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Two-dimensional~2D! lattices of diffusively coupled chaotic oscillators are studied. In previous
work, it was shown that various cluster synchronization regimes exist when the oscillators are
identical. Here, analytical and numerical studies allow us to conclude that these cluster
synchronization regimes persist when the chaotic oscillators have slightly different parameters. In
the analytical approach, the stability of almost-perfect synchronization regimes is proved via the
Lyapunov function method for a wide class of systems, and the synchronization error is estimated.
Examples include a 2D lattice of nonidentical Lorenz systems with scalar diffusive coupling. In the
numerical study, it is shown that in lattices of Lorenz and Ro¨ssler systems the cluster
synchronization regimes are stable and robust against up to 10%–15% parameter mismatch and
against small noise. ©2003 American Institute of Physics.@DOI: 10.1063/1.1514202#
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Lattices of coupled chaotic oscillators model many sys
tems of interest in physics, biology, and engineering. In
particular, the phenomenon of cluster synchronization,
i.e., the synchronization of groups of oscillators, has re-
ceived much attention. This phenomenon depends heavil
on the coupling configuration between the oscillators.
While in a network of globally coupled identical oscilla-
tors in principle any subset of the oscillators may syn-
chronize, in diffusively coupled oscillators only very few
of the decompositions into subsets of synchronized osci
lators are possible. They have been characterized in re
cent papers in detail„see Refs. 14–16…. In that work, the
oscillators were assumed to be identical and the symme
tries of the resulting system of coupled oscillators were
exploited. In more realistic models of physical systems
however, the individual oscillators have slightly different
parameters and therefore the perfect symmetries in the
coupled systems no longer exist. Similarly, perfect cluster
synchronization cannot exist anymore, but approximate
synchronization is still possible. The question then arises
whether the cluster synchronization regimes that are ob-
served in systems with identical oscillators persist ap-
proximatively under small parameter mismatch and the
addition of small noise. This paper gives a positive an-
swer and explores the limit of approximate synchroniza-
tion both analytically and numerically.

I. INTRODUCTION

Chaotic synchronization was first discovered by Fujisa
and Yamada1 for identical coupled oscillators and by Afra

a!Electronic mail: igor.belykh@epfl.ch
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movich et al.2 for nonidentical subsystems. Since then th
phenomenon has received a great deal of attention in
mathematical and physical literature~see, e.g., Ref. 7, and
references therein!. In the subsequent years, new synchro
zation phenomena were found including the most interes
cases of full1–9 and cluster synchronization,10–17

generalized,18 phase,19 and lag20 synchronization,riddled
basins of attraction,21 attractor bubbling,22 on–off
intermittency,23 etc.

In full chaotic synchronization, all oscillators acqui
identical chaotic behavior when a threshold value of the c
pling parameter is reached. Full synchronization in tw
dimensional ~2D! and 3D lattices of locally coupled
limit-cycle26,27 systems and chaotic oscillators33–36,16has re-
cently been studied analytically.

Clustersynchronization~or clustering! is observed when
the network of oscillators splits into subgroups, called clu
ters, such that all oscillators within one cluster move in p
fect synchrony but the motion of different clusters is n
synchronized at all. Cluster synchronization was mai
studied in networks of coupled identical maps but the inter
is now shifting towards the analysis of coupled continuo
time systems that have a more direct relation to the prop
ties of real physical systems. Clustering is considered to
particularly significant in biology where one often encou
ters coupled cells or functional units which have complica
nonlinear behavior.10,11,24,25Recently cluster synchronizatio
in an array of three chaotic lasers was reported13 as well.

Considerable attention has been devoted to the prob
of the persistence of full chaotic synchronization in netwo
of identical oscillators when a parameter mismatch betw
the systems is introduced.2,28–36 In particular, a simple sys-
tem of two coupled nonidentical skew tent maps was con
© 2003 American Institute of Physics
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ered and the synchronization error was estimated.28 It was
also shown that it is possible to maintain excellent loca
stable chaotic synchronization between a drive and a
sponse system even when there is a large parameter
match between them and they are coupled only throug
scalar signal.29 Mismatching effects on locally stable syn
chronization of two coupled Ro¨ssler systems were studied.31

Conditions of asymptotic stability of full synchronization
2D lattices of nonidentical chaotic oscillators were obtain
in a series of papers.33–36 In particular, the stability condi-
tions of synchronization in a square lattice of forced Duffi
type nonidentical oscillators with a dissipative neare
neighbor coupling and Dirichlet boundary conditions we
presented.33 In another paper,35 these results were extende
to the case of Neumann or periodic boundary conditio
Using the same approach, sufficient conditions of global
bility of full synchronization in a 2D lattice of nonidentica
Lorenz systems with vector diffusive coupling were al
obtained.36 However, the question of the persistence of clu
ter synchronization modes in lattices of chaotic oscillat
has not yet been systematically investigated.

We have recently studied the phenomena of clusterin
lattices of locally coupled identical oscillators.14–16This phe-
nomenon is directly related to the existence of stable lin
invariant manifolds to which the trajectories of the synch
nous modes of clusters of oscillators are restrained. Th
invariant hyperplanes define the strict set of all possible c
ters of synchronized oscillators that can occur in the latt
Their existence is imposed by the symmetries of the dif
sive coupling and boundary conditions and strongly depe
on the number of oscillators composing the lattice. Our p
vious analysis was limited to arrays of oscillators that
strictly identical. This idealization is convenient mathema
cally, but it ignores a small diversity that is always presen
reality. The question that naturally arises is whether the
covered cluster synchronization regimes are robust aga
small parameter mismatch or whether they are only a fra
product of the symmetries from the idealized case.

This paper revisits the existence and stability of clus
synchronization modes in lattices of diffusively coupled o
cillators with chaotic behavior, this time in the context
their persistence under parameter mismatch. For small
rameter mismatch, we prove the existence of stable clus
of almost-perfectly synchronized oscillators. These clus
regimes, defined by the cluster synchronization manifo
existing in the identical oscillators case, are preserved e
up to a fairly large mismatch between the oscillators.

The layout of the paper is as follows. First, in Sec. II, w
recall our results on the existence of chaotic clusters in a
chain of coupled identical oscillators. Then, in Sec. III, w
study the existence and stability of cluster synchronizat
manifolds in a 2D lattice of identical oscillators. We descri
the set of possible cluster modes, prove global stability
one cluster synchronization manifold, and discuss the qu
tion of cluster appearance with increasing coupling. In S
IV, we prove first the general results on the persistence
stability of correspondingd-synchronization regimes in th
2D lattice of nonidentical oscillators. Next, we apply the
results for a 2D lattice of nonidentical Lorenz systems w
Downloaded 24 Feb 2003 to 128.178.50.108. Redistribution subject to AI
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scalar diffusive coupling. We prove asymptotic stability o
the synchronization between lines of nonsynchronized os
lators in the 2D lattice. We obtain estimates for the cor
sponding coupling constant threshold and for the synchro
zation errord which are explicitly expressed in terms of th
parameters of the coupled Lorenz systems. In Sec. V,
confirm our theoretical results with numerical simulation
lattices of nonidentical Lorenz and Ro¨ssler systems. Finally
a brief discussion of the obtained results is given.

II. 1D CHAIN OF IDENTICAL OSCILLATORS

We start off with a 1D array of diffusively coupled iden
tical oscillators,

Ẋi5F~Xi !1«C~Xi 1122Xi1Xi 21!,
~1!

i 51,2,. . . ,N,

with zero-flux (X0[X1 , XN[XN11) or periodic (X0

[XN , XN11[X1) boundary conditions~BC!.
Here,Xi is them-dimensional vector of thei th oscillator

variables,F(Xi):R
m→Rm is a vector function.K5N•m is

the dimension of the whole system~1!. «.0 defines the
coupling strength between the oscillators. Them3m cou-
pling matrix C is diagonal,C5diag(c1,c2, . . . ,cm), where 0
<ck<1, k51,2,. . . ,l and ck50 for k5 l 11, . . . ,m. Non-
zero elements of the matrixC determine by which variables
the oscillators are coupled.

Cluster synchronization regimes in the array are defin
by linear invariant manifolds of the system~1!. To proceed
with the study of cluster synchronization, we need first
introduce some notions. A manifoldM* is said to beinvari-
ant with respect to a dynamical systemẋ5F(x,t) if for ;x
PM* , the trajectoryw(t,x) lies in the manifoldM* . Let us
now specify this definition for linear invariant manifolds o
the system~1!. Let the set of vertices of the 1D chain b
decomposed into the disjoint subsetsV5V1ø ¯ øVd ,
VgùVm5B given by the equalities of groups of the coord
nates of oscillators. If the decomposition of the vectors
compatible with the system~1! then the manifoldM (d)
[M (V1 , . . . ,Vd) is invariant under the dynamics given b
Eq. ~1! and is said to be acluster synchronization manifold.
The coordinates in the manifoldM (d) are x r5Xi r

, r

51,2,...,d. In this section we provide a detailed descriptio
of cluster synchronization manifolds existing in the syste
~1!. When studying cluster synchronization in lattices
slightly nonidentical oscillators~Sec. IV!, we will take into
account only diagonal-like invariant manifolds defining a
most perfect cluster synchronization. All other situatio
concerned with generalized and phase synchronization
be disregarded.

In contrast to networks of globally coupled oscillators10

where all cluster decompositions are possible, the array~1!
may exhibit only a few of them. Main questions of intere
here are the following. Which clusters can arise in t
coupled system~1! with increasing coupling and how d
these clusters depend on the number of oscillatorsN and
boundary conditions?

To tackle this problem, we consider first the existence
possible cluster synchronization manifoldsM (d) for 1,d
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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167Chaos, Vol. 13, No. 1, 2003 Persistent clusters in 2D lattices
,N. Obviously, ford51 the system~1! has a well-known
synchronization manifoldM (1)5$X15X25¯5XN5x1%.
Here, the dynamics of the coupled system is restricted to
manifold M (1) such that the oscillators are all doing th
same thing at the same moment, even though it is cha
motion. The manifoldM (1), often called the diagonal, exist
for any N and boundary conditions, and it is embedded
every cluster synchronization manifold.

Statement 1~zero-flux or periodic BC!:14

~a! If the chain ~1! is composed of an odd number o
oscillatorsN52n11, then there exists a cluster synchron
zation manifoldM c(n11) which is given by the equalitie
$X15X2n11 , X25X2n , . . . ,Xn215Xn13 ,Xn5Xn12% defin-
ing n11 clusters of synchronized oscillators.

~b! For evenN52n, there exists a cluster synchroniz
tion manifold M c(n) given by the equalities$X15X2n , X2

5X2n21 , . . . ,Xn5Xn11%.
The hyperplanesM c(n11) andM c(n) define a central

symmetry of synchronized oscillators with respect to
middle of the chain. In the case ofN52n11, the oscillators
are synchronized in pairs around the middle elementn
11) ~see Fig. 1!.

Statement 2:14

For a factorizable number of oscillatorsN5p•n, where
p andn are any arbitrary integers, the system~1! with zero-
flux BC has an invariant hyperplaneMalt(n) defined by
the equalities $Xi5Xi 12nk , k51,2,. . . ,int((p21)/2),Xi

5X2 i 1112nk , k51,2,. . . ,int(p/2), i 51,2,. . . ,n%. For pe-
riodic BC and evenn, the system~1! has a similar manifold.

The manifoldMalt(n) defines a cluster synchronizatio
regime under which the chain of oscillators is decompo
into p equal palindromic subchains ofn nonsynchronized
oscillators~see Fig. 2!.

It follows from Statements 1 and 2 that in the case
periodic BC, each cell of the array may be considered a
first element, and the system~1! hasN21 additional mani-
folds M c andN21 additional manifoldsMalt. Some of them
may be identical.

By means of Statements 1 and 2, one can study the s
possible cluster decompositions in the chain~1! with the con-
crete number of oscillatorsN.

Figure 3 shows the set of all possible modes of clus
synchronization in the chain~1! that is composed ofN56
and N57 with zero-flux BC. ForN56, there exist three

FIG. 1. Cluster regime defined by the cluster synchronization mani
M c(n11). Oscillators with the same gray shading belong to one cluste

FIG. 2. Palindromic cluster regime for the factorizable number of oscilla
N5p•n in the chain.
Downloaded 24 Feb 2003 to 128.178.50.108. Redistribution subject to AI
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cluster synchronization hyperplanesM c(3)5$X15X6 , X2

5X5 , X35X4%, M c(2)5$X15X35X45X6 , X25X5%, and
Malt(2)5$X15X45X5 , X25X35X6% defining correspond-
ing clusters. ForN57, the only cluster synchronization hy
perplane isM c(4)5$X15X7 , X25X6 , X35X5% defining a
four-cluster regime~Fig. 3!.

We note that these two similar arrays that are compo
of close numbers of oscillatorsN156 andN257 may ex-
hibit completely different regimes of cluster synchronizatio
This means that one can completely change possible m
of cluster synchronization in a large array by adding only o
oscillator to the network. In a broader context, it may
related to a challenging problem of the control of a giv
number synchronous motions in many physical systems.
viously, the main problem for such a control and selection
a particular synchronous mode is to ensure its stability.15

We proceed now with the existence of possible modes
cluster synchronization in a 2D lattice of locally couple
oscillators. Then we discuss the stability of the correspo
ing synchronization regimes and their persistence in the p
ence of a parameter mismatch between the systems.

III. 2D LATTICE OF IDENTICAL OSCILLATORS

We first study a square 2D lattice of chaotic oscillato
that are coupled with four nearest-neighbor elements w
equal coupling strength,

Ẋi , j5F~Xi , j !1«C•~DX! i , j , ~2!

where (DX) i , j5Xi 11,j1Xi 21,j1Xi , j 111Xi , j 2124Xi , j , i , j
51,N. We assume zero-flux or periodic BC, all other no
tions are similar to those of the system~1!.

Note that the system~2! represents a discrete version
two-dimensional spatially extended reaction-diffusion s

d

s

FIG. 3. Collection of all possible clusters in the chain forN56 andN57
and zero-flux BC.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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tem and plays a significant role as a model of simple for
of turbulence and spatiotemporal chaos. On the other h
such a model is of interest in connection with the descript
of coupled biological cells. The individual cells often displa
complicated forms of bursting and spiking behavior, and i
an obvious challenge to describe how the units function
gether and which stable synchronization patterns are
sible.

A. Existence of cluster synchronization manifolds

To study the existence of possible modes of cluster s
chronization in the lattice~2!, we apply the results on th
cluster synchronization manifolds from the 1D chain case
a straightforward manner.16

Statement 3:
~a! The system~2! has a family of cluster synchroniza

tion manifoldsM (d1 ,d2) that are an intersection of invarian
manifoldsM (d1) andM (d2) existing in the case of the 1D
system~1!. The corresponding cluster regimes are a to
logical product of synchronization regimes in the two dire
tions of the 2D lattice.

~b! The lattice~2! has simple symmetries with respect
the principal and secondary diagonals, i.e., there exist inv
ant manifolds Mpr(d):$Xj ,i5Xi , j5x i , j , i 51,N, N> j > i %
and M sc(d):$XN2 j 11,N2 i 115Xi , j5x i , j , i 51,N, 1< j <N
2 i 11%. Obviously, there also exists the intersection sy
metrical invariant manifold Mpr–sc(ds)5Mpr(n1)
ùM sc(n2), where

ds5H ~n11!2, for odd N52n11

n~n11!, for even N52n.

~c! There exists a cluster synchronization manifo
M star(d)5M c(d1 ,d1)ùMpr–sc(ds) which defines simulta-
neously the symmetries of synchronized oscillators with
spect to the two diagonals and to the middles of the rows
columns of the lattice. Number of clusters is

d5H ~n11!~n12!/2, for N52n11

n~n11!/2, for N52n
.

Figure 4 presents an example of two cluster regim
which exist in the 535 lattice~2! and which are defined by
the manifoldsM c(3,3) andM star(6), respectively.

The invariant manifoldM c(3,3) defines synchronizatio
between oscillators with respect to the middles of the ro
and columns of the lattice@see Fig. 4~a!#. The invariant
manifold M star(6)5M c(3,3)ùMpr–sc(15) defines simulta-
neously the symmetries of synchronized oscillators with
spect to the two diagonals and to the middles of the rows
columns of the lattice@see Fig. 4~b!#.

Obviously, for this example of the prime numberN55
there also exist the following product manifolds: the ma
fold M c(3,1) (M c(1,3)) defining symmetrical 3-cluster syn
chronization between the rows~columns! of synchronized
oscillators, the manifoldM (1,5) (M (5,1)) defining full syn-
chronization of the rows~columns! and out of synchroniza
tion between the columns~rows!.

For the factorizable number of oscillatorsN, the collec-
tion of possible modes of cluster synchronization in the
Downloaded 24 Feb 2003 to 128.178.50.108. Redistribution subject to AI
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lattice is even richer and additional intersection invaria
manifolds may be obtained as the topological product of
cluster patterns.

B. Eventual dissipativeness of the coupled system

To go further with the stability of cluster synchronizatio
manifolds, we need to show first the eventual dissipativen
of the coupled system~2!.

Assume that the individual systemẊi , j5F(Xi , j ) is even-
tually dissipative, i.e., there exists the Lyapunov directi
function Vi , j5Xi , j

T
•Q•Xi , j /2, whereQ5diag(q1,q2, . . . ,qm),

qk.0 for k51, . . . ,m such that the time derivative with
respect to the individual subsystem

FIG. 4. ~a! Product cluster defined by the manifoldM c(3,3). Oscillators
synchronize with respect to the middle row and column~depicted by dashed
lines!. Oscillators labeled by the same digit belong to the same cluster~b!
Symmetrical cluster defined by the manifoldM star(6). Oscillators synchro-
nize with respect to the dashed lines.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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V̇i , j5Xi , j
T
•Q•F~Xi , j !,0 ~3!

outside of the compact setB̃i , j5$uuXi , j )uu,b1%. The com-
pact set B̃i , j belongs to the absorbing domainBi , j

5$Vi , j (xi , j ),b2%. SinceV̇,0 outside of the absorbing do
mainBi , j , this compact setBi , j attracts all trajectories of the
systemẊi , j5F(Xi , j ) from the outside. Note that many cha
otic dynamical systems satisfy this natural assumption.

Statement 4:Under the above conditions, the 2D lattic
system~2! is eventually dissipative. The absorbing domainB
of the system~2!, such that every trajectory of the syste
reachesB and remains there forever, is a topological prod
of the absorbing domainsBi , j .

Proof: Consider the directing Lyapunov functionW
5( i , j 51

N Vi , j . Its derivative with respect to the system~2! has
the form,

Ẇ5 (
i , j 51

N

V̇i , j5 (
i , j 51

N

~Xi , j
T
•Q•F~Xi , j !

1Xi , j
T
•Q•«C~DX! i , j !. ~4!

The first sum in the expression~4! is negative outside of the
compact setB due to the assumption~3!. The second sum
takes the form,

(
i , j 51

N

~Xi , j
T
•Q•«C~DX! i , j !52«~S11S2!,

where

S15(
i 51

N

(
j 51

N0

~Xi , j2Xi , j 11!T
•Q•C~Xi , j2Xi , j 11!,

~5!

S25(
j 51

N

(
i 51

N0

~Xi , j2Xi 11,j !
T
•Q•C~Xi , j2Xi 11,j !,

and the superscriptN0 stands forN ~for N21) for periodic
~zero-flux! BC. The product matrixQC is diagonal and posi-
tive definite, therefore the quadratic formsS1 and S2 are
positive definite forXi , jÞ0. Hence the derivativeẆ is nega-
tive outside of the compact setB, and the system~2! is
eventually dissipative. h

C. Stability of the invariant manifolds

Our first objective is to obtain conditions of glob
asymptotic stability of full synchronization in the system~2!.
We study the conditions of global stability of the clust
synchronization manifoldM (1,N) which defines complete
synchronization between rows of the lattice~2!. Having ob-
tained these conditions, we can apply them directly to
stability of the cluster manifoldM (N,1) defining complete
synchronization between the columns. The intersection
these conditions gives the conditions for full global synch
nization. Stability of other cluster synchronization manifol
can be also obtained in a similar way.

Using the approach developed in the previo
papers,5,14,16we proceed now with the study of global stab
ity of the cluster synchronization manifoldM (1,N)5$Xi , j

5Xj , i , j 51, . . . ,N%.
Downloaded 24 Feb 2003 to 128.178.50.108. Redistribution subject to AI
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Introducing the notation for the differences

Ui , j5Xi , j2Xi 11,j , ~6!

we derive the finite difference equations

U̇ i , j5DFUi , j1«C~DU ! i , j , ~7!

with i 51, . . . ,N21, j 51, . . . ,N, andU0,j5UN, j50 for the
case of zero-flux BC, andU0,j5UN, j for periodic BC. In the
following we will consider only zero-flux BC.DF is an m
3m Jacobi matrix of F(X* (t)), where X* (Xi , j ,Xi 11,j )
P@Xi , j ,Xi 11,j # is driven by the system~2! and comes from
Mean Value Theorem.

Note that the JacobianDF can be calculated explicitly
via the parameters of the individual subsystem and for infi
tesimalUi , j it becomes the Jacobian of the variational sy
tem.

Adding and subtracting an additional termAUi , j to the
system~7!, we obtain the system

U̇ i , j5~2A1DF !Ui , j1AUi , j1«C~DU ! i , j , ~8!

where them3m matrix A is diagonal and, similarly to the
coupling matrix C, satisfies the conditions A
5diag(a1,a2, . . . ,am), ak>0 for k51,2,. . . ,l andak50 for
k5 l 11, . . . ,m.

The matrix2A is added to damp instabilities caused
eigenvalues with nonnegative real parts of the JacobianDF.
At the same time, the instability introduced by the positi
definite matrix1A in Eq. ~8! can be damped by the couplin
terms. The positive coefficientsak are put in the matrixA
only at the places corresponding to the variables by wh
oscillators are coupled, and therefore they can be comp
sated by the negative coupling terms.

We develop now this approach as follows. Let us intr
duce the auxiliary system,

U̇ i , j5~2A1DF !Ui , j . ~9!

We assume that there exists the Lyapunov function,

Ṽi , j5Ui , j
T
•H•Ui , j /2, ~10!

where H5diag(h1,h2, . . . ,hl ,H1), the numbershk.0 for k
51, . . . ,l , and the (m2 l )(m2 l ) matrix H1 is positive defi-
nite.

We require its derivative with respect to the system~9!
to be negative

V8 i , j5Ui , j
T H~2A1DF !Ui , j,0, Ui , jÞ0. ~11!

Note that this assumption is realizable. For example, i
valid for someak.a* .0, k51,...,l and for the real spec
trum l l 11(t), . . .,lm(t),l* ,0 of the (m2 l )(m2 l ) block
matrix of DF corresponding to the lastm2 l variables of
Ui , j

(k) . When the spectrum is not real, the conditions for t
Lyapunov exponents to be negative essentially depend on
imaginary part of the eigenvalues. Moreover, these con
tions may fail while the imaginary part of the eigenvalues
increasing.

To obtain the conditions for global stability of the man
fold M (1,N), we consider the Lyapunov function
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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W̃5(
j 51

N

(
i 51

N21

Ṽi , j ~12!

for the system~8!. The corresponding time derivative has t
form

W8 5(
j 51

N

(
i 51

N21

$Ui , j
T H~2A1DF !Ui , j%

1(
j 51

N

(
i 51

N21

$Ui , j
T H~AUi , j1«C~DU ! i , j !%. ~13!

The first sum in Eq.~13! is negative definite due to Eq.~11!.
The second one falls into two termsS11S2 . The termS1 ,

S152«(
j 51

N

(
i 51

N21

~Ui , j2Ui , j 11!THC~Ui , j2Ui , j 11!

is negative definite asHC.0. The termS2 takes the form,

S25«(
j 51

N

(
k51

l

hkck (
i 51

N21

$Ui , j
(k)Ui 11,j

(k) 1Ui , j
(k)Ui 21,j

(k)

22~12ak /~2«ck!!~Ui , j
(k)!2%. ~14!

The conditions for the quadratic formS2 to be negative defi-
nite can be presented as follows:

«ck.ak /ulmaxu, k51,2,. . . ,l , ~15!

wherelmax524 sin2(p/2N) is the well-known maximal non-
zero eigenvalue of the nearest neighbor coupling matrix w
Neumann~zero-flux! BC.

Thus, we arrive at the following conclusion:
Statement 5:Under the assumption~11! and the condi-

tion ~15!, the manifoldM (1,N) is globally stable.
Obviously, the synchronization threshold coupling val

«* can be estimated by the expression

«* 5 max
kP[1,l ]

~ak /ck!/ulmaxu. ~16!

Remark:It is easy to verify that the conditions for globa
synchronization in the rectangular latticeN13N2 are two
inequalities~15! written for N1 and N2 separately. One can
also obtain synchronization conditions for periodic BC sim
lar to those of Eq.~15!.

To prove global stability of cluster synchronizatio
manifolds that are described in previous sections, one
study the corresponding finite difference equations that
similar to Eq. ~7! with a reduced numberN and changed
boundary conditions. For example, for the cluster manif
Mc(int(N/2),N) providing symmetrical cluster synchroniza
tion between the rows of the 2D lattice, the numberN in Eq.
~7! is defined by the number of clusters in one lattice dir
tion and becomes int(N/2). The corresponding sufficien
conditions can be written similarly to Eq.~15!.

The sufficient conditions~11!–~15! for the necessary
coupling strength may give large overestimates but they
useful for a rough estimation of the range of coupli
strength required for synchronization. They guarantee
stability of the synchronization regime and solve rigorou
the problem of whether synchronization occurs in a conc
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lattice with increasing coupling or not. In fact, for a larg
number of examples of coupled continuous time syste
synchronization arises with increasing coupling and rema
up to infinite coupling strength. However, a few examples
coupled systems for which this is not the case w
reported.6,14Among them is a lattice of coupled Ro¨ssler sys-
tems in which the stability of the synchronization regime w
lost with an increase of coupling. These desynchronizat
bifurcations were called short-wavelength bifurcations.6 In a
recent paper,14 we have linked this, at first sight surprising
phenomenon with the equilibria disappearance bifurcatio
In fact, usually for a fairy small coupling the coupled syste
~with a fixed number of oscillatorsN) has a finite number of
equilibria ncoupl which is usually less thannsngl

N , wherensngl

is the number of equilibria of the individual oscillator. Mo
of these equilibria lie outside the synchronization manifo
With increasing coupling strength, this part of the equilib
disappears via saddle-node bifurcations such that when
synchronization regime becomes globally stable there are
equilibria outside the manifold. We proposed the conditio
on the individual oscillator and the place of coupling f
which this sequence of the equilibria disappearance is bro
and some equilibria are always present outside the manif
In this case, the synchronization behavior depends dram
cally on whether these equilibria are a unique limiting set
if they have some neighboring attractor outside the diago
manifold. In the last case, the existence of these equilib
has direct relation to the mechanism of desynchronizat
The lattice of coupled Ro¨ssler systems satisfies our desy
chronization conditions and will be described in Sec. V.

Let us also comment on the order of cluster stabilizat
with increasing coupling. There are two main scenarios
complete synchronization. In the most widespread case,
increasing coupling, the diagonal manifold becomes globa
stable simultaneously with all the other cluster manifolds
which it is embedded, and full synchronization arises rig
away. The cluster manifolds are globally stable and attr
trajectories from the outside but the cluster regimes are
stable since the trajectories within the manifolds are th
being attracted by the diagonal. In other cases, when
coupling is increased, the dynamics is restricted to sta
cluster manifolds of lower and lower dimension while th
diagonal remains unstable. This decreasing sequence o
mensions of the cluster synchronization~number of clusters!
is determined by the order of the embedding of the ma
folds. However, this sequence may be interrupted at
place when the diagonal manifold becomes globally sta
In fact, the appearance of clusters depends on the vector
of the single system and on the corresponding variatio
stability equation. One drawback of the sufficient conditio
of the stability is the inability to predict, in the general cas
which cluster mode will be stable, and the numerical study
the transversal Lyapunov exponents is often the only met
available for predicting the stability.

Thus after having considered and discussed the existe
and stability of synchronization manifolds in the identic
oscillators case, the main problem is to show that the co
sponding clusters are indeed robust against small pertu
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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tions introducing by a small parameter mismatch, i.e., th
can be realized in real physical systems.

IV. PARAMETER MISMATCH

A. General results

We consider now the 2D lattice~2! with an additional
mismatch term

Ẋi , j5F~Xi , j !1m f i , j~Xi , j !1«C~DX! i , j , ~17!

wherem is a positive scalar parameter andf i , j :Rm→Rm is a
smooth mismatch function. Boundary conditions are
sumed to be zero-flux.

We assume that all our assumptions related to the un
turbed system~2! are valid for the system~17!. In particular,
we assume that each individual subsystem of the lattices~17!
~for «50) has an absorbing domainBi , j (m) for some region
of the parameterm. Therefore, due to Statement 4, the latti
system~17! is eventually dissipative and has the absorb
domainB(m).

Consider a cluster synchronization manifoldM (d) of the
unperturbed system~2!. Recall that the indexr 51,2,. . . ,d
indicates the index of a cluster from thed clusters. Let the
index s51,2,. . . ,sr indicate the place of the oscillato
within the cluster. Two oscillators from the same cluster
denoted by the indexes (r ,s1) and (r ,s2), respectively.

Thus due to the chosen identification (r ,s)→( i , j ) we
can rename the coordinates of the manifoldM (d) as Xrs ,
r 51,2,. . . ,d ands51,2,. . . ,s(r ).

Let Xr ,s(t,X
0,m), X05$Xi , j

0 , i , j 51, . . . ,N% be the co-
ordinates of the oscillators defining the dynamics of a giv
cluster (r ,s) and satisfying the initial conditions
Xr ,s(0,X0,m)5Xr ,s

0 .
Definition: Clusters of the nonperturbed system~2! are

said to be clusters ofd-synchronizedoscillators of the per-
turbed system~17! if the following property of global as-
ymptotical synchronization is fulfilled. For any initial sta
X0 of the lattice there exists

T such that uuXr ,s1
~ t,X0,m!2Xr ,s2

~ t,X0,m!uu,d~m!

for .T ~18!

for any r 51,...,d, s1,2P@1,sr #, and limm→0 d(m)50.
In other words, this means that thed-neighborhood of

the manifold M (d)uB(m) is globally stable and attracts a
trajectories of the system~17!.

We consider now global stability of a cluste
d-synchronization regime defined by the generating~pristine!
manifold M (1,N) of the nonperturbed system~2!. Global
stability of this manifold determining synchronization b
tween the rows of the 2D lattice~2! was considered in the
previous section.

Using the differences~6! and similar to Eq.~7!, we ob-
tain the finite difference equations,

U̇ i , j5DFi , jUi , j1mēi , j1«C~DU ! i , j , ~19!

where ēi , j5@ f i , j (Xi , j )2 f i 11,j (Xi 11,j )#uB(m) is a mismatch
difference calculated within the absorbing domainB(m), and
both DFi , j and ēi , j are driven by the system~17!.
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We use here the same technique as we utilized in
previous section, except that we add and subtract now
additional termsAUi , j andH21PUi , j to the system~19!,

U̇ i , j5~2A1H21P1DFi , j !Ui , j2H21PUi , j1AUi , j

1mēi , j1«C~DU ! i , j . ~20!

MatricesA,H are identical to those of the systems~9! and
~10!, and the matrixP5diag(p1,p2, . . . ,pm), pk.0 for k
51,2,. . . ,m.

Our purpose is to obtain the conditions under which
attractors of the system~20! lie in the vicinity of Ui , j50, and
thus they correspond to the clusterd-synchronization. To
compensate the instability defined by the mismatch term
Eq. ~20!, the matrix 2H21P is added. Instabilities intro-
duced by the positive definite matrixH21P that in turn arose
in the system~20! can be damped now by the appropria
choice of the values of the matrixA.

We introduce the new auxiliary system

U̇ i , j5~2A1H21P1DFi , j !Ui , j . ~21!

Assume that the derivative of the Lyapunov functio
~10! along the trajectories of the auxiliary system~21! is
negative,

V8 i , j5Ui , j
T H~2A1DF !Ui , j1Ui , j

T PUi , j,0, Ui , jÞ0.
~22!

In the system~21!, we ‘‘spoiled’’ the JacobianDFi , j by
inserting the matrixH21P and we choose the maximal va
ues ofpk , k51, . . . ,m in such a way that it would be stil
possible to compensate the increased instability, defined
the terms (H21P1DFi , j )Ui , j , by the term2AUi , j . Obvi-
ously, the matrix2A must be more stable than that used
the previous section. In the simplest~from the stability view-
point! case where the oscillators are coupled by all variab
i.e., all coefficientsak ,ck ,pk , k51, . . . ,m are positive, the
values of pk must be proportional toak , ak5a01apk .
Hence, the maximal instability termspk in Eq. ~21! are pro-
portional to the coupling strength«ck via Eq. ~15!.

Applying the Lyapunov function~12! for the system
~19!, we obtain

W8 5(
j 51

N

(
i 51

N21

V̇i , j1S11S22Sm , ~23!

where

Sm5(
j 51

N

(
i 51

N21

@Ui , j
T PUi , j2mUi , j

T Hēi , j #. ~24!

The first three terms in Eq.~23! are similar to those of Eqs
~13!–~14!, and they are negative definite due to Eq.~22!
under the conditions~15!–~16! which we assume to be true

To obtain the conditions on the region of negative de
niteness of the quadratic formW8 it remains now to attack the
quadratic formSm .

The valuesēi , j
(k) , k51, . . . ,m are bounded in the absorb

ing domainB(m) for each cluster mode, i.e.,uēi , j
(k)u,ē(k).

DenoteM (k)5u(n51
m hknē

(n)] . Then the sum~24! satisfies the
inequality,
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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Sm.(
j 51

N

(
i 51

N21

(
k51

m

$~pkuUi , j
(k)u2mM (k)!uUi , j

(k)u%.

ThereforeSm.0, and henceW8 ,0, for uUi , j
(k)u.mM (k)/pk ,

k51, . . . ,m.
To estimate the domain where the quadratic formW8 is

positive definite and thus to obtain an estimate of the ma
mal values of the transversal deviationsUi , j

(k) from the pris-
tine manifold M (1,N) one should enclose the domain$W8

,0% into some region bounded by a certain levelW0 of the
Lyapunov function~12!.

The enclosure $uUi , j
(k)u,mM (k)/pk , k51,...,m%,$W̃

,W0% determines thatW8 is negative outside of the region

uUi , j
(k)u,wkM

(k)m/pk ,k51, . . . ,m, ~25!

where the constantswk are defined by the levelW0 .
Concluding the proof of the stability of th

d-synchronization regime we come to the following ass
tion.

Statement 6:Under the conditions~15!, ~16! and the
assumptions related to the auxiliary system~21!, a d-cluster
synchronization regime of the system~2! definesd clusters
of d-synchronized oscillators of the system~17!, where

d5F max
kP[1,m]

wkM
(k)/pkGm, k51, . . . ,m. ~26!

While the auxiliary parameterspk are increasing, the es
timated synchronization threshold«* (p) increases wherea
the synchronization errord(p) decreases. Since we deal wi
the sufficient conditions, it is often possible to put some o
timal valuep5const.

The law of the~d,«! dependence is implicitly expresse
via the dependence onp.

Answering the question of the persistence of the inva
ant manifolds under small perturbations, we remark on
following. The system~17! in a neighborhood of a cluste
synchronization manifoldM (d) of the nonperturbed system
~2! may be cast into the general form,

U̇5G̃~X!U1mẽ~U,X!,
~27!

Ẋ5F̃~X!1m f̃ ~U,X!,

having the invariant manifold$U50% for m50.
It follows from Theory of Invariant Manifolds37 and

Central Manifold Theorem38 that if the matrix G̃(X)uC ,
whereC is a compact, has the eigenvalues bounded from
left to zero, then the system~27! has a stable invariant man
fold U5Ũ(X,m), XPC, Ũ(X,0)50. Hence, if the linear
invariant manifoldM (d) satisfies the above conditions, the
it is preserved under small perturbations such that the
turbed manifoldM̃d defines the persistent clusters. Howev
this approach seems to be less effective since it does
allow us to estimate the synchronization error and may
work for not infinitesimal values of the mismatch paramet

To conclude, in this section we have proven the attra
ing property of thed-neighborhood of generating cluste
manifolds and obtained the estimate on the synchroniza
errord. Our approach allows to investigate the persistence
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synchronizationregimes. Whend is no longer small, the in-
variant manifolds may be no longer preserved but their sta
neighborhood provides stabled-synchronization clusters.

We shall make now the general ideas of our appro
concrete by investigating a 2D lattice of coupled Lorenz
cillators.

B. Example: 2D lattice of nonidentical Lorenz
systems

Stability of asymptotic full synchronization in a 2D la
tice of nonidentical Lorenz oscillators was recently studie36

for the case of vector diffusive coupling and mismatch int
duced in all the individual variables. The use of the a
variables coupling configuration and a large coupli
strength allowed the authors to compensate the mism
effect and provide asymptotic synchronization.

In contrast to this work, we apply our general results
a more difficult case of a scalar coupling and mismatch
rameters that are present in all three equations of the i
vidual Lorenz system.

We consider the 2D lattice~2!–~17! with the Lorenz sys-
tem as an individual oscillator,

ẋi , j5~s1s i , j !~yi , j2xi , j !1«~Dx! i , j ,

ẏi , j5~g1g i , j !xi , j2yi , j2xi , j zi , j , ~28!

żi , j52~b1bi , j !zi , j1xi , j yi , j ,

for which Xi , j5column(xi , j ,yi , j ,zi , j ), and all other nota-
tions are similar to those of the system~2!–~17!. We assume
the perturbations of the parameters to be uniformly boun
us i , j u,m, ug i , j u,m, andubi , j u,m.

Let us study global stability of the cluste
d-synchronization regime defined by the generating manif
M (1,N)5$Xi , j5Xj , Xi , j5(xi , j ,yi , j ,zi , j ), i , j 51, . . . ,N% of
the system~17! with m50. To do so, we shall follow the
steps of the above study.

~1! The individual nonperturbed Lorenz system (m
50, «50) is eventually dissipative39 and has an absorbin
domain,

B5$x21y21~z2a!2,b2a2/4~b21!%, a5g1s.

Hence, the coordinates of the attractor of the individual L
renz system are estimated to be bounded by

ucu,ba/2Ab21, c5x,y,~z2a!. ~29!

Due to Statement 4, the estimates~29! are valid for co-
ordinates of each oscillator of the coupled system~2!–~28!.

~2! The finite difference equations~19! for Ui , j
(x)5xi , j

2xi 11,j , Ui , j
(y)5yi , j2yi 11,j , Ui , j

(z)5zi , j2zi 11,j of the
coupled Lorenz systems~28! without mismatch (s i , j50,
g i , j50, andbi , j50) have the matrix

DFi , j5S 2s s 0

g2Q (z) 21 2Q (x)

Q (y) 2Q (x) 2b
D , ~30!

where Q (j)5(j i , j1j i 11,j )/2 for j5x,y,z. In the matrix
~30!, we have succeeded to get rid of the crossing terms w
the help of the formula,
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 5. Snapshots of clusters in the
37 lattice of nonidentical Lorenz sys
tems. Different shades of gray are pro
portional to the amplitudesxi , j (t). Os-
cillators with identical gray shading
belong to the same cluster.~a! Oscilla-
tors synchronize with respect to th
principal diagonal of the lattice («
552). ~b! Synchronized rows of oscil-
lators («570) ~left!. Temporal behav-
ior of the ~1,1! oscillator in the regime
of synchronization of the rows~right!.
l
1

s-

h

ce,
j i , jh i , j2j i 11,jh i 11,j5Q (h)~j i , j2j i 11,j !

1Q (j)~h i , j2h i 11,j !.

To study the stability of the system~19!–~28! with the
matrix ~30!, we use the simple quadratic form~10! with the
unit matrix H5I . The auxiliary matrices are A
5diag(a,0,0) andP5diag(p,p,p).

Then the condition~22! for the auxiliary system~21! to
be stable is the condition for the symmetrized matrixS
52@H(2A1DF1P)#s ,

S5S a1s2p ~2a1Q (z)!/2 2Q (y)/2

~2a1Q (z)!/2 12p 0

2Q (y)/2 0 b2p
D ~31!

to have positive eigenvalues. From Eq.~31! it follows that
the auxiliary parameterp must be chosen from the interva
~0,1! since the parameterb is assumed to be greater than
~in the original Lorenz systemb58/3).

Taking into account the estimate~29! for the coordinates
Q (y) and Q (z), we obtain the following sufficient condition
for the matrix~31! to be positive definite:

a.a* ~p!5b2a2/16~b21!~12p!1p2s. ~32!
Downloaded 24 Feb 2003 to 128.178.50.108. Redistribution subject to AI
Hence, the sufficient conditions of the stability of the sy
tems~19!–~28! may be written similar to Eq.~16! and take
the form,

«.«* 5a* ~p!/4 sin2~p/N!. ~33!

~3! Synchronization errord depends on the mismatc
functions,

m f i , j
(1)~Xi , j !5s i , j~yi , j2xi , j !,

m f i , j
(2)~Xi , j !5g i , j xi , j ,

and m f i , j
(3)~Xi , j !52bi , j zi , j . ~34!

The differencesēi , j
(k)5 f i , j

(k)(Xi , j )2 f i 11,j
(k) (Xi 11,j ) are linear

functions of the coordinates of the system~28!. Hence, they
can be estimated via the absorbing domainsBi , j that are in
turn estimated by Eq.~29!.

Taking into account Eq.~34! and usingH5I , we obtain
the estimate on the maximal mismatch functions differen

M5max
k

$ēi , j
(k) k51,2,3%

52~b1m!~a12m!/Ab1m21. ~35!
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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Thus the synchronization errord is estimated as follows:

d54@~b1m!~a12m!/Ab1m21#m ~36!

for the chosen auxiliary parameterp51/2. The constants
wk , k51,2,3 from Eq.~25! are equal here to&. While the
mismatch parameterm is small, the estimate~36! presents a
quasilinear law of the dependence of the synchronization
ror on the mismatch coefficient.

Thus, we finally arrive at the conclusion that the clus
d-synchronization regime, defined by the generating ma
fold M (1,N) of the system~17! with m50, is stable when
the coupling strength« reaches the threshold value«* . The
value«* is a sufficient condition and gives an overestima
therefore thed-synchronization regime may become stab
early under weaker coupling.

We estimate the relative synchronization error, expres
as the ratio of the maximal amplitudeA5max$Xi,j ,j51,N%
of the attractor, as follows:

d rel52&Mm/A. ~37!

Since for the coupled Lorenz systems~28!, the maximal
valueM of the mismatch function difference is estimated
the maximal valueA of the coordinates of the attracto
therefore the estimate~37! takes the form,

d rel52&m. ~38!

In the general case, the synchronization errord rel may be
not small. To be of physical relevance, it must though
essentially less than the difference between the corresp
ing coordinates of oscillators from two different clusters.

To validate the results on the existence and persiste
of the described clusters with respect to parameter mism
perturbations as well as the real observability of the p
dicted cluster synchronization modes, let us consider sev
numerical examples.

FIG. 6. 2D lattice of nonidentical Lorenz systems («570). Maximum rela-
tive cluster synchronization errord rel versus parameter mismatchDb.
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V. NUMERICAL EXAMPLES

A. 2D lattice of nonidentical Lorenz systems

To check the theoretical results we consider the 2D
tice ~2!–~28! with N57 and zero-flux BC. The paramete
are s510, g551, b52.67, s i , j50, g i , j50, andbi , j5Db
•q. The mismatch parameterDb is expressed as a percen
age ofb, and values of the parameterq are chosen randomly
from the interval (21,1).

We study numerically the order of appearance of per
tent cluster synchronization modes when increasing the c
pling parameter« from zero (Db55%). With increasing
coupling («551.5), a stable cluster, defining synchroniz
tion in pairs of oscillators with respect to the principal dia
onal of the lattice, arises from a spatial disorder@Fig. 5~a!#.
For «569.5, this cluster loses its stability, and chaotic sy
chronization between the lines of the lattice, defined by
generating manifoldM (1,7), arises @Fig. 5~b!#. For «
584.2, complete synchronization becomes finally stable

We study now the persistence of the cluster defining
synchronization between the lines. Numerical simulat
shows that the limit of the persistence is being reached
Db512% ~see Fig. 6!. Here, the maximum relative synchro
nization error d rel5max(x1,12x2,1)/max(x1,1,x2,1) between
the oscillators from one cluster is relatively small~up to
Db512%), whereas the amplitudes of different clusters
essentially different. ForDb513% the transversal fluctua
tions from the generating manifold are no longer small w
respect to the differences between the amplitudes of clus
therefore the cluster regime is no longer recognizable.

The maximum synchronization error corresponding
the limit of the persistence isd rel510.6%, and the theoreti
cal d rel calculated from Eq.~38! for m5Db512% equals
d rel533.9%. Obtained from sufficient conditions, it can b
considered as a good estimate of the synchronization erro
the region of smallm.

B. Chain of nonidentical Ro ¨ ssler oscillators

The individual Ro¨ssler system does not satisfy our st
bility conditions ~9!–~11! and our theory, strictly speaking
cannot be applied. However, we knowingly chose this di
cult example to show that even here thed-synchronization
modes, while staying chaotic, are robust and stable.

We consider the system~1! of 9 x-coupled Ro¨ssler os-
cillators with zero-flux BC. The individual system reads

ẋ52~y1z!,

ẏ5x1a~11Da•q!y, ~39!

ż5b1~x2c!z.

The parameters area50.2, b50.2, c55.7. Values of the
parameter q are chosen randomly from the interv
(21,1). The parameterDa, expressed as a percentage ofa,
introduces the parameter mismatch.

Numerical simulation shows that a cluster
d-synchronized oscillators defined by the generating sy
metrical manifold Mc(5)5$X15X9 ,X25X8 ,X35X7 ,X4

5X6% is stable and observed in a fairly wide region of t
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 7. Cluster synchronization in a chain of 9 Ro¨ssler
systems. Different shades of gray are proportional to
amplitudesxi(t). The mismatch parameterDa55%.
Oscillators synchronize in pairs around the fifth eleme
~top!. Chaotic attractor defining the dynamics of th
first and the ninth oscillators in the regime of clust
synchronization~bottom!.
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parameter« ~see Fig. 7!. The two other possible cluster re
gimes, defined by the manifoldsMalt(3) andM c(2), are not
observable in this particular case.

This stable chaotic cluster is persistent up to param
mismatchDa511% ~see Fig. 8!. Similar to the case of the
Lorenz system, the maximum relative synchronization er
d rel is calculated as follows:d rel5max(x12x9)/max(x1,x9).
Up to Da511%, the difference between the oscillators fro
one cluster is relatively small whereas the amplitudes of
ferent clusters are essentially different. ForDa512% the
transversal fluctuations from the generating manifold are
longer small with respect to the differences between the
plitudes of clusters, therefore the limit of the persistence
being reached. However, while the amplitudes of oscillato
that are supposed to form one cluster, develop in differ
manners, their phases seem to be close. In this case
can expect the phenomenon of cluster ph
synchronization.40 Here, the generating cluster manifold ma
still define the rule of the existence of phase synchroni
clusters.
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FIG. 9. Snapshots of clusters in the
35 lattice of chaotic Ro¨ssler oscilla-
tors with mismatch noise.~a! Rows of
nonsynchronized oscillators synchro
nize in pairs around the middle row
(«50.12). ~b! Oscillators synchronize
within the rows («50.49). ~c! Full
synchronization («50.58). ~d! Oscil-
lators are synchronized with respect t
the diagonals of the lattice and with
respect to the middles of the rows an
columns («50.65).
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C. 2D lattice of nonidentical Ro ¨ ssler oscillators

As a second example of 2D lattices we consider the
tices ~2!–~39! of N x-coupled Ro¨ssler oscillators with zero
flux BC. In the system~39!, we introduce uniformly distrib-
uted mismatch noise at the interval (21,1) defined by the
function c(t) which stands for the parameterq. In contrast
to the previous cases where mismatch was introduced
constant parameters, here we perturb the generating cl
synchronization manifolds by small mismatch noise.

Once again, the lattice of Ro¨ssler systems belongs to th
class of coupled systems for which the synchronization
gime is losing its stability as the coupling is increased. A
was discussed before, these desynchronization bifurcat
can be directly related to the presence of saddle-foci~in the
case of the Ro¨ssler system! which lie outside of the diagona
manifold and are preserved for any coupling strength. Th
existence is imposed by a singularity of the individu
Rössler system and the use ofx-coupling.14 Thus the cluster
appearance may have the reverse order: as the couplin
increased, the number of clusters is also increased.
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1. 5Ã5 lattice

Figure 9 presents the sequence of appearance of the
sistent clusterd-synchronization regimes with increasin
coupling for a fairly large mismatchDa510%.

With increasing coupling from zero («50.12), a stable
cluster defined by the generating manifoldM c(3,5) arises
@Fig. 9~a!#. This cluster defines a symmetrical spatiotempo
regime under which rows of the lattice synchronize in pa
around the middle~third! row. Oscillator within the rows are
not synchronized. With further increased coupling«
50.49), this regime gradually develops into a cluster defin
by the manifoldM c(3,1). Oscillators within the synchro
nized rows start to synchronize@Fig. 9~b!#. For «50.58, full
synchronization becomes locally stable and the correspo
ing homogeneous cluster arises@Fig. 9~c!#. For «50.65, the
spatiohomogeneous pattern decays due to the desynchro
tion bifurcations and a regime defined by the generat
manifold M star(6) becomes stable@Fig. 9~d!#. Here, the os-
cillators are synchronized with respect to the diagonals of
square lattice and with respect to the middles of the rows
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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177Chaos, Vol. 13, No. 1, 2003 Persistent clusters in 2D lattices
columns @see also Fig. 4~b!#. Projection of the attracting
d-neighborhood onto the plane (x1 ,x5) is shown in Fig. 10
~top!. Figure 10~bottom! shows a chaotic attractor definin
the temporal behavior of the~5,5! oscillator in the regime of
the symmetrical cluster synchronization.

Finally, with gradually increasing coupling this clust
synchronization regime becomes unstable and develops
a completely unsynchronized pattern.

2. 33Ã33 lattice

The numerical study of this fairly large network of o
cillators is intended to show two things. First, it shows th
the chaotic clusters predicted in the theoretical study are
deed stable in lattices composed of a large number of o
lators. Second, these modes are robust against small
match perturbations.

Figure 11 shows the sequence of the stabilization of
main symmetrical clusters in the lattice~2!–~39! with mis-
match noisec(t). For «50.57, a clusterd-synchronization
mode defined by the manifoldM (17,33) becomes stable an

FIG. 10. ~Top! d-synchronized motion of oscillators forming the symmet
cal cluster shown in Fig. 9~d!. Temporal behavior of the~5,5! oscillator in
the regime of cluster synchronization~bottom!.
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defines synchronization in pairs of oscillators of the latt
around the middle row@Fig. 11~a!#. Oscillators with identical
gray shading belong to the same cluster. Unfortunately, th
are not enough distinguishable gray shades~the number of
clustersd5173335561) to differentiate between all dis
tinct elements. For«50.6, there arises a symmetrical clust

FIG. 11. Snapshots of stable clusters with chaotic dynamics in the 33333
lattice of Rössler oscillators forDa510% ~zero-flux BC and random initial
conditions!. ~a! «50.57. Cluster similar to that of Fig. 9~a!. ~b! «50.6.
Cluster similar to that of Fig. 9~d!. Different shades of gray are proportiona
to the amplitudesxi , j (t). Unfortunately, there are not enough distinguishab
gray shades to differentiate between all distinct elements.
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defined by the generating manifoldM star((n11)(n12)/2)
for N52n11533 with the number of clustersd5153 @Fig.
11~b!#. Here, oscillators synchronize with respect to the pr
cipal and secondary diagonals of the lattice and with resp
to the middle rows and columns@pattern similar to that of
Fig. 9~d!#. The ~17,17! oscillator remains unsynchronize
and defines one separate cluster.

These regimes provide good-quality clust
d-synchronization up to the mismatch parameterDa'15%.
Similar to the 1D chain case, one can recognize persis
clusters of approximatively synchronized oscillators even
to Da5100%. The amplitudes of ‘‘synchronized’’ oscillator
differ essentially but the phases are close and proba
locked.

VI. CONCLUSIONS

We have learned from the study, that apart from the fu
synchronized and completely desynchronized solutions,
lattices of diffusively coupled oscillators may exhibit certa
~strictly defined! kinds of clustering. These modes are d
fined by the invariant manifolds which exist regardless of
individual dynamics of the oscillators. Their stability an
persistence essentially depends in turn on the vector fiel
the individual cells and on the variables by which the os
lators are coupled~scalar or vector diffusive coupling!.

The main contribution of this paper is a systema
analysis of the persistence of cluster synchronization regi
in lattices of nonidentical chaotic oscillators. We have prov
the global stability of clusterd-synchronization regimes an
obtained a good estimate for the synchronization errord rel.
We have also shown numerically that these clusters are
preserved up to 10%–15% of parameter mismatch. Eve
the case of larger parameter mismatch, the knowledge o
cluster manifold existence from the identical case is still u
ful since these manifolds may serve as a frame for poss
regimes of lag and phase cluster synchronization in la
lattices of diffusively coupled systems. Obviously these p
nomena are subjects for future study.
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