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Two-dimensional(2D) lattices of diffusively coupled chaotic oscillators are studied. In previous

work, it was shown that various cluster synchronization regimes exist when the oscillators are
identical. Here, analytical and numerical studies allow us to conclude that these cluster
synchronization regimes persist when the chaotic oscillators have slightly different parameters. In
the analytical approach, the stability of almost-perfect synchronization regimes is proved via the

Lyapunov function method for a wide class of systems, and the synchronization error is estimated.
Examples include a 2D lattice of nonidentical Lorenz systems with scalar diffusive coupling. In the
numerical study, it is shown that in lattices of Lorenz ands&er systems the cluster
synchronization regimes are stable and robust against up to 10%—-15% parameter mismatch and
against small noise. @003 American Institute of Physic§DOI: 10.1063/1.1514202

Lattices of coupled chaotic oscillators model many sys-
tems of interest in physics, biology, and engineering. In
particular, the phenomenon of cluster synchronization,
i.e., the synchronization of groups of oscillators, has re-
ceived much attention. This phenomenon depends heavily
on the coupling configuration between the oscillators.
While in a network of globally coupled identical oscilla-
tors in principle any subset of the oscillators may syn-
chronize, in diffusively coupled oscillators only very few
of the decompositions into subsets of synchronized oscil-
lators are possible. They have been characterized in re-
cent papers in detail (see Refs. 1416). In that work, the
oscillators were assumed to be identical and the symme-
tries of the resulting system of coupled oscillators were
exploited. In more realistic models of physical systems,
however, the individual oscillators have slightly different
parameters and therefore the perfect symmetries in the
coupled systems no longer exist. Similarly, perfect cluster
synchronization cannot exist anymore, but approximate
synchronization is still possible. The question then arises
whether the cluster synchronization regimes that are ob-
served in systems with identical oscillators persist ap-
proximatively under small parameter mismatch and the
addition of small noise. This paper gives a positive an-
swer and explores the limit of approximate synchroniza-
tion both analytically and numerically.

I. INTRODUCTION

movich et al? for nonidentical subsystems. Since then this
phenomenon has received a great deal of attention in the
mathematical and physical literatutsee, e.g., Ref. 7, and
references thereinin the subsequent years, new synchroni-
zation phenomena were found including the most interesting
cases of full'® and cluster synchronizatiort®*’
generalized® phase'® and lag?® synchronization,riddled
basins of attractioff® attractor bubbling?? on—off
intermittency? etc.

In full chaotic synchronization, all oscillators acquire
identical chaotic behavior when a threshold value of the cou-
pling parameter is reached. Full synchronization in two-
dimensional (2D) and 3D lattices of locally coupled
limit-cycle?®?” systems and chaotic oscillatdts**®has re-
cently been studied analytically.

Clustersynchronizatior{or clustering is observed when
the network of oscillators splits into subgroups, called clus-
ters, such that all oscillators within one cluster move in per-
fect synchrony but the motion of different clusters is not
synchronized at all. Cluster synchronization was mainly
studied in networks of coupled identical maps but the interest
is now shifting towards the analysis of coupled continuous
time systems that have a more direct relation to the proper-
ties of real physical systems. Clustering is considered to be
particularly significant in biology where one often encoun-
ters coupled cells or functional units which have complicated
nonlinear behaviot®*?42°Recently cluster synchronization
in an array of three chaotic lasers was repdrtes well.

Considerable attention has been devoted to the problem

Chaotic synchronization was first discovered by Fujisakaof the persistence of full chaotic synchronization in networks
and Yamadafor identical coupled oscillators and by Afrai- of identical oscillators when a parameter mismatch between
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the systems is introducéd®=3¢In particular, a simple sys-
tem of two coupled nonidentical skew tent maps was consid-
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ered and the synchronization error was estim&tdt.was  scalar diffusive coupling. We prove asymptotic stability of
also shown that it is possible to maintain excellent locallythe synchronization between lines of nonsynchronized oscil-
stable chaotic synchronization between a drive and a rdators in the 2D lattice. We obtain estimates for the corre-
sponse system even when there is a large parameter misponding coupling constant threshold and for the synchroni-
match between them and they are coupled only through aation errors which are explicitly expressed in terms of the
scalar signaf® Mismatching effects on locally stable syn- parameters of the coupled Lorenz systems. In Sec. V, we
chronization of two coupled Rsler systems were studigd. confirm our theoretical results with numerical simulation of
Conditions of asymptotic stability of full synchronization in lattices of nonidentical Lorenz and Bsler systems. Finally,
2D lattices of nonidentical chaotic oscillators were obtaineda brief discussion of the obtained results is given.
in a series of paperS~3¢In particular, the stability condi-
tions of synchronization in a square lattice of forced Duffingll. 1D CHAIN OF IDENTICAL OSCILLATORS
type nonidenti(_:al oscilla_tc_Jrs with a dissipati\{e_ nearest-  \vo start off with a 1D array of diffusively coupled iden-
neighbor coupling and Dirichlet boundary conditions Werey I oscillators
presented® In another papet> these results were extended '
to the case of Neumann or periodic boundary conditions. X, =F(X;)+&C(X;;1—2X;+X;_1),
Using the same approach, sufficient conditions of global sta- . (1)
bility of full synchronization in a 2D lattice of nonidentical 1=12... N,
Lorenz systems with vector diffusive coupling were alsowith zero-flux Xy=X;, Xy=Xn11) or periodic (X
obtained®® However, the question of the persistence of clus-=Xy, Xy.1=X;) boundary condition$BC).
ter synchronization modes in lattices of chaotic oscillators  Here,X; is them-dimensional vector of thith oscillator
has not yet been systematically investigated. variables,F(X;):R™—R™ is a vector functionK=N-m is
We have recently studied the phenomena of clustering ithe dimension of the whole systefd). £>0 defines the
lattices of locally coupled identical oscillatol$:*5This phe-  coupling strength between the oscillators. Tie<m cou-
nomenon is directly related to the existence of stable lineapling matrix C is diagonal,C=diag(;,c,, .. Cy), Where 0
invariant manifolds to which the trajectories of the synchro-<c,<1, k=1,2,...,| andc,=0 for k=1+1,... m. Non-
nous modes of clusters of oscillators are restrained. Thesgero elements of the matri@ determine by which variables
invariant hyperplanes define the strict set of all possible clusthe oscillators are coupled.
ters of synchronized oscillators that can occur in the lattice.  Cluster synchronization regimes in the array are defined
Their existence is imposed by the symmetries of the diffuby linear invariant manifolds of the systeft). To proceed
sive coupling and boundary conditions and strongly dependwith the study of cluster synchronization, we need first to
on the number of oscillators composing the lattice. Our preintroduce some notions. A manifold* is said to benvari-
vious analysis was limited to arrays of oscillators that areant with respect to a dynamical systexs= F(x,t) if for Vx
strictly identical. This idealization is convenient mathemati- € M*, the trajectorye(t,x) lies in the manifoldV*. Let us
cally, but it ignores a small diversity that is always present innow specify this definition for linear invariant manifolds of
reality. The question that naturally arises is whether the disthe system(1). Let the set of vertices of the 1D chain be
covered cluster synchronization regimes are robust againgiecomposed into the disjoint subse¥s=V, U -+ UVy,
small parameter mismatch or whether they are only a fragil®/,NV,= given by the equalities of groups of the coordi-
product of the symmetries from the idealized case. nates of oscillators. If the decomposition of the vectors is
This paper revisits the existence and stability of clustecompatible with the systenfl) then the manifoldM(d)
synchronization modes in lattices of diffusively coupled os-=M(V1, ... ,Vy) is invariant under the dynamics given by
cillators with chaotic behavior, this time in the context of EQ. (1) and is said to be aluster synchronization manifald
their persistence under parameter mismatch. For small pdhe coordinates in the manifold(d) are x,=X;, r
rameter mismatch, we prove the existence of stable clusters 1,2,...d. In this section we provide a detailed description
of almost-perfectly synchronized oscillators. These clusteof cluster synchronization manifolds existing in the system
regimes, defined by the cluster synchronization manifold§1). When studying cluster synchronization in lattices of
existing in the identical oscillators case, are preserved eveslightly nonidentical oscillator¢Sec. V), we will take into
up to a fairly large mismatch between the oscillators. account only diagonal-like invariant manifolds defining al-
The layout of the paper is as follows. First, in Sec. Il, wemost perfect cluster synchronization. All other situations
recall our results on the existence of chaotic clusters in a 1[@oncerned with generalized and phase synchronization will
chain of coupled identical oscillators. Then, in Sec. lll, webe disregarded.
study the existence and stability of cluster synchronization In contrast to networks of globally coupled oscillatdrs
manifolds in a 2D lattice of identical oscillators. We describewhere all cluster decompositions are possible, the aftay
the set of possible cluster modes, prove global stability ofmay exhibit only a few of them. Main questions of interest
one cluster synchronization manifold, and discuss the quesiere are the following. Which clusters can arise in the
tion of cluster appearance with increasing coupling. In Seccoupled systen{1) with increasing coupling and how do
IV, we prove first the general results on the persistence anthese clusters depend on the number of oscillatbrand
stability of correspondings-synchronization regimes in the boundary conditions?
2D lattice of nonidentical oscillators. Next, we apply these  To tackle this problem, we consider first the existence of
results for a 2D lattice of nonidentical Lorenz systems withpossible cluster synchronization manifolt(d) for 1<d
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FIG. 1. Cluster regime defined by the cluster synchronization manifold '_._Q_O_._.
M¢(n+1). Oscillators with the same gray shading belong to one cluster.

<N. Obviously, ford=1 the system(1) has a well-known ‘_O_‘_‘_O_‘
synchronization manifoldM (1)={X;=X,=---=Xy=x1}.

Here, the dynamics of the coupled system is restricted to the 1 2 3 4 5 6
manifold M (1) such that the oscillators are all doing the

same thing at the same moment, even though it is chaotic

motion. The manifoldV (1), often called the diagonal, exists ‘_Q_Q_'_‘_Q
for any N and boundary conditions, and it is embedded in 1 2 3 4 5 6
every cluster synchronization manifold.

Statement 1zero-flux or periodic B&*

(a) If the chain(1) is composed of an odd number of N=7
oscillatorsN=2n+1, then there exists a cluster synchroni-
zation manifoldM¢(n+ 1) which is given by the equalities
{X1=Xan+ 1, Xoa=Xan, -+« Xno1= Xn13, X, = Xp 2} defin- ‘_._O_O_O_._.
ing n+1 clusters of synchronized oscillators. 1 2 3 4 5 6 7

(b) For evenN=2n, there exists a cluster synchroniza-
tion manifold M¢(n) given by the equalitie$X;=X5,, X5 FIG. 3. Collection of all possible clusters in the chain k=6 andN=7
=Xon-1s - Xn=Xps1}- and zero-flux BC.

The hyperplane$1®(n+1) andM®n) define a central
symmetry of synchronized oscillators with respect to the L
rriliddle o%/the cr)llain. In the case bf=2n+1, the ogcillators cluster synchronization hypierplimas_c(:a):{x_l: Xe: X2
are synchronized in pairs around the middle element (_i(lf” X_3—X‘ﬁ, M_(2)—{X_1—X_3—X4—Xl6,. Xo=Xs}, and
1 1) (see Fig. 1 M (2)={X1=X4=Xs5, Xy,=X3=Xg} defining corres'pond—

Statement 3¢ ing clusters. FoN=7, the only cluster synchronization hy-

N o - & o
For a factorizable number of oscillatoks=p-n, where perplane isM%(4)={X; =Xy, X;=X¢, X3=Xs} defining a

: . ; four-cluster regimdFig. 3).
p andn are any arbitrary integers, the syst¢i with zero- o
flux BC has an invariant hyperplank! a"(n) defined by We note that these two similar arrays that are composed

L . of close numbers of oscillatold;=6 andN,=7 may ex-
the equalities {X;=X; ,k=1,2,...int((p—1)/2) X; . . oot 2 o
X ? . k={1|2 I+?F1|E(p/2) 10 ((E} F)or)pel— hibit completely different regimes of cluster synchronization.
riodi_cI TBCJr ::n(’j even'n,’the’systeni'l) has: a’ sim'ilar manifold. This means that one can .completely change pqssible modes
The manifoldM3(n) defines a cluster synchronization of c!uster synchronization in a large array by addlng only one
regime under which the chain of oscillators is decomposecﬁ)SCIIIator to the network. In a broader context, it may be

into p equal palindromic subchains of nonsynchronized related to a challenging probl_em of the co_ntrol of a given
oscillators(see Fig. 2 number synchronous motions in many physical systems. Ob-

It follows from Statements 1 and 2 that in the case Ofviously, the main problem for such a control and selection of
periodic BC, each cell of the array may be considered as g particular synchronogs mode ?S to ensure its_stalﬁﬁity.
first element, and the systeft) hasN— 1 additional mani- We proceed now with the existence of possible modes of

folds M® andN — 1 additional manifold#2" Some of them cluster synchronization in a 2D lattice of locally coupled
may be identical ' oscillators. Then we discuss the stability of the correspond-

By means of Statements 1 and 2, one can study the set H}g synchronization reg!mes and their persistence in the pres-
possible cluster decompositions in the chdinwith the con-  €"'C€ Of a parameter mismatch between the systems.
crete number of oscillators.

Figure 3 shows the set of all possible modes of clustet!!- 2D LATTICE OF IDENTICAL OSCILLATORS
synchronization in the chaifl) that is composed oN=6 We first study a square 2D lattice of chaotic oscillators
and N=7 with zero-flux BC. ForN=6, there exist three that are coupled with four nearest-neighbor elements with

equal coupling strength,

_on Xij=F(Xi)+eC-(AX); ), @
o@

n n
T T T TS .
L 2 2020 0; s 2 2 2020 where AX);j=Xi 1y + Xi—1j+ X, o1t Xijo1=4Xi, 1]
1 2 3...n

pn =1N. We assume zero-flux or periodic BC, all other nota-
tions are similar to those of the systdf).

FIG. 2. Palindromic cluster regime for the factorizable number of oscillators Nf)te th?‘t the SYSt_eer) represents a discrete_ Ver5i0n of
N=p-n in the chain. two-dimensional spatially extended reaction-diffusion sys-
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tem and plays a significant role as a model of simple forms
of turbulence and spatiotemporal chaos. On the other hand,
such a model is of interest in connection with the description
of coupled biological cells. The individual cells often display
complicated forms of bursting and spiking behavior, and it is
an obvious challenge to describe how the units function to-
gether and which stable synchronization patterns are pos-
sible.

A. Existence of cluster synchronization manifolds

To study the existence of possible modes of cluster syn-
chronization in the latticé2), we apply the results on the
cluster synchronization manifolds from the 1D chain case in
a straightforward manné?.

Statement 3:

(@) The system2) has a family of cluster synchroniza- !
tion manifoldsM (d,,d,) that are an intersection of invariant
manifoldsM (d;) andM(d,) existing in the case of the 1D (a)
system(1). The corresponding cluster regimes are a topo-
logical product of synchronization regimes in the two direc-
tions of the 2D lattice.

(b) The lattice(2) has simple symmetries with respect to
the principal and secondary diagonals, i.e., there exist invari-
ant manifolds Mpr(d):{Xj‘i =Xi'j :Xi,j ’ i= l& NZJ >|}
and Msc(d):{XN7j+l,N7i+l:Xi,j:Xi,j y i:].,N, 1$J$N
—i+1}. Obviously, there also exists the intersection sym-
metrical  invariant  manifold MP™°{(d¢) =MP'(n,)
NM34n,), where

(n+1)?, for odd N=2n+1
n(n+1), for even N=2n.

S

(c) There exists a cluster synchronization manifold
Ms(d)=M¢d,,d,;) "MP5{ds) which defines simulta-
neously the symmetries of synchronized oscillators with re-
spect to the two diagonals and to the middles of the rows and
columns of the lattice. Number of clusters is

(n+1)(n+2)/2, for N=2n+1 (b)
n(n+1)/2, for N=2n '

) ) FIG. 4. (a) Product cluster defined by the manifol®(3,3). Oscillators
Figure 4 presents an example of two cluster regimeSynchronize with respect to the middle row and coluiepicted by dashed

which exist in the 55 lattice (2) and which are defined by lines). Oscillators labeled by the same digit belong to the same clusber.
the manifoldsM%(3,3) andM star(e) respectively. Symmetrical cluster defined by the manifdf?(6). Oscillators synchro-
. . o L e ) L nize with respect to the dashed lines.
The invariant manifoldV ¢(3,3) defines synchronization P
between oscillators with respect to the middles of the rows

and columns of the latticgsee Fig. 4a)]. The invariant |attice is even richer and additional intersection invariant
manifold MS#{6)=M%(3,3)"MP5(15) defines simulta- manifolds may be obtained as the topological product of the
neously the symmetries of synchronized oscillators with recjuster patterns.
spect to the two diagonals and to the middles of the rows and
columns of the latticgésee Fig. 4b)].

Obviously, for this example of the prime numhbgre=5
there also exist the following product manifolds: the mani-  To go further with the stability of cluster synchronization
fold M%(3,1) (M%(1,3)) defining symmetrical 3-cluster syn- manifolds, we need to show first the eventual dissipativeness

chronization between the rowgolumng of synchronized Of the coupled syster(®).

B. Eventual dissipativeness of the coupled system

oscillators, the manifoldM (1,5) (M(5,1)) defining full syn- Assume that the individual syste)ﬁ,jz F(X,;) is even-
chronization of the rows$columng and out of synchroniza- tually dissipative, i.e., there exists the Lyapunov directing
tion between the columnsows). function V; | =XIj-Q-Xi,j/2, where Q=diag@;,ds, - - - Am)>

For the factorizable number of oscillataxs the collec- q,>0 for k=1,... m such that the time derivative with
tion of possible modes of cluster synchronization in the 2Drespect to the individual subsystem
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V. j:X‘Tj'Q' F(X)<0 3) Introducing the notation for the differences
outside of the compact séi,j:{||xi,j)||<b1}. The com- Ui =Xij= Xivaj 6)
pact set Ei,j belongs to the absorbing domaiB; | we derive the finite difference equations
=1{Vi j(x ;) <b,}. SinceV<O0 outside of the absorbing do- . —
mainB; ;, this compact seB; ; attracts all trajectories of the Uij=DFU;;+eC(AU);;, @)

systemX; ;=F(X; ;) from the outside. Note that many cha- withi=1,... N—1,j=1,... N, andUy;=Uy ;=0 for the

otic dynamical systems satisfy this natural assumption.  case of zero-flux BC, and,;=Uy; for periodic BC. In the
Statement 4Under the above conditions, the 2D lattice following we will consider only zero-flux BCDF is anm

system(2) is eventually dissipative. The absorbing domBin  xm Jacobi matrix of F(X*(t)), where X*(X;;,Xi+1;)

of the system(2), such that every trajectory of the system €[X;j . Xi+1;] is driven by the systeni2) and comes from

reached and remains there forever, is a topological product\Miean Value Theorem.

of the absorbing domairi; ;. _ Note that the JacobiaBF can be calculated explicitly
EfOOfi Consider the directing Lyapunov functioW i the parameters of the individual subsystem and for infini-

=2;-1Vi, - Its derivative with respect to the systé®) has tesimalU; ; it becomes the Jacobian of the variational sys-

the form, tem.
N N Adding and subtracting an additional tedl; ; to the
W= 2> V= > (X];-Q-F(X;)) system(7), we obtain the system
ij=1 " ij=1 ' ' o
U, ;=(—A+DF)U; +AU; +&C(AU), ;, )
+X7-Q-£C(AX); ). ) ij=( Ui | i (AU);

where themXm matrix A is diagonal and, similarly to the
coupling matrix C, satisfies the conditions A
=diag@,,a,... An, =0 fork=1,2,... | anda,=0 for
k=1+1,...m.

The first sum in the expressidd) is negative outside of the
compact seB due to the assumptio(8). The second sum
takes the form,

N . The matrix—A is added to damp instabilities caused by
ijZfl (Xij-Q-eC(AX)i ))=—&($1+S), eigenvalues with nonnegative real parts of the Jacobign
’ At the same time, the instability introduced by the positive
where definite matrix+ A in Eq.(8) can be damped by the coupling
N N terms. The positive coefficients, are put in the matrixA
51:_2 _ (xi]j_xi’Hl)T.Q.c(xi'j_xiﬁl), only at the places corresponding to the variables by which
i=1j=1 oscillators are coupled, and therefore they can be compen-
N N (5)  sated by the negative coupling terms.
52:2 E (Xi,j_xi+1,j)T'Q'C(Xi,j_xi+1,j)v We develp_p now this approach as follows. Let us intro-
j=1i=1 duce the auxiliary system,
and the superscri stands forN (for N— 1) for periodic - -—
(zero-fluy I§C. Thgﬂporoduct matriQ C is diagzjnal gnd posi- Uij=(=A+DF)U;;. ©)
tive definite, therefore the quadratic forngg and S, are We assume that there exists the Lyapunov function,
positive definite foiX; ;#0. Hence the derivativé/ is nega- ~ -
tive outside of the compact s&, and the systen{2) is Vij=Uij-H-Ui 02, (10
eventually dissipative. D \where H=diagty h,, ... h,Hy), the numbersh,>0 for k
=1,... ], and the (n—1)(m—1) matrix H, is positive defi-
C. Stability of the invariant manifolds nite.

We require its derivative with respect to the systén

Our first objective is to obtain conditions of global :
to be negative

asymptotic stability of full synchronization in the systéa.
We study the conditions of global stability of the cluster v :U-T-H(—A+E)U- <0. U. . #£0. (11)
synchronization manifoldM (1,N) which defines complete R b
synchronization between rows of the latti@. Having ob-  Note that this assumption is realizable. For example, it is
tained these conditions, we can apply them directly to thevalid for somea,>a*>0, k=1,...] and for the real spec-
stability of the cluster manifoldv(N,1) defining complete trumX;, (), ..., Ap(t)<A* <O of the (m—1)(m—1) block
synchronization between the columns. The intersection ofnatrix of DF corresponding to the lash—1 variables of
these conditions gives the conditions for full global synchro—Ui(f‘j). When the spectrum is not real, the conditions for the
nization. Stability of other cluster synchronization manifolds Lyapunov exponents to be negative essentially depend on the
can be also obtained in a similar way. imaginary part of the eigenvalues. Moreover, these condi-
Using the approach developed in the previoustions may fail while the imaginary part of the eigenvalues is
papers,'*!®we proceed now with the study of global stabil- increasing.
ity of the cluster synchronization manifollll (1,N) ={X; ; To obtain the conditions for global stability of the mani-
=Xj, i,j=1,... N}. fold M(1,N), we consider the Lyapunov function
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N N-1
=1 i=1

Belykh et al.

lattice with increasing coupling or not. In fact, for a large
number of examples of coupled continuous time systems,
synchronization arises with increasing coupling and remains

for the systen{8). The corresponding time derivative has the up to infinite coupling strength. However, a few examples of

form

N N-1
W=2 > {U[H(-A+DF)U; }
i=1i=1

N N-1
+21 21 {UT H(AU; j+C(AU); )} (13
j=11=

The first sum in Eq(13) is negative definite due to E¢L1).
The second one falls into two tern$s+S,. The termS;,

N N-1
31:_81_21 21 (Ui j= Ui 2 ) ™HC(U; = U 1)

is negative definite aslC>0. The termS, takes the form,
N | N—1
k k k k
32:8]21 gl hkckizl {Ui(,j)Ui(+)1,j+Ui(,j)Ui(—)1,j

—2(1-ay/(2ec,))(UX)2. (14)

The conditions for the quadratic for8) to be negative defi-

nite can be presented as follows:
eC >/ Nmad, k=1,2,... I, (15

where\ = —4 sirf(m/2N) is the well-known maximal non-

coupled systems for which this is not the case were
reportec®'* Among them is a lattice of coupled Bsler sys-
tems in which the stability of the synchronization regime was
lost with an increase of coupling. These desynchronization
bifurcations were called short-wavelength bifurcatibis.a
recent papel* we have linked this, at first sight surprising,
phenomenon with the equilibria disappearance bifurcations.
In fact, usually for a fairy small coupling the coupled system
(with a fixed number of oscillatord) has a finite number of
equilibria ngoy, Which is usually less than's“ng|, whereng,

is the number of equilibria of the individual oscillator. Most
of these equilibria lie outside the synchronization manifold.
With increasing coupling strength, this part of the equilibria
disappears via saddle-node bifurcations such that when the
synchronization regime becomes globally stable there are no
equilibria outside the manifold. We proposed the conditions
on the individual oscillator and the place of coupling for
which this sequence of the equilibria disappearance is broken
and some equilibria are always present outside the manifold.
In this case, the synchronization behavior depends dramati-
cally on whether these equilibria are a unique limiting set or
if they have some neighboring attractor outside the diagonal
manifold. In the last case, the existence of these equilibria
has direct relation to the mechanism of desynchronization.

zero eigenvalue of the nearest neighbor coupling matrix withrhe |attice of coupled ssler systems satisfies our desyn-

Neumann(zero-fluy BC.
Thus, we arrive at the following conclusion:
Statement 5Under the assumptiofill) and the condi-
tion (15), the manifoldM (1,N) is globally stable.

Obviously, the synchronization threshold coupling value

e* can be estimated by the expression

e* = max(a,/c)/|\max -
ke[L1]

(16)

Remark:lt is easy to verify that the conditions for global

synchronization in the rectangular lattidéé, XN, are two

inequalities(15) written for N; and N, separately. One can
also obtain synchronization conditions for periodic BC simi-

lar to those of Eq(15).

chronization conditions and will be described in Sec. V.

Let us also comment on the order of cluster stabilization
with increasing coupling. There are two main scenarios to
complete synchronization. In the most widespread case, with
increasing coupling, the diagonal manifold becomes globally
stable simultaneously with all the other cluster manifolds in
which it is embedded, and full synchronization arises right
away. The cluster manifolds are globally stable and attract

| trajectories from the outside but the cluster regimes are un-

stable since the trajectories within the manifolds are then
being attracted by the diagonal. In other cases, when the
coupling is increased, the dynamics is restricted to stable
cluster manifolds of lower and lower dimension while the

To prove global stability of cluster synchronization diagonal remains unstable. This _dec_reasing sequence of di-
manifolds that are described in previous sections, one caffénsions of the cluster synchronizatioumber of clustess
study the corresponding finite difference equations that aré determined by the order of the embedding of the mani-

similar to Eq.(7) with a reduced numbeN and changed

folds. However, this sequence may be interrupted at any

boundary conditions. For example, for the cluster manifoldPlace when the diagonal manifold becomes globally stable.
M°(int(N/2),N) providing symmetrical cluster synchroniza- In fact, the appearance of clusters depends on the vector field

tion between the rows of the 2D lattice, the numbein Eq.

of the single system and on the corresponding variational

(7) is defined by the number of clusters in one lattice direc-Stability equation. One drawback of the sufficient conditions
tion and becomes ink/2). The corresponding sufficient Of the stability is the inability to predict, in the general case,

conditions can be written similarly to E¢L5).

which cluster mode will be stable, and the numerical study of

The sufficient conditiong11)—(15) for the necessary the transversal Lyapunov exponents is often the only method
coupling strength may give large overestimates but they argvailable for predicting the stability.

useful for a rough estimation of the range of coupling  Thus after having considered and discussed the existence
strength required for synchronization. They guarantee thand stability of synchronization manifolds in the identical

stability of the synchronization regime and solve rigorouslyoscillators case, the main problem is to show that the corre-
the problem of whether synchronization occurs in a concreteponding clusters are indeed robust against small perturba-
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tions introducing by a small parameter mismatch, i.e., they = We use here the same technique as we utilized in the

can be realized in real physical systems. previous section, except that we add and subtract now two
additional termsAU; ; andHflPUi,j to the systen(19),
IV. PARAMETER MISMATCH U; = (~A+H 1P+DF, )U; —H 'PU; ,+AU; |

A. General results +M€i,j+8C(AU)i,j ' (20)
MatricesA,H are identical to those of the systerf® and
(10, and the matrixP=diag@:.,p,,- .. Pm), P=>0 for k
Xi j=F(Xi p)+ufi j(Xi ;) +eC(AX); 5, 1 =12...m . , o .

Our purpose is to obtain the conditions under which all
¢ ! . attractors of the systef0) lie in the vicinity of U; ;=0, and
smooth mismatch function. Boundary conditions are aSthus they correspond to the clustérsynchronization. To

sumed to be zero-flux. _ compensate the instability defined by the mismatch term in
We assume that all our assumptions related to the unpe[Eq_ (20), the matrix —H P is added. Instabilities intro-

turbed systen(2) are valid for the systerti.7). In particular, duced by the positive definite matrik~ 1P that in turn arose

we assume that each ind_ividual subsystem of the Iat('[b_'és in the system(20) can be damped now by the appropriate
(for e=0) has an absorbing domaB ;(«) for some region choice of the values of the matrix.
of the parametep.. Therefore, due to Statement 4, the lattice  \y/a introduce the new auxiliary system

system(17) is eventually dissipative and has the absorbing o
domainB(u). Uij=(—A+H P+DF; )U; ;. (21)
Consider a cluster synchronization manifdldd) of the
unperturbed systert?). Recall that the index=1,2,...,d
indicates the index of a cluster from tldeclusters. Let the
index s=1,2,...,s" indicate the place of the oscillator
within the cluste_r. Two oscillators from the same cluster are \7i,j:UiT,jH(_A+ DF)Ui,j+UiT,jPUi,j<0, U;,;#0.
denoted by the indexes ,5;) and (r,s,), respectively. (22)
Thus due to the chosen identification,§)— (i,j) we

can rename the coordinates of the manifddd) as X,, N the systen(_Zl)L\l/ve “spoiled” the JacobiaDF; ; by
r=12...dands=12,. ..s". inserting the matrixd ™ ~P and we choose the maximal val-

Let X, o(t,X0, 1), XO={X° i ,j=1 N} be the co- Ues ofpy, k=1,... min such a way that it would be still
y L L L |’] 1 L LR | . . . _ye .

ordinates of the oscillators defining the dynamics of a giverP0Ssible to Cfimpeﬁate the increased instability, defined by
cluster ¢,s) and satisfying the initial conditions the termst "P+DF;)U;;, by the term—AU;;. Obvi-
X, (0X%, ;) =X0 . ously, the matrix— A must be more stable than that used in

" Definition: Clusters of the nonperturbed systé®) are the_: previous section. In th_e simpléftom the stability vieyv-
said to be clusters of-synchronizedscillators of the per- pomt) case V\_/h_ere the oscillators are coupled by gl_l variables,
turbed systen(17) if the following property of global as- I-€- all coefficientsa,,c,,py, k=1,....mare posomve, the
ymptotical synchronization is fulfilled. For any initial state V&lues of p, must be proportional t@, a=a"+ apy.

We consider now the 2D lattic€) with an additional
mismatch term

whereu is a positive scalar parameter afd :R"—R™ is a

Assume that the derivative of the Lyapunov function
(10) along the trajectories of the auxiliary systei®l) is
negative,

X0 of the lattice there exists Hence, the maximal instability termx in Eq. (21) are pro-
0 0 portional to the coupling strengtic, via Eq. (15).
T such that|[X; s (t,X% u) = X; s, (t,X°, )| < 8() Applying the Lyapunov function(12) for the system
for =T (18 (19), we obtain
] N N-1
foranyr=1,...d, slvze_[l,sr], and lim,_o 5(_,u)=0. w=> v, [+8,+5,-S,, 23)
In other words, this means that tl&neighborhood of i=1i=1

the manifoIdM(d)|B(M) is globally stable and attracts all
trajectories of the systeiti7).

We consider now global stability of a cluster NoN-1
&-synchronization regime defined by the generatjmisting S.=> > [U[,PU; j— U/ He 1. (24)
manifold M(1,N) of the nonperturbed systeif2). Global =t
stability of this manifold determining synchronization be- The first three terms in Ed23) are similar to those of Egs.
tween the rows of the 2D lattic€) was considered in the (13)—(14), and they are negative definite due to Eg2)

where

previous section. under the condition§15)—(16) which we assume to be true.
Using the difference$6) and similar to Eq(7), we ob- To obtain the conditions on the region of negative defi-
tain the finite difference equations, niteness of the quadratic ford it remains now to attack the

C_TE T . N quadratic formS,, .
Ui j=DF; U; ;+ ue j+eC(AU); ;, (19 The values_eff"j), k=1,... mare bounded in the absorb-
where & j=[f; ;(Xi ;) —fi+1;(Xi+1))]la(,) is @ mismatch ing domainB(x) for each cluster mode, i.e[g{*)|<e®.
difference calculated within the absorbing domBif.), and  DenoteM®=|=™ , h,e™]. Then the sun{24) satisfies the

bothDF; ; ande; ; are driven by the systeif17). inequality,
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N N-1 m synchronizatiorregimes When § is no longer small, the in-
S,>2 > X {(pu¥|—uM®@) UM}, variant manifolds may be no longer preserved but their stable
=1 1=1 k=1 neighborhood provides stabfesynchronization clusters.
ThereforeS,>0, and hence<0, for |Ui(kj)|>/-LM(k)/pkv We shall make now the general ideas of our approach
k=1,...m. ’ concrete by investigating a 2D lattice of coupled Lorenz os-

To estimate the domain where the quadratic fofris cillators.

positive definite and thus to obtain an estimate of the maxi-
mal values of the transversal deviatiod§? from the pris- ~ B. Example: 2D lattice of nonidentical Lorenz

tine manifold M(1,N) one should enclose the domafidy ~ SYSEmMS
<0} into some region bounded by a certain leVé of the Stability of asymptotic full synchronization in a 2D lat-
Lyapunov function(12). tice of nonidentical Lorenz oscillators was recently stutfied

The enclosure {|U®|<uM®/p,, k=1,.mC{W for the case of vector diffusive coupling and mismatch intro-

<W,} determines tha¥V is negative outside of the region duced in all the individual variables. The use of the all-
variables coupling configuration and a large coupling

K _ .

UKI<wM®uipy k=1,...m, (25 strength allowed the authors to compensate the mismatch
where the constants, are defined by the levan,. effect and provide asymptotic synchronization.

Concluding the proof of the stability of the In contrast to this work, we apply our general results to
s-synchronization regime we come to the following asser2 More difficult case of a scalar coupling and mismatch pa-
tion. rameters that are present in all three equations of the indi-

Statement 6:Under the conditiong15), (16) and the Vidual Lorenz system. _ _
assumptions related to the auxiliary systézt), a d-cluster We consider the 2D lattic€2)—(17) with the Lorenz sys-
synchronization regime of the systei® definesd clusters €M as an individual oscillator,
of &-synchronized oscillators of the systéf), where Xij=(o+oi)(yij—Xij)+e(Ax);,

= (k) - .
g kggf‘rxn] WM, k=1,....m. (26) Yii= (v ¥ )X = Yij— Xz (28)

While the auxiliary parametens, are increasing, the es- Zij= = (0Fb; )z ;%Y1

timated synchronization threshold (p) increases whereas for which X; ;=column(; ;,y; .z ;), and all other nota-
the synchronization erraf(p) decreases. Since we deal with tions are similar to those of the systé®)—(17). We assume
the sufficient conditions, it is often possible to put some op-+the perturbations of the parameters to be uniformly bounded

timal valuep=const. loijl<m, [yijl<wm, and|b;j[<pu.
The law of the(8,e) dependence is implicitly expressed Let us study global stability of the cluster
via the dependence qn &-synchronization regime defined by the generating manifold
Answering the question of the persistence of the invari-M(1N)={X; ;=X;, Xi j=(X;;.Yi .z ), i,j=1,... N} of

ant manifolds under small perturbations, we remark on théhe system(17) with x=0. To do so, we shall follow the
following. The system(17) in a neighborhood of a cluster steps of the above study.

synchronization manifold (d) of the nonperturbed system (1) The individual nonperturbed Lorenz systemu (
(2) may be cast into the general form, =0,e=0) is eventually dissipativé and has an absorbing
U=G(X)U+ u&(U,X) domain
= + e 1 1
a B=[C+y2+ (2— @)?<b2a?/A(b—1)}, a=y+o.
X=F (x)+ i (UX @0
=F(X)+uf(UX), Hence, the coordinates of the attractor of the individual Lo-
having the invariant manifoldU=0} for u=0. renz system are estimated to be bounded by
It follows from Theory of Invariant Manifold¥ and ly|<bal2yb—1, y=xy,(z— ). (29)

Central Manifold Theorerf that if the matrix é(X)|C, . )
whereC is a compact, has the eigenvalues bounded from the DPUe to Statement 4, the estimat@9) are valid for co-
left to zero, then the systef@7) has a stable invariant mani- ©rdinates of each oscillator of the coupled sys(@pr-(28).

fold U=U(X,.), X< C, U(X,0)=0. Hence, if the linear (2) The finite difference equation&l9) for UX=x; ;

i
—Xi M=y —vy: . D=z _7
invariant manifoldM (d) satisfies the above conditions, then X'+I1'Jd’ LU'vJ Yij ty'+1-18’ Utlhj tz"l_ Z'*}[Jh of _ﬂ(])e
it is preserved under small perturbations such that the pefCUP'€d -Orenz sys em&28) without mismatch &;,;=0,
g . . 7%i,;=0, andb; j=0) have the matrix
turbed manifoldM 4 defines the persistent clusters. However
this approach seems to be less effective since it does not - o 0
allow us to gst@mate_ the synchronization error and may not —DFi = y—0@ -1 —e®| (30)
work for not infinitesimal values of the mismatch parameter. ' N 1
To conclude, in this section we have proven the attract-
ing property of thedneighborhood of generating cluster where ®(§):(§i,j+§i+l,j)/2 for é=x,y,z. In the matrix
manifolds and obtained the estimate on the synchronizatiof80), we have succeeded to get rid of the crossing terms with
error 6. Our approach allows to investigate the persistence ofthe help of the formula,
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FIG. 5. Snapshots of clusters in the 7
X7 lattice of nonidentical Lorenz sys-
tems. Different shades of gray are pro-
(a) p_ortional tq the_ amplitudesi'j(t). Os_—

cillators with identical gray shading
belong to the same clustéa) Oscilla-
tors synchronize with respect to the
principal diagonal of the lattice &(
=52). (b) Synchronized rows of oscil-
lators (e =70) (left). Temporal behav-
ior of the (1,1) oscillator in the regime
of synchronization of the rowgight).

7
(b)
&7 j—§i+1j77i+1j:®(”)(§i i~ &ivay) Hence, the sufficient conditions of the stability of the sys-
o ’ ’ © ' ' tems(19)—(28) may be written similar to Eq(16) and take
O (75 = Mivaj)- the form,
To study the stability of the systeli19)—(28) with the ek —g* .
matrix (30), we use the simple quadratic forgh0) with the s>e* =a*(p)/4sirt(m/N). (33
unit matrix H=I. The auxiliary matrices areA (3) Synchronization erro depends on the mismatch
=diag@,0,0) andP=diag(,p,p). functions,
Then the conditior(22) for the auxiliary systeni21) to W
be stable is the condition for the symmetrized mat8x pfi (X ) =0i(Yij = X)),

=—[H(—A+DF+P)]s,
ato—p (—a+0®@)2 —0V)2
s=| (—a+0®)2 1-p 0 (31)
—eWy2 0 b—p The diﬁerences@f!‘j)=fi(’kj)(Xi,]-)—fi('i)lvj(xiﬂ‘j) are linear
functions of the coordinates of the systéa®). Hence, they

to have positive eigenvalues. From E1) it follows that can be estimated via the absorbing domaps that are in
the auxiliary parametep must be chosen from the interval .\ astimated by Eq29). ‘

(0,1) since the parametdr is assumed to be greater than 1 Taking into account Eq34) and usingH =1, we obtain

(in the original Lorenz systerh=8/3). _ the estimate on the maximal mismatch functions difference,
Taking into account the estimat29) for the coordinates

ut DX )= 71,%

and ;Lfi(?’j)(Xi’j)=—bi,jZi,j. (34)

0" and®@, we obtain the following sufficient condition M=maxe) k=1,23
for the matrix(31) to be positive definite: k
a>a*(p)=b%a?/16(b—1)(1-p)+p—o. (32 =2(b+u)(a+2m)/\Vb+u—1. (35)
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30l ‘ ‘ ‘ ‘ ‘ ‘ p V. NUMERICAL EXAMPLES
A. 2D lattice of nonidentical Lorenz systems
25¢ 1 To check the theoretical results we consider the 2D lat-
tice (2)—(28) with N=7 and zero-flux BC. The parameters
— 20k | are o=10, 7:51,b:2.67, o-i'j=0, Yi,j:O! andbi’j:Ab
2 -g. The mismatch parametérb is expressed as a percent-
® age ofb, and values of the parametgiare chosen randomly
2 157 ] from the interval 1,1).
g . , We study numerically the order of appearance of persis-
Jimit of the cluster persistence | tent cluster synchronization modes when increasing the cou-
10 -

pling parameters from zero Ab=5%). With increasing
coupling (e=51.5), a stable cluster, defining synchroniza-
tion in pairs of oscillators with respect to the principal diag-
onal of the lattice, arises from a spatial disorfieig. 5a)].

For £=69.5, this cluster loses its stability, and chaotic syn-
chronization between the lines of the lattice, defined by the

3]
T

b 2 4 6 8 10 12 14 16

0,
Ab (%) generating manifoldM(1,7), arises[Fig. 5b)]. For &
FIG. 6. 2D lattice of nonidentical Lorenz systems<(70). Maximum rela- ~ — 842, complete synchron_|zat|on becomes finally SF‘i_ble-
tive cluster synchronization err@® versus parameter mismatdb. We study now the persistence of the cluster defining the

synchronization between the lines. Numerical simulation
shows that the limit of the persistence is being reached for
Ab=12% (see Fig. 6. Here, the maximum relative synchro-
nization error 8™'=max, ;— X, ))/maxf, 1,X,1) between

the oscillators from one cluster is relatively smalip to
o=4l(b+u)(a+2p)Nb+ p=1]u B8 Ap= 12%), whereas the amplitudes of different clusters are
for the chosen auxiliary parameter=1/2. The constants gssentially different. EoAbzlS% the transversal fluctua.—
w,, k=1,2,3 from Eq.(25) are equal here te2. While the tions from the g.eneratmg manifold are no anger small with
mismatch parametet is small, the estimaté36) presents a respect to the dlfference§ betiween the amplltudgs of clusters,
quasilinear law of the dependence of the synchronization eth€refore the cluster regime is no longer recognizable.
ror on the mismatch coefficient. The maximum synchronization error corresponding to

Thus, we finally arrive at the conclusion that the clusterth® Iimlit of the persistence i§"'=10.6%, and the theoreti-
&-synchronization regime, defined by the generating manigf‘lI &' caleulated from Eq(38) for p=Ab=12% equals
fold M(L,N) of the system(17) with =0, is stable when 56‘:_33.9%. Obtained frqm sufficient condltlor_ls, |_t can be_
the coupling strengtls reaches the threshold vale& . The conS|de_red as a good estimate of the synchronization error in
values* is a sufficient condition and gives an overestimate,tn€ region of smalk.
therefore thes-synchronization regime may become stable
early under weaker coupling.

We estimate the relative synchronization error, expresse
as the ratio of the maximal amplitude=maxX;;,j=1,N} The individual Resler system does not satisfy our sta-
of the attractor, as follows: bility conditions (9)—(11) and our theory, strictly speaking,
cannot be applied. However, we knowingly chose this diffi-
cult example to show that even here thesynchronization
modes, while staying chaotic, are robust and stable.

We consider the systerfi) of 9 x-coupled Rssler os-
cillators with zero-flux BC. The individual system reads

Thus the synchronization err@ris estimated as follows:

8. Chain of nonidentical Ro ~ssler oscillators

5®=2vV2M ulA. (37

Since for the coupled Lorenz systeli8), the maximal
valueM of the mismatch function difference is estimated by
the maximal valueA of the coordinates of the attractor,
therefore the estimat7) takes the form, Xx=—(y+2),

5reI:2‘/§M. (39) y=x+a(l+Aa-q)y, (39
In the general case, the synchronization ef8rmay be z=b+(x—c)z
not small. To be of physical relevance, it must though beThe parameters ara=0.2, b=0.2, c=5.7. Values of the
essentially less than the difference between the correspongarameter q are chosen randomly from the interval
ing coordinates of oscillators from two different clusters.  (—1,1). The parameteka, expressed as a percentageapf

To validate the results on the existence and persistendatroduces the parameter mismatch.
of the described clusters with respect to parameter mismatch Numerical simulation shows that a cluster of
perturbations as well as the real observability of the pre-6-synchronized oscillators defined by the generating sym-
dicted cluster synchronization modes, let us consider severahetrical manifold M¢(5)={X;=Xg,X,=Xg,X3=X7,X,
numerical examples. =Xg} is stable and observed in a fairly wide region of the
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| FIG. 7. Cluster synchronization in a chain of 9Rter
systems. Different shades of gray are proportional to the

amplitudesx;(t). The mismatch parametexa=5%.

oscillator index

0 250 _500 1000 Oscillators synchronize in pairs around the fifth element
time (top). Chaotic attractor defining the dynamics of the
first and the ninth oscillators in the regime of cluster

synchronizationbottom).

parametere (see Fig. J. The two other possible cluster re- 10 ‘ ‘ ‘ ‘ ‘ .
gimes, defined by the manifoldd?'(3) andM¢(2), are not ol
observable in this particular case.

This stable chaotic cluster is persistent up to parameter 8r

mismatchAa=11% (see Fig. 8 Similar to the case of the
Lorenz system, the maximum relative synchronization error
5 is calculated as followss™'=max(k; —Xo)/max; ,Xo).

Up toAa=11%, the difference between the oscillators from
one cluster is relatively small whereas the amplitudes of dif-
ferent clusters are essentially different. Fda=12% the
transversal fluctuations from the generating manifold are no
longer small with respect to the differences between the am-
plitudes of clusters, therefore the limit of the persistence is o
being reached. However, while the amplitudes of oscillators,
that are supposed to form one cluster, develop in different
manners, their phases seem to be close. In this case one
can expect the phenomenon of cluster phase
synchronizatiort’ Here, the generating cluster manifold may
still define the rule of the existence of phase synchronize@g. g. chain of nonidentical Rsler systemss(=1.14). Maximum rela-
clusters. tive cluster synchronization err@® versus parameter mismatdta.

6r limit of the cluster persistence

max 8™ (%)
o

2 4 6 8 0 12
Aa (%)
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FIG. 9. Snapshots of clusters in the 5
X5 lattice of chaotic Rssler oscilla-
tors with mismatch noisd€a) Rows of
nonsynchronized oscillators synchro-
nize in pairs around the middle row
(¢=0.12). (b) Oscillators synchronize
within the rows €=0.49). (c) Full
synchronization £=0.58). (d) Oscil-
lators are synchronized with respect to
the diagonals of the lattice and with
respect to the middles of the rows and
columns £=0.65).

C. 2D lattice of nonidentical Ro ~ssler oscillators 1. 5X5 lattice

As a second example of 2D lattices we consider the lat-  Figure 9 presents the sequence of appearance of the per-
tices (2)—(39) of N x-coupled Resler oscillators with zero- sistent clusters-synchronization regimes with increasing
flux BC. In the systen{39), we introduce uniformly distrib- coupling for a fairly large mismatcha=10%.
uted mismatch noise at the intervat-(,1) defined by the With increasing coupling from zerceE&0.12), a stable
function ¢(t) which stands for the parametgr In contrast cluster defined by the generating manifdid(3,5) arises
to the previous cases where mismatch was introduced bjyFig. (a)]. This cluster defines a symmetrical spatiotemporal
constant parameters, here we perturb the generating clustesgime under which rows of the lattice synchronize in pairs
synchronization manifolds by small mismatch noise. around the middléthird) row. Oscillator within the rows are

Once again, the lattice of Reler systems belongs to the not synchronized. With further increased coupling (
class of coupled systems for which the synchronization re=0.49), this regime gradually develops into a cluster defined
gime is losing its stability as the coupling is increased. As itby the manifold M¢(3,1). Oscillators within the synchro-
was discussed before, these desynchronization bifurcatiomsized rows start to synchroniz€ig. Yb)]. Fore=0.58, full
can be directly related to the presence of saddle{iocthe  synchronization becomes locally stable and the correspond-
case of the Rssler systemwhich lie outside of the diagonal ing homogeneous cluster arigédg. 9(c)]. For e=0.65, the
manifold and are preserved for any coupling strength. Theispatiohomogeneous pattern decays due to the desynchroniza-
existence is imposed by a singularity of the individualtion bifurcations and a regime defined by the generating
Rossler system and the usetoupling?* Thus the cluster manifold M2{6) becomes stablgFig. 9d)]. Here, the os-
appearance may have the reverse order: as the coupling églators are synchronized with respect to the diagonals of the
increased, the number of clusters is also increased. square lattice and with respect to the middles of the rows and

Downloaded 24 Feb 2003 to 128.178.50.108. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



Chaos, Vol. 13, No. 1, 2003 Persistent clusters in 2D lattices 177

12

1.5¢

30

20

10

FIG. 10. (Top) &-synchronized motion of oscillators forming the symmetri-
cal cluster shown in Fig. (8l). Temporal behavior of thé€,5) oscillator in
the regime of cluster synchronizatidbotton).

columns[see also Fig. @)]. Projection of the attracting

6-neighborhood onto the planey(,xs) is shown in Fig. 10

(top). Figure 10(bottom shows a chaotic attractor defining

the temporal behavior of th&,5) oscillator in the regime of !

the symmetrical cluster synchronization. J

Finally, with gradually increasing coupling this cluster (b)

synchronization regime becomes unstable and develops intu

a completely unsynchronized pattern. FIG. 11. Snapshots of stable clusters with chaotic dynamics in the333
lattice of Ressler oscillators foha=10% (zero-flux BC and random initial

2. 33X 33 lattice conditions. () £=0.57. Cluster similar to that of Fig.(8. (b) £=0.6.

) ) ) Cluster similar to that of Fig.(@). Different shades of gray are proportional
The numerical study of this fairly large network of 0s- to the amplitudes; (t). Unfortunately, there are not enough distinguishable

cillators is intended to show two things. First, it shows thatgray shades to differentiate between all distinct elements.

the chaotic clusters predicted in the theoretical study are in-

deed stable in lattices composed of a large number of oscil-

lators. Second, these modes are robust against small midefines synchronization in pairs of oscillators of the lattice

match perturbations. around the middle roWFig. 11(a)]. Oscillators with identical
Figure 11 shows the sequence of the stabilization of thgray shading belong to the same cluster. Unfortunately, there

main symmetrical clusters in the latti¢8)—(39) with mis-  are not enough distinguishable gray shatee number of

match noisey(t). Fore=0.57, a clusters-synchronization clustersd=17xX33=561) to differentiate between all dis-

mode defined by the manifold (17,33) becomes stable and tinct elements. Fog =0.6, there arises a symmetrical cluster
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defined by the generating manifodS®((n+1)(n+2)/2) SV.N. Belykh, N.N. Verichev, L.J. Kocarev, and L.O. Chua,Ghua’s Cir-

for N=2n+ 1= 233 with the number of clustexs= 153[Fig cuit: A Paradigm for Chaosedited by R.N. Madar{World Scientific,
11b)]. H il hroni ith h ' . Singapore, 1993 pp. 325—335.
(b)]. Here, oscillators synchronize with respect to the prin- 6J.F. Heagy, L.M. Pecora, and T.L. Carroll, Phys. Rev. Lgt, 4185
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