximations to the original problem.

Example: We compare the performance of the three different discrete choice models, using a real-

life discrete choice data set taken from Bierlaire et al. [6]. This is a transportation mode choice

problem with three available alternatives: Train, Car and the Swiss Metro. The attributes that

were modeled for each alternative are indicated in Table 1.

Table 1: Attributes and Alternatives.

Alternative

Attribute Train Swissmetro Car

Age B-Age

Cost B-Cost B-Cost B-Cost

Frequency B-Freq B-Freq

Luggage B-Luggage

Seats B-Seats

Time B-Time B-Time B-Time

GA (Season Ticket) B-GA B-GA

ASC (Alternative Specific Constant) ASC-SM ASC-Car
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The data set consisted of a total of 10710 preferences (including revealed and stated preferences)

for the three alternatives. The parameters for the model were estimated using half the data (N

= 5355) and tested for accuracy using the other half of the data. For the MNL model, a total of

nine parameters were estimated. For the CNL model, we estimated a total of fourteen parameters

including µ-Exist, µ-Future, α-Exist-Car, α-Exist-SM and α-Exist-Train. These additional param-

eters correspond to the scale and cross nesting parameters for CNL. For the MMM, there were

a total of nine parameters with two additional parameters in the version with different variances.

Therein the two extra parameters were Variance-Train and Variance-SM with the variance for the

Car alternative set to the default of π2/6. The parameters estimated using the maximum log-

likelihood formulation for the models are shown in Table 2. In terms of the log-likelihood objective

it is clear that the MMM with different variances outperforms the MNL and CNL. This is achieved

without capturing the rather complex structure of the CNL model.

Table 2: Estimation results using MNL, CNL and MMM.

Parameter MNL CNL MMM MMM

(Fixed Variance) (Different Variance)

ASC-CAR 0.5942 0.3574 0.6826 0.1003

ASC-SM 0.5310 0.2746 0.5826 0.0642

B-Age 0.0639 0.0506 0.1276 0.1240

B-Cost -0.0062 -0.0047 -0.0103 -0.0105

B-Freq -0.0065 -0.0041 -0.0010 -0.0059

B-GA 1.8439 1.0261 2.3200 2.1808

B-Luggage -0.1367 -0.1453 -0.1452 -0.2464

B-Seats -0.1816 0.0013 -0.0186 -0.1312

B-Time -0.0132 -0.0098 -0.0190 -0.0170

µ-Exist 2.5857

µ-Future 1.0000

α-Exist-Car 0.9665

α-Exist-SM 0.0000

α-Exist-Train 0.9548

Variance-Car 1.6450 1.6450

Variance-Train 1.6450 0.1619

Variance-SM 1.6450 3.1465

Log-likelihood -4242.05 -4117.23 -4146.43 -4065.58

Computational Time (seconds) 3 64 13.6 42.5

N 5355 5355 5355 5355

To test the quality of the estimations, we compare the predictions under the models with the actual

choices made using the second half of the data. Tables 3-6 indicate the predicted probabilities clas-
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sified by the actual choices made. All models obtain highly accurate predictions for the probability

that a particular alternative is chosen. The error in terms of the aggregate deviation of actual and

estimated percentages is slightly better under MMM with the different variances as compared to

MNL and CNL.

Table 3: Prediction using MNL.

Predicted Choices

Actual Choices Train SM Car Total

Train 136.3 462.1 106.6 705

SM 410.3 1949.4 715.3 3075

Car 156.8 722.6 695.6 1575

Total 703.4 3134.1 1517.5 5355

Predicted Share 13.14% 58.53% 28.34%

Actual Share 13.17% 57.42% 29.41%

Error 2.207%

Table 4: Prediction using CNL.

Predicted Choices

Actual Choices Train SM Car Total

Train 160.4 442.0 102.5 705

SM 426.3 1920.0 728.7 3075

Car 94.7 772.6 707.8 1575

Total 681.4 3134.6 1539.0 5355

Predicted Share 12.72% 58.54% 28.74%

Actual Share 13.17% 57.42% 29.41%

Error 2.228%

Table 5: Prediction using MMM with fixed variances.

Predicted Choices

Actual Choices Train SM Car Total

Train 140.0 459.8 105.2 705

SM 398.5 1976.0 700.5 3075

Car 136.8 709.2 729.0 1575

Total 675.3 3145 1534.7 5355

Predicted Share 12.61% 58.73% 28.66%

Actual Share 13.17% 57.42% 29.41%

Error 2.614%
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Table 6: Prediction using MMM with different variances.

Predicted Choices

Actual Choices Train SM Car Total

Train 175.4 427.2 102.4 705

SM 414.2 1933.6 727.2 3075

Car 86.3 770.6 718.1 1575

Total 675.9 3131.4 1547.7 5355

Predicted Share 12.62% 58.48% 28.90%

Actual Share 13.17% 57.42% 29.41%

Error 2.114%

Lastly, we use the systematic utility levels to do prediction for each sample. Suppose, we assume

that the person chooses the alternative with the largest systematic utility level and compare this

choice with the actual choice made. Table 7 provides the number of errors obtained using the

predictions for each method.

Table 7: Sample Prediction Using Different Estimation Methods.

Models MNL CNL MMM MMM

(Fixed Variance) (Different Variance)

No. of Samples 5355 5355 5355 5355

No. of Errors 1858 1844 1826 1822

It is clear that once again the MMM outperforms the other two methods. Even when the variances

for all alternatives are fixed, the performance of MMM is good. The results thus seem to suggest

that it is possible to predict choice probabilities in discrete choice models under much weaker

assumptions using the persistency results in this paper.

4.2 Discrete Choice Under Budget Constraint

Consider the discrete choice problem, where a set of items N = {1, 2, . . . , n} is considered. Let c̃i

denote the utility value accrued for each unit of item i, and ai (ai > 0) denote the cost of any item

i ∈ N . Assume also that the budget available to the consumer is b. Let xi be the units of item i

that the consumer needs to choose to maximize her utility values. This problem can be formulated

as the following integer knapsack problem:

max
∑

i∈N

c̃ixi

s.t.
∑

i∈N

aixi ≤ b

xi ∈ {0, 1, ..., ⌊b/ai⌋} ∀i ∈ N .

(13)
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In this section, we focus on the stochastic integer knapsack problem where the utility value c̃i is

uncertain and investigate the persistency of each variable xi under mean µi, variance σ2
i and range

information [ci, ci].

The persistence values under the marginal moment model is obtained by solving

Z∗ = max
∑

i∈N

∑

k∈Xi

kwik

s.t.
∑

k∈Xi

zik = µ2
i + σ2

i ∀i ∈ N
∑

k∈Xi

wik = µi ∀i ∈ N
∑

k∈Xi

yik = 1 ∀i ∈ N

zikyik ≥ w2
ik ∀k ∈ Xi ∀i ∈ N

(ci + ci)wik ≥ ciciyik + zik ∀k ∈ Xi ∀i ∈ N
y ∈ CH(Y).

(14)

The region Y is given as:

Y =







y

∣

∣

∣

∣

∣

∣

∑

i∈N

∑

k∈Xi

aikyik ≤ b,
∑

k∈Xi

yik = 1 ∀i ∈ N , yik ∈ {0, 1} ∀k ∈ Xi ∀i ∈ N







.

The difficulty in solving (14) lies in the last constraint which characterizes the convex hull of the

set Y. Therefore, we start with the linear programming relaxation of the constraint, that is

y ∈ LP(Y) =







y

∣

∣

∣

∣

∣

∣

∑

i∈N

∑

k∈Xi

aikyik ≤ b,
∑

k∈Xi

yik = 1 ∀i ∈ N , yik ∈ [0, 1] ∀k ∈ Xi ∀i ∈ N







. (15)

Applying the cutting plane approach, we can gradually cut off the solutions violating the feasibility

constraints in CH(Y) before getting the optimal solution.

Example: To illustrate the process, we use the Steinberg-Parks example problem [14] with the

size of the knapsack to be 30. Table 8 shows the weight, mean and variance information. While

the original problem assumes c̃i to be normally distributed, we set the support for c̃i to be [µi −
3σi, µi +3σi] so that the probability for a normally generated random variable to be in the support

is 99.7%.

Table 8: The Steinberg-Parks numerical example.

i 1 2 3 4 5 6 7 8 9 10

ai 5 7 11 9 8 4 12 10 3 6

µi 7 12 14 13 12 5 16 11 4 7

σ2
i 15 20 15 10 8 20 8 15 20 25
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Firstly, we solved (14) with the last constraint replaced with the linear programming relaxation.

This problem is solved as a second order conic program4. The computational time was 1.051

seconds, and the approximation for the persistence values are displayed in Table 9.

Table 9: Approximation for the persistence values from the second order conic program.

Pθ(x
∗
i (c̃) = k)

k x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

0 0.8077 0.8437 1.0000 1.0000 0.9621 0.6923 1.0000 1.0000 0.6429 1.0000

1 0.0000 0.0000 0.0000 0.0000 0.0186 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.0000 0.0000 0.0000 0.0000 0.0108 0.0000 0.0000 0.0000 0.0000 0.0000

3 0.0000 0.0000 0.0000 0.0085 0.0000 0.0000 0.0000 0.0000

4 0.0000 0.1562 0.0000 0.0000 0.0000

5 0.0000 0.0000 0.0000 0.0000

6 0.1923 0.0000 0.0000

7 0.3077 0.0000

8 0.0000

9 0.0000

10 0.3571

Exploiting the properties of the polytope CH(Y), we can add 255 more cuts to improve the solution.

The computational time was 798.08 seconds and the persistence values are shown in Table 10.

Table 10: The persistence values for the Sternberg-Parks example under MMM.

Pθ(x
∗
i (c̃) = k)

k x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

0 0.8077 0.8437 1.0000 0.9213 0.9362 0.6923 1.0000 1.0000 0.6429 0.7159

1 0.0000 0.0000 0.0000 0.0787 0.0000 0.0000 0.0000 0.0000 0.0000 0.2841

2 0.0000 0.0772 0.0000 0.0000 0.0638 0.0000 0.0000 0.0000 0.0000 0.0000

3 0.0000 0.0787 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.0000 0.0003 0.0134 0.0000 0.0000

5 0.0000 0.0000 0.0000 0.0000

6 0.1923 0.2841 0.0000

7 0.0102 0.0000

8 0.0000

9 0.0000

10 0.3571

4The experiments were run by a PC with a Intel Pentium 4 - M 1.72GHz CPU, 256 MB of RAM and Microsoft

Windows XP Professional operation system. They are coded in MATLAB 6.5 and use SeDuMi 1.05R5 as the solver

for convex optimization problems.
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Some important observations can be made from this computational experiment:

• The approximation in Table 9 is very close to the persistence value in Table 10. The average

difference is only 0.0316. Both models suggest that the variables x3, x4, x5, x7 and x8 are

very likely to be 0, and the variables x1, x2, x6 and x9 are more likely to take greater values,

i.e., to be selected in the discrete choice problem.

• Although the whole cutting plane process took about 13 minutes, the largest conic program

with all the cuts added was solved in 3.886 seconds. Therefore the bottleneck for the marginal

moment model is to find an efficient way to generate the cuts.

To evaluate the persistence values obtained from the marginal moment model, we compared the

results with simulation tests. Three distributions were used to generate the random coefficients of

each item in the objective function: normal distribution (concentrated around the mean), uniform

distribution (evenly spread out) and a two-point distribution (concentrated at extremes) with c̃i

to be either µi − σi or µi + σi. For each simulation, the c̃i were independently generated under

the moment restrictions. A total of 10,000 cases were generated for each distribution. Figure 7

plots the persistence values obtained from MMM and the simulation results with corresponding

distributions.

The horizontal axis shows the various values taken by the decision variables (xi = k), whereas the

vertical axis shows the persistence value Pθ(x
∗
i (c̃) = k). Eleven of the persistence values equal

to 0 in both the MMM and the simulation, hence are not included in the figure. Generally, the

persistency of the MMM agrees with the simulation. The average of the differences between the

persistency from MMM and the simulations is merely 0.0298, and the MMM accurately predicts

that x3, x4, x5, x7 and x8 are very likely to be 0 while the rest of the variables usually take large

values. Compared with the simulation results with any one of the distributions, 26 persistence

values computed by the MMM have a difference less than 0.05, and there are only 8 persistence

values with difference greater than 0.1. Even for these 8 values, the discrepancy is mainly caused

by the difference in the simulation results using various distributions. Based on these results, we

conclude that the MMM gives valuable insights for the stochastic knapsack problem.

Another interesting observation is that x5 has much higher probability to be 0 than x6 in both

the MMM persistence values and the simulation results. However, if we consider the value/weight

ratio using the expectation of c̃i, the value/weight ratio of x5 and x6 are 1.50 and 1.25 respectively.

Therefore, a naive decision maker would assign higher choice probability to x5 than to x6. It

is indeed interesting that our MMM model, assuming only minimal conditions on the random

parameters, is able to pick this anomaly out.
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Figure 7: The persistence values of the MMM and the simulation results.
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5 Conclusion

In this paper, we studied the problem of evaluating the probability distribution for the decision

variable xi of a general stochastic discrete optimization problem. Under a set of known marginal

distributions or marginal moments for the objective coefficients, we propose a concave maximization

technique to construct approximate solutions to the probability distribution of the optimal solution

values. We show that the problem can be solved efficiently if we can characterize the convex hull of

a projection of the original polytope to a higher dimension 0-1 polytope. For simpler problems, the

above methodology can be implemented in an efficient manner. For instance, with only the first

two moments, the persistency model for a 0-1 problem reduces to a simple concave maximization

problem. For more general discrete optimization problem, we can often use the valid inequalities

in the binary reformulation to generate cuts for the original problem. The computational results

on discrete choice modeling problems with and without budget constraints provide encouraging

evidence that the models can be used effectively to study discrete optimization problems under

data uncertainty.

We believe that the approach opens up new research avenues for using structural properties of

convex optimization models to study general discrete optimization problem under data uncertainty.

In particular, is there a way to efficiently compute CH(Y) for special classes of discrete optimization

problems? The connection between the persistency model and the discrete choice model also opens

up the possibility that simple convex optimization model can be used to calibrate empirical data

obtained in more complicated choice decision problems. We leave these issues to future research.
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