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A system of phase oscillators with repulsive global coupling and periodic external forcing undergoing

asynchronous rotation is considered. The synchronization rate of the system can exhibit persistent fluctuations

depending on parameters and initial phase distributions, and the amplitude of the fluctuations scales with the

system size for uniformly random initial phase distributions. Using the Watanabe-Strogatz transformation that

reduces the original system to low-dimensional macroscopic equations, we show that the fluctuations are collective

dynamics of the system corresponding to low-dimensional trajectories of the reduced equations. It is argued that

the amplitude of the fluctuations is determined by the inhomogeneity of the initial phase distribution, resulting

in system-size scaling for the random case.

DOI: 10.1103/PhysRevE.85.056207 PACS number(s): 05.45.Xt

I. INTRODUCTION

Coupled oscillators have been analyzed as models of

various real-world systems consisting of interacting dynamical

elements, which display diverse types of rhythmic phenom-

ena [1–16]. In particular, globally coupled oscillators have

been intensively studied as the simplest model of systems

exhibiting collective rhythms. A number of studies have

shown that globally coupled oscillators converge to steady and

stable synchronized states under appropriate conditions [1–3].

Globally coupled oscillators can also generate more complex

behaviors [4–10]. For example, phase oscillators with global

nonsinusoidal interaction can exhibit clustering behaviors,

where the oscillators spontaneously split into several groups

[4–7]. It is also known that globally coupled limit-cycle

oscillators can split into clusters with differing amplitudes

[8,9].

An interesting class of complex behaviors is nonstationary

time-dependent collective dynamics [6–11]. For example, Han

et al. reported that populations of Morris-Lecar neural oscilla-

tors with global coupling can repeat spontaneous synchroniza-

tion and desynchronization, which are caused by the opposing

effects of repulsive phase coupling along the limit cycle and

the strong attraction of a fixed point inside the limit cycle [10].

Another interesting example is the slow switching dynamics

of globally coupled phase oscillators, in which the system

repeats spontaneous collapse and reorganization of clustered

states due to heteroclinic connections in the phase space [6,7].

Nonstationary collective dynamics of coupled oscillators may

be important in understanding transient behaviors of rhythmic

systems [17,18], such as the spontaneous synchronization and

desynchronization of collective rhythmic applause in concert

halls [18].

In this study, we consider nonstationary asynchronous states

in a system of phase oscillators with global repulsive coupling

and periodic external forcing. We demonstrate that the phase

*atsumi@scphys.kyoto-u.ac.jp

distribution of the oscillators repeatedly contracts and expands

as the oscillators rotate around the cycle when they are started

from random initial conditions; this repeated contraction

and expansion of the phase distribution results in persistent

periodic (or chaotic) fluctuations in the synchronization rate.

However, if the system starts from a “splay-state” initial

condition in which the oscillators are equally allocated on

the cycle, no fluctuation is observed in the synchronization

rate. We determine a parameter region where such fluctuating

dynamics occurs by numerical simulations and by linear

stability analysis. Moreover, using the Watanabe-Strogatz

transformation, we reduce the original high-dimensional

model to a set of low-dimensional macroscopic equations

and analyze its collective dynamics that corresponds to the

fluctuations in the synchronization rate. We argue that the

amplitude of the fluctuations is determined by inhomogeneity

of the initial phase distributions, leading to system-size scaling

behavior in the case of random initial conditions.

This paper is organized as follows. The model is introduced

in Sec. II, and its dynamics are illustrated by numerical

simulations in Sec. III. Section IV describes the linear stability

analysis of the synchronized states. The Watanabe-Strogatz

transformation is introduced in Sec. V, and the dynamics

of the reduced equations is shown in Sec. VI. The effect

of the inhomogeneous initial conditions and the system-size

scaling behavior are considered in Sec. VII, and the study is

summarized in Sec. VIII.

II. MODEL

We consider the following equation to represent the

model of globally coupled phase oscillators with sinusoidal

interaction that are subjected to periodic external forcing:

θ̇j = ω +
ǫ

N

N
∑

n=1

cos(θn − θj − δ) + k cos(�t − θj ), (1)

for j = 1, . . . ,N , where N is the number of oscillators, θj is

the phase of the j th oscillator, and ω is the intrinsic frequency
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common to all the oscillators. The second term on the right-

hand side represents global coupling between the oscillators,

where ǫ is the coupling strength and δ ∈ (−π,π ] gives the

phase shift of the coupling. The third term represents the

periodic external forcing, whose intensity is k and frequency

is �. This model is a simple variant of the classical Kuramoto

model [1,19,20] with an additional periodic external forcing

and without frequency inhomogeneity. It can be derived from

the models of globally coupled limit-cycle oscillators that are

subjected to periodic forcing by the phase reduction method

under appropriate assumptions and approximations [1].

Phase oscillator models similar to Eq. (1) have been

widely studied in the past. For example, Sakaguchi [21]

considered globally coupled phase oscillators with distributed

frequencies under periodic external forcing and revealed

the existence of two types of synchronized states, namely,

the forced-entrainment state (which we will call the locked

state) and the mutual-entrainment state (the synchronized

drifting state). More recently, Childs and Strogatz [22] gave a

detailed bifurcation analysis of a similar model with frequency

distribution using the Ott-Antonsen ansatz [23], which is a

powerful method that can reduce the original high-dimensional

system to a simple two-dimensional dynamical system. The

simple model given by Eq. (1) may be adapted to describe the

synchronization of heart cell aggregates with external forcing

[24] or the pathological synchronization in Parkinson’s disease

with deep-brain stimulation treatment [25,26]. In the present

study, we investigate the nonstationary asynchronous states of

Eq. (1) with repulsive coupling. We focus on the fluctuations

in the synchronization rate and analyze their dependence on

initial conditions and on the system size.

The interaction term in Eq. (1) gives in-phase attractive

coupling when ǫ sin δ > 0 and antiphase repulsive coupling

when ǫ sin δ < 0 (δ = 0 corresponds to a singular case wherein

the system is completely integrable [27]; we do not consider

this case). The external forcing term tends to entrain the os-

cillators and provides a facilitating effect for synchronization.

Introducing a rotating reference frame with an angular velocity

� by redefining the phase variables as θj → θj + �t and

rescaling the time t as well as the parameters ǫ and k, we

can transform Eq. (1) to

θ̇j = 1 +
ǫ

N

N
∑

n=1

cos(θn − θj − δ) + k cos θj , (2)

for j = 1, . . . ,N . We analyze this rescaled autonomous

equation in the following sections. It should be noted that

the transformed equation (2) is formally equivalent to an

equation for a system of globally coupled active rotators

without external forcing [28].

To measure the degree of synchrony, we use the complex

order parameter [1]

W = Rei� =
1

N

N
∑

n=1

eiθn , (3)

where R and � take values in [0,1] and [0,2π ), respec-

tively. Larger values of R indicate higher coherence; R = 0

corresponds to a completely incoherent state, and R = 1

corresponds to a completely synchronized state. This R is

FIG. 1. (Color online) Asynchronous fluctuating states of the

oscillators started from random initial conditions. N = 20 oscillators

are used. Time sequences of the synchronization rate R are plotted

in (a), (c), and (e), and the corresponding trajectories of the order

parameter W = Rei� on the complex plane are plotted in (b), (d), and

(f). (a), (b) External forcing intensity k is varied (0 � k � 1.5) while

coupling strength ǫ = 0.5 and coupling phase shift δ = −0.05π are

fixed. (c), (d) ǫ is varied (ǫ = −0.05,0.05,0.5) while k = 0.6 and δ =
−0.05π are fixed. (e), (f) δ is varied (δ = −0.05π, − 0.005π,0.05π )

while k = 1.2 and ǫ = 0.5 are fixed.

referred to as the synchronization rate. As can be seen in the

subsequent sections, R can exhibit nonstationary fluctuations

(see Fig. 1). We thus define the amplitude of the fluctuations

	R as the difference between the maximum value Rmax

and minimum value Rmin of the time sequence of R, i.e.,

	R = Rmax − Rmin, sufficiently after the initial transient of

the system has passed.

III. NUMERICAL SIMULATIONS

First, we illustrate the typical behaviors of the system

by numerical simulations. The completely synchronized state
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with R = 1 can evidently be classified into two types [21].

The first type corresponds to the complete phase locking of all

the oscillators to the periodic external forcing, which occurs

at a sufficiently large |k| whether coupling is attractive or

repulsive. In this case, all the phase variables {θj (t)} take the

same constant value. We refer to this state as the “locked state.”

The second type of complete synchronization is that caused

by attractive coupling. The oscillators exhibit synchronized

drift, where all {θj } monotonously increase while maintaining

completely synchrony. This occurs when the coupling is

attractive, i.e., ǫ sin δ > 0, and when the external forcing |k| is

not sufficiently large to entrain the oscillators. We refer to this

state as the “synchronized drifting state.” If neither of these

completely synchronized states is possible, the oscillators

exhibit asynchronous rotations around the cycle and their

distribution can repeatedly contract and expand. As can be seen

in the subsequent sections, the dynamics in the asynchronous

state largely differs depending on the initial conditions of the

individual oscillators. We refer to this dynamical regime as the

“asynchronous state.” (We use this term in a nonstandard way

to represent the dynamical regime where R takes neither 0 nor

1 but fluctuates in between them.)

A. Random initial conditions

Figures 1 and 2 show the dynamics of the system obtained

by direct numerical simulations of Eq. (2) using N = 20

oscillators. The initial phase values {θj (t = 0)} are selected

randomly and independently from a uniform distribution in

FIG. 2. (Color online) Dynamics of the oscillators in the asyn-

chronous fluctuating state. The number of oscillators is N = 20 and

the parameters are k = 1.2, ǫ = 0.5, and δ = −0.05π . The initial

distribution of the oscillators is uniformly random in (a)–(c), and is

a splay state in (d). (a), (b) Snapshots of the oscillators on the cycle

for the random initial condition. The oscillator distribution repeatedly

contracts (a) and expands (b). (c), (d) Typical time sequences of the

phase of a single oscillator (i = 1). For the random initial condition,

alternant fluctuations are observed in the oscillations (c), whereas for

the splay-state initial condition, no fluctuation is observed (d).

[0,2π ), except Fig. 2(d) for which the splay-state initial

distribution (explained later) is used. In this case, the dynamics

of the oscillators in the asynchronous state fluctuates as

described below.

Figures 1(a), 1(c), and 1(e) shows the time sequences of R,

and Figs. 1(b), 1(d), and 1(f) plots the dynamics of W = Rei�

on the complex plane for differing values of k, ǫ, and δ,

respectively. In Figs. 1(a) and 1(b), k is varied while ǫ = 0.5

and δ = −0.05π are fixed. At k = 0, the external forcing

is absent and the oscillators are completely desynchronized,

which yields R = 0. At k = 1.5, all the oscillators are

entrained to the external forcing, yielding R = 1. In either

case, W is fixed on the complex plane and is stationary. For

intermediate values of k, R exhibits persistent fluctuations.

The amplitude and baseline (average) of the oscillations

increase with k until the system becomes completely entrained.

The corresponding trajectories of W on the complex plane are

rather complicated but closed, i.e., the fluctuations are periodic

in this case (the observed fluctuations are mostly periodic but

can also be chaotic at small δ depending on initial conditions).

Similarly, Figs. 1(c) and 1(d) show the dynamics of the

system for several values of ǫ with fixed values of k =
0.6 and δ = −0.05π . R exhibits periodic fluctuations when

the coupling is repulsive (ǫ = 0.05 or ǫ = 0.5). When the

coupling is attractive (ǫ = −0.05), all the oscillators become

completely synchronized and R simply converges to 1. W

simply rotates along the full circle |W | = 1 on the complex

plane. Figures 1(e) and 1(f) show the dynamics of the system

for several values of δ with fixed values of k = 1.2 and ǫ = 0.5.

R fluctuates only when the coupling is repulsive (δ < 0).

For the particular realization of the initial condition used

here, the fluctuations are periodic when δ = −0.05π and is

chaotic when δ = −0.005π (with the maximum Lyapunov

exponent 0.112). When the coupling is attractive (δ > 0),

all the oscillators become completely synchronized without

fluctuations, yielding R = 1.

Figures 2(a) and 2(b) show typical snapshots of the

oscillators on their cycle observed at R = Rmax and R = Rmin

for k = 1.2, ǫ = 0.5, and δ = −0.05π plotted in Fig. 1(a).

We observe that the distribution of the oscillators repeatedly

contracts (a) or expands (b). The dynamics of a single oscillator

phase in this situation is shown in Fig. 2(c). Reflecting the

periodic fluctuations of all oscillators, we can observe that

each oscillator undergoes periodically modulated rotations,

i.e., the time required for the oscillator to perform one rotation

around the cycle exhibits long-short alternations. If we use

the splay-state initial condition instead of the random initial

condition, no such alternation is observed [Fig. 2(d)] as we

explain in the next section.

B. Splay-state initial condition

The numerical results shown in Fig. 1 are obtained for

random initial phase distributions. Here, instead of the random

distribution, we consider the splay-state initial distribution

[27,28], which is given by equally spaced initial allocations

of the phase variables {θj (0)} in [0,2π ), i.e., θj (0) = 2πj/N

(j = 1, . . . ,N ). It is known that this particular homogeneous

distribution of oscillators is significant for the dynamics of the

system [27,28]. If the coupling is attractive, ǫ sin δ > 0, or if
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FIG. 3. (Color online) Absence of fluctuations in the asyn-

chronous state started from splay-state initial conditions. N = 20

oscillators are used. Time sequences of the synchronization rate R

are plotted in (a), (c), and (e), and the corresponding trajectories of the

order parameter W = Rei� on the complex plane are plotted in (b),

(d), and (f). The parameters are the same as those used in Figs. 1(a)

and 1(b). External forcing intensity k is varied while coupling strength

ǫ = 0.5 and coupling phase shift δ = −0.05π are fixed. (c), (d) ǫ is

varied while k = 0.6 and δ = −0.05π are fixed. (e), (f) δ is varied

while k = 1.2 and ǫ = 0.5 are fixed. The trajectory of W at k = 1.2

observed for the random initial condition is also plotted in (b) for

comparison.

the external forcing k is sufficiently strong, the dynamics of

the system after the initial transient is identical to that under

random initial conditions, i.e., the system converges to either of

the completely synchronized states. However, if the coupling

is repulsive and the parameter values are in the regime of

asynchronous fluctuating state for random initial conditions

with intermediate values of k, the dynamics of the system can

be very different.

Figures 3(a), 3(c), and 3(e) plot the time sequences of R,

and Figs. 3(b), 3(d), and 3(f) plot the dynamics of W on the

complex plane using the same sets of parameter values of k, ǫ,

and δ as those used for Fig. 1. In sharp contrast to the previous

case with random initial conditions, even if the parameters are

in the asynchronous state, R does not fluctuate but converges

to nearly constant values between R = 0 and R = 1, which is

close to the corresponding baselines of periodic fluctuations in

the random case. W is nearly fixed on the complex plane and

merely changes its location depending on the parameter values

as shown in Figs. 3(b), 3(d), and 3(f). In fact, R fluctuates when

N is finite; however, the fluctuation is negligible. For example,

with N = 20 for Fig. 3, 	R is merely O(10−3) and is even

smaller for larger N . For comparison, the trajectory observed

under the random initial condition at k = 1.2, ǫ = 0.5, and

δ = −0.05π is also plotted in Fig. 3(b).

C. Effect of initial inhomogeneity

The above results indicate that the initial phase distribution,

presumably its inhomogeneity, is essential for the fluctuations.

Therefore we consider perturbed splay-state initial conditions,

in addition to the random initial conditions, and examine the

dependence of the dynamics on N .

First, we consider a situation wherein only a single

oscillator is perturbed from the splay state; that is, we prepare

a splay state and shift the initial phase θ1 of the oscillator j = 1

by a small constant a > 0. All the other N − 1 oscillators are

kept unchanged. Figure 4(a) plots the time sequences of R

for several values of the initial phase shift a. The system size

is N = 20, and the parameter values are k = 1.2, ǫ = 0.5,

and δ = −0.05π . We observe that R exhibits oscillatory

fluctuations when a > 0. Rmax and Rmin sufficiently after the

initial transient are plotted in Fig. 4(b), which shows that

the fluctuations become larger as a is increased. In Fig. 4(c),

	R is plotted against a. We can observe that 	R increases

approximately linearly with a for small a. Similarly, Fig. 4(d)

shows the time sequences of R for differing values of N ,

Fig. 4(e) plots Rmax and Rmin against N , and Fig. 4(f) plots

	R against 1/N with fixed a = 0.1. We observe that 	R is

inversely proportional to N , and R converges to a constant

value as N becomes large.

Next, we consider a situation wherein multiple initial phases

are simultaneously shifted; that is, we prepare a splay state

and shift the first M oscillator phases j = 1, . . . ,M by a fixed

amount a. For example, Fig. 5(a) shows the dependence of 	R

on a with N = 1000 and M = 50 for k = 1.2 and k = 0.6. 	R

increases linearly with a for small a, as in the previous case.

Figure 5(b) plots 	R against M with N = 1000 and a = 0.1.

It can be observed that 	R increases linearly with M for small

M . The dependence of 	R on 1/N is plotted in Fig. 5(c) when

M = 50. As in the previous case, 	R is inversely proportional

to N for large N . Finally, Fig. 5(d) shows the dependence

of 	R on N when the ratio of the shifted oscillators to the

total oscillators M/N is kept constant. We now observe that

	R exhibits negligible dependence on N , in contrast to the

previous case. These results suggest that the degree of initial

inhomogeneity is indeed the cause of the fluctuations.

Now, we reconsider the random initial conditions. When

N is sufficiently large, the initial phases of the oscillators

would nearly be homogeneously distributed in [0,2π ) and the

random initial conditions would effectively be similar to the
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FIG. 4. (Color online) Dependence of the synchronization rate R

on the small phase shift a from the splay state and on the system

size N . Parameter values are k = 1.2 or k = 0.6, ǫ = 0.5, and δ =
−0.05π . (a) Time sequences of R for different values of a at k = 1.2.

(b) Dependence of the maximum value Rmax and the minimum value

Rmin of R on a at k = 1.2. (c) Amplitude of the fluctuations 	R =
Rmax − Rmin vs a at k = 0.6 and k = 1.2. (d) Time sequences of R

on N with a = 0.1 and k = 1.2. (e) Dependence of Rmax and Rmin on

N with a = 0.1 and k = 1.2. (f) 	R vs the inverse system size 1/N

at k = 0.6 and k = 1.2 with a = 0.1.

splay-state initial condition. Therefore we expect that 	R

decreases with N , because the inhomogeneity of the system

statistically decreases with N . This is confirmed in Fig. 6.

Figure 6(a) plots R against N and Fig. 6(b) shows 	R vs

1/N for k = 1.2, ǫ = 0.5, and δ = −0.05π . Results obtained

for 30 random initial conditions are simultaneously plotted.

As we increase N , R converges to a common fixed value

independent of the initial randomness. 	R decreases and

eventually converges to 0.

These results indicate that 	R is an increasing function of

the overall inhomogeneity added to the splay state. The reason

for the dependence of 	R on N is discussed in Sec. VII.

D. Phase diagrams

Here we examine the dependence of the overall behavior of

the system on the parameters ǫ,k, and δ. Figure 7 shows the

phase diagrams on the ǫ-k plane obtained by direct numerical

FIG. 5. (Color online) Dependence of the amplitude of fluctua-

tions 	R on the initial shift a, the total number of oscillators N ,

and the number of oscillators that are shifted initially M . (a) 	R

vs a when a fixed number of oscillators (M = 50) is simultaneously

shifted. The total number of oscillators is N = 1000. (b) 	R vs

M for a fixed phase shift a = 0.1. The total number of oscillators

is N = 1000. (c) 	R vs 1/N when the a fixed number (M = 5)

of oscillators is simultaneously shifted by a fixed amount a = 0.1.

(d) 	R vs 1/N when a fixed proportion (M/N = 5%) of oscillators

is simultaneously shifted by a fixed amount a = 0.1. The parameters

are fixed at δ = −0.05π and ǫ = 0.5.

simulations of Eq. (2) for several values of δ. We use N = 20

oscillators with uniformly random initial phases in [0,2π ).

We classify the dynamics into three regimes, namely, the

locked, synchronized drifting, and asynchronous states, by

examining the time sequences of the order parameter. In each

phase diagram, we observe a wide region of repulsive coupling

FIG. 6. (Color online) Dependence of the synchronization rate R

and the amplitude of fluctuations 	R on the number of oscillators

N obtained for 30 different random initial conditions. Parameter

values are k = 1.2, ǫ = 0.5, and δ = −0.05π . (a) Dependence of

the maximum value Rmax and the minimum value Rmin of R on the

number of oscillators N . (b) 	R vs 1/N .
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FIG. 7. (Color online) Phase diagrams on the ǫ-k plane obtained

by numerical simulations with N = 20 oscillators at (a) δ = −0.05π ,

(b) δ = −0.25π , (c) δ = 0.05π , and (d) δ = 0.25π . The initial phases

of the oscillators are selected randomly from a uniform distribution

in [0,2π ). In (c), a small region exists where both the locked and

asynchronous states are observed depending on the initial conditions.

where the oscillators rotate asynchronously around the cycle

and the synchronization rate fluctuates. The asynchronous

state and the two completely synchronized states (locked and

synchronized drifting) are mutually exclusive in most cases,

except for small bistable regions where both the locked and

the synchronized drifting states are both possible depending

on initial conditions. The same phase diagram is also obtained

by starting from splay-state initial conditions and examining if

R, which asymptotically becomes almost constant in this case,

converges to some intermediate values between 0 and 1.

IV. LINEAR STABILITY ANALYSIS

In this section, we examine the conditions for the linear

stability of the two completely synchronized states, namely,

the locked state and the synchronized drifting state. First,

let us consider the existence condition. When the system is

completely synchronized, all phases {θj } are of the same value

θ̄ . Substituting θ1 = θ2 = · · · = θN = θ̄ in Eq. (2), we can

obtain the evolution equation for θ̄ as

˙̄θ (t) = 1 + ǫ cos δ + k cos θ̄ . (4)

When |k| > 1 + ǫ cos δ, Eq. (4) has fixed points that satisfy

k cos θ̄ = −(1 + ǫ cos δ). There are two solutions in [0,2π ),

and only one of them is stable under the dynamics given by

Eq. (4). Therefore we denote this stable fixed point by θ∗,

which corresponds to the locked state. Obviously, the stability

of the solution θ̄ (t) = θ∗ under Eq. (4) does not necessarily

indicate the stability of the locked solution θ1 = θ2 = · · · =
θN = θ∗ of the full system, given by Eq. (2). When |k| < 1 +
ǫ cos δ, Eq. (4) cannot possess fixed points and θ̄ (t) exhibits an

oscillatory increase with time. Therefore the border between

the locked and synchronized drifting solutions is given by

k = 1 + ǫ cos δ. (5)

Next, we consider the linear stability of the locked so-

lution, θ1 = θ2 = · · · = θN ≡ θ∗. Solving the characteristic

equation for the Jacobian matrix of the linearized equation

of Eq. (2) around this fixed point, we obtain one eigenvalue

λ1 = −ǫ sin δ and N − 1 degenerate eigenvalues λ2,...,N =
−ǫ sin δ − k sin θ∗. Therefore the conditions for the locked

solution to be linearly stable, i.e., for the eigenvalues to be

negative, are given by

ǫ sin δ > 0, (6)

and

ǫ2 + 2ǫ cos δ + 1 < k2. (7)

The critical value kc of k at which the locked state loses stability

is given by k2
c = ǫ2 + 2ǫ cos δ + 1.

Now, to analyze the linear stability of the synchronized

drifting solution, θ1 = θ2 = · · · = θN ≡ θ̄ (t), we calculate the

averaged growth rates of small perturbations given to Eq. (2)

over one period of θ̄ (t), namely, the Floquet exponents λ̃1,...,N .

It can be shown that the eigenvectors do not depend on time,

so the Floquet exponents can easily be calculated as

λ̃1 = 0, (8)

and

λ̃2,...,N = −ǫ sin δ

∫ 2π

0

dθ̄

1 + ǫ cos δ + k cos θ̄
, (9)

where the zero eigenvalue λ̃1 results from the time-

translational symmetry of the dynamics. The integral on

the right-hand side in Eq. (9) is positive whenever the

synchronized drifting solution exists, i.e., |k| < 1 + ǫ cos δ.

Therefore the linear stability condition is simply given by

ǫ sin δ > 0; (10)

namely, it is solely determined by the global coupling term

and is independent of k.

The existence condition Eq. (5) and the linear stability

conditions Eqs. (6), (7), and (10) are drawn in the phase

diagrams in Fig. 7, which explains the borders between

different dynamical states well, i.e., the phase diagrams can be

understood within the linear stability analysis of the synchro-

nized states. However, as we already discussed in Sec. III, the

dynamics in the asynchronous state largely differs depending

on the initial conditions and nonstationary fluctuations are

observed in the synchronization rate; the amplitude of these

fluctuations depends on the initial inhomogeneity. In the

following sections, we analyze such fluctuations in more detail.

V. WATANABE-STROGATZ TRANSFORMATION

Since the system consists of N oscillators and therefore has

a high-dimensional phase space, it is difficult to observe the full

trajectories and analyze them. Therefore we use the Watanabe-

Strogatz transformation [27–30], which is a powerful method

applicable to a class of globally coupled dynamical systems

including Eq. (2). It transforms the dynamical variables of

the system from N phase variables to three macroscopic

056207-6



PERSISTENT FLUCTUATIONS IN SYNCHRONIZATION . . . PHYSICAL REVIEW E 85, 056207 (2012)

dynamical variables with N − 3 constants of motion, thereby

drastically reducing the degree of freedom and making the

analysis much easier.

In Refs. [27,28], Watanabe and Strogatz proved that an

N -dimensional system of the form

θ̇j (t) = f + g cos θj + h sin θj (11)

with j = 1, . . . ,N can be reduced to a low-dimensional

system of three essential macroscopic variables. Here,

f (θ1, . . . ,θN ,t), g(θ1, . . . ,θN ,t), and h(θ1, . . . ,θN ,t) are 2π -

periodic with respect to each θk (k = 1, . . . ,N). Equation (11)

obviously includes Eq. (2) with the functions f , g, and h given

by

f = 1, g =
1

N

N
∑

j=1

cos(θj − δ) + k,

(12)

h =
1

N

N
∑

j=1

sin(θj − δ).

The Watanabe-Strogatz (WS) transformation is given by the

following change of the phase variables {θj } to new variables

γ , �, , and {ψj } (j = 1, . . . ,N ):

tan
θj (t) − �(t)

2
=

√

1 + γ (t)

1 − γ (t)
tan

ψj − (t)

2
, (13)

where γ , �, and  are the three macroscopic variables. It

can then be shown that the new variables {ψj } (j = 1, . . . ,N)

are in fact constants of motion, provided that the macroscopic

variables γ , �, and  satisfy appropriate evolution equations

given below. The original N phase variables {θj (t)} are

converted to the N constants {ψj } and to the three macroscopic

variables γ , �, and  that contain all the information of the

system dynamics. The dynamics of the system described by

Eq. (11) is restricted on a three-dimensional manifold specified

by the constants of motion {ψj }, which are determined by the

initial conditions of the system.

The evolution equations of the three macroscopic variables

in the present case can explicitly be written as follows [27,28]:

γ̇ (t) = −(1 − γ 2)(g sin � − h cos �),

�̇(t) = 1 −
1

γ
(g cos � + h sin �), (14)

̇(t) = −
√

1 − γ 2

γ
(g cos � + h sin �),

where the functions g and h are given in Eq. (12). They can be

expressed using γ , �, and � as

g = −ǫ{P cos(� − δ) + Q sin(� − δ)} + k,
(15)

h = −ǫ{P sin(� − δ) − Q cos(� − δ)},

where P and Q are global fields of the system defined by

P =
1

N

N
∑

j=1

F (ψj − ), Q =
1

N

N
∑

j=1

G(ψj − ). (16)

Here, the functions F and G are defined to be F (ψj −
) = − cos(θj − �) and G(ψj − ) = sin(θj − �), and are

explicitly given from Eq. (13) as [28]

F (ψ) =
γ − cos ψ

1 − γ cos ψ
, G(ψ) =

√

1 − γ 2 sin ψ

1 − γ cos ψ
. (17)

The phase space of γ , �, and  contains a singular point

at γ = 0. To avoid this singularity, Cartesian-type coordinates

x = γ cos �, y = γ sin �, and � = � −  can be introduced,

as shown in Ref. [28], with which the macroscopic evolution

equations can be expressed as follows:

ẋ(t) = −y + (1 − x2)h + xyg,

ẏ(t) = x − (1 − y2)g − xyh, (18)

�̇(t) = 1 −
1

1 +
√

1 − x2 − y2
(xg + yh).

Hereafter, we refer to the sets of three macroscopic variables,

i.e., (γ,�,) or (x,y,�), as the WS variables.

To specify the system state, we need to fix N + 3 constants,

namely, the N constants of motion {ψj } and three initial

conditions γ (0), �(0), and (0) for the macroscopic variables.

Because the original system is N dimensional, we need to

restrict the three excess degrees of freedom by imposing three

constraints as explained in Ref. [28]. We use the simplest rule

for converting the initial phases {θj (0)} to the constants of

motion {ψj } and to the WS variables [28],

γ (0) = 0, �(0) = 0, (0) = 0, {ψj = θj (0)} (19)

or equivalently,

x(0) = 0, y(0) = 0, �(0) = 0, {ψj = θj (0)}, (20)

where j = 1, . . . ,N . With this choice, the WS variables

always start from the origin while their dynamics (governing

equations) changes depending on the initial phase distribution

{θj } through the functions g and h.

VI. DYNAMICS OF THE WATANABE-STROGATZ

VARIABLES

Using the three WS transformations, we can visualize

the trajectories of the system in a space of (γ,�,) or

(x,y,�), which obey the reduced evolution equation (14) or

(18) equivalent to the original equation (2). We use N = 20

oscillators, whose initial phases are selected randomly from

[0,2π ). The numerical simulations of both the original and

reduced WS equations yield the same results. Figure 8 shows

the dynamics of the WS variables, which corresponds to Fig. 1

with random initial conditions. The WS variables (x,y,�) are

plotted in Figs. 8(a), 8(c), and 8(e) using cylindrical polar

coordinates, and in Figs. 8(b), 8(d), and 8(f) by projecting

them onto the x-y plane.

Correspondence between the three dynamical states of

the original system and the dynamics of the WS equation

is given in Refs. [27–30]. The synchronization rate R and

the WS variable γ =
√

x2 + y2 are qualitatively similar in

the sense that γ = 0 when R = 0 and γ = 1 when R = 1,

though they are not equal when 0 < R and γ < 1. The locked

state corresponds to a fixed point of the WS equation with

γ = 1, � = θ̄ + π , and arbitrary  (hence � = � − �). The

synchronized drifting state corresponds to a fully circular

closed orbit of radius γ = 1 on the x-y plane. The variable �
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FIG. 8. (Color online) Trajectories of the WS variables evolving

under Eq. (18), which correspond to Fig. 1. The number of oscillators

is N = 20. Initial phases are selected randomly from a uniform

distribution in [0,2π ). In (a), (c), and (e), the trajectories are plotted

on a torus using cylindrical polar coordinates ξ = (x + 2) cos �, η =
(x + 2) sin �, and ζ = y, where  = 0 and  = 2π are connected. In

(b), (d), and (f), the trajectories are projected on the x-y plane. (a),(b)

External forcing intensity k is varied while the coupling strength

ǫ = 0.5 and the coupling phase shift δ = −0.05π are fixed. (c),(d) ǫ

is varied while k = 0.6 and δ = −0.05π are fixed. (e),(f) δ is varied

while k = 1.2 and ǫ = 0.5 are fixed.

decreases (� increases) and  can take an arbitrary constant.

The asynchronous state without fluctuations corresponds to a

fixed point in the x-y plane with 0 < γ < 1, while � = � − 

increases. The asynchronous state with periodic (chaotic)

fluctuations corresponds to a limit cycle (chaotic orbit) in the

WS phase space.

Figures 8(a) and 8(b) plot the trajectories of the WS

variables at k = 0.6, k = 1.2, or k = 1.5 with ǫ = 0.5 and

δ = −0.05π . At k = 1.5, the system is in the locked state and

R = 1. Correspondingly, the WS variables converge to a fixed

point with γ = 1. At k = 0.6 or k = 1.2, the system is in the

asynchronous fluctuating state. The WS variables go around a

closed limit-cycle orbit, whose radius γ < 1 and whose shape

depends on k. We observe that the periodic fluctuations in R at

k = 0.6 and k = 1.2 shown in Figs. 1(a) and 1(b) correspond to

limit cycles of the WS variables, and the constant R at k = 1.5

corresponds to a fixed point of the WS variables. Therefore

persistent fluctuations in the synchronization rate are in fact

collective low-dimensional dynamics in the high-dimensional

phase space of coupled oscillators.

Similarly, Figs. 8(c) and 8(d) plot the WS variables at

ǫ = 0.5, 0.05, and −0.05, while keeping k = 0.6 and δ =
−0.05π fixed. When ǫ < 0, the coupling is attractive and

the system converges to the synchronized drifting state with

R = 1. The corresponding WS trajectory is a full circle on the

x-y plane with γ = 1; the trajectory becomes distorted when it

is plotted in cylindrical coordinates. When ǫ > 0, the coupling

is repulsive and the system is in the asynchronous fluctuating

state. The WS trajectory contracts to a small, closed circular

orbit on the x-y plane with γ smaller than 1, which correspond

to a closed orbit along the longitude of the cylinder.

Finally, Figs. 8(e) and 8(f) show the dynamics of the

WS variables at δ = −0.05π , δ = −0.005π , and δ = 0.05π ,

which corresponding to Figs. 1(e) and 1(f). k = 1.2 and

ǫ = 0.5 are fixed. When δ = 0.05π , the system is in the

synchronized drifting state with R = 1 and the WS variables

approach a full circle on the x-y plane with γ = 1. When δ =
−0.05π , the synchronization rate fluctuates periodically and

the WS variables form a smaller limit cycle with γ < 1. For

the chaotic fluctuations observed in the synchronization rate

at δ = −0.005π , the corresponding WS orbit is also chaotic.

VII. INHOMOGENEITY OF INITIAL CONDITIONS

AND THE FINITE-SIZE EFFECTS

In the previous section, we observed that the fluctuations

in the synchronization rate corresponded to low-dimensional

periodic or chaotic dynamics of the reduced WS equations.

Here, to explain the dependence of 	R on N , we analyze the

WS dynamics perturbatively near the splay state within the

limit of large N .

A. Splay-state initial condition

From the conversion rule Eq. (19), the splay-state initial

conditions for the oscillators θj (0) = 2πj/N are mapped to the

constants of motion ψj = 2πj/N . Therefore, in the continuum

limit N → ∞, the functions P and Q in Eq. (16) can be

approximated by integrals as

P0 =
1

2π

∫ 2π

0

F (ψ − )dψ =
γ

1 +
√

1 − γ 2

=
√

x2 + y2

1 +
√

1 − x2 − y2
, (21)

Q0 =
1

2π

∫ 2π

0

G(ψ − )dψ = 0.

Therefore the dependence of P and Q on � vanishes, and the

functions g and h in Eq. (15) are given as

g0 = −ǫ
1 −

√

1 − γ 2

γ
cos(� − δ) + k

= −
ǫ

1 +
√

1 − x2 − y2
(x cos δ + y sin δ) + k,

h0 = −ǫ
1 −

√

1 − γ 2

γ
sin(� − δ)

= −
ǫ

1 +
√

1 − x2 − y2
(−x sin δ + y cos δ). (22)
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These relations and Eq. (18) indicate that in the N → ∞ limit,

the WS equations can be written in the form

ẋ(t) = U0(x,y), ẏ(t) = V0(x,y), �̇(t) = W0(x,y), (23)

where the vector field (U0,V0,W0) is given from Eqs. (18) and

(22) as

U0(x,y) = −y + (1 − x2)h0 + xyg0,

V0(x,y) = x − (1 − y2)g0 − xyh0, (24)

W0(x,y) = 1 −
1

1 +
√

1 − x2 − y2
(xg0 + yh0).

It should be noted that all U0, V0, W0 depend only on (x,y), and

thus � is passively driven by x and y. Therefore the dynamics

is essentially closed within the two dynamical variables (x,y)

when the system starts from the splay state [27,28]. The

numerical analysis of this two-dimensional system indicate

that (x,y) settles to a stable fixed point (x0,y0) satisfying

U0(x0,y0) = 0 and V0(x0,y0) = 0, which generally depends

on ǫ, δ, and k. Correspondingly, the variable � constantly

increases as �(t) = βt , where β is given by β = W0(x0,y0).

Although it is difficult to obtain (x0,y0) analytically, on the

basis of numerical results, we assume that (x0,y0) remains

linearly stable and (x,y) does not exhibit oscillations if the

parameters are varied in the asynchronous state.

B. Effect of initial inhomogeneity

Now, we consider slightly perturbed initial conditions from

the splay state, θj (0) = 2πj/N . We shift the initial phase of

each oscillator θj (0), which is equal to the constant ψj , by

a small amount μaj (j = 1, . . . ,N ). Here, aj is an arbitrary

constant of O(1), and μ is a parameter that is introduced

to represent smallness of the inhomogeneity. The first-order

correction to P and Q can be estimated in the N,M → ∞
limit by expanding F and G as

P =
1

N

N
∑

j=1

F (ψj + μaj − )

=
1

N

N
∑

j=1

F (ψj − ) + μ
1

N

N
∑

j=1

ajF
′(ψj − ) + O(μ2)

≈
1

2π

∫ 2π

0

F (ψ − )dψ

+μ
1

2π

∫ 2π

0

F ′(ψ − )a(ψ)dψ + O(μ2) (25)

and similarly

Q =
1

N

N
∑

j=1

G(ψj + μaj − )

=
1

N

N
∑

j=1

G(ψj − ) + μ
1

N

N
∑

j=1

ajG
′(ψj − ) + O(μ2)

≈
1

2π

∫ 2π

0

G(ψ − )dψ

+μ
1

2π

∫ 2π

0

G′(ψ − )a(ψ)dψ + O(μ2). (26)

Therefore, for small μ, P and Q can be approximated as

P = P0 + μP1, Q = Q0 + μQ1, (27)

where P1 and Q1 are given by

P1 ≈
1

2π

∫ 2π

0

F ′(ψ − )a(ψ)dψ,

(28)

Q1 ≈
1

2π

∫ 2π

0

G′(ψ − )a(ψ)dψ,

and, correspondingly, the functions g and h can be expressed

as

g = g0 + μg1, h = h0 + μh1. (29)

In contrast to P0 and Q0 (and therefore g0 and h0), P1 and

Q1 (g1 and h1) depend on � through  = � − �. Therefore

from Eq. (18), the approximated WS equations can be written

in the form

ẋ(t) = U0(x,y) + μU1(x,y,�),

ẏ(t) = V0(x,y) + μV1(x,y,�), (30)

�̇(t) = W0(x,y) + μW1(x,y,�).

That is, by shifting the initial conditions slightly from the

splay state, feedback terms of O(μ) from � to (x,y) arise. It

is expected that the perturbation terms result in periodic (or

chaotic) fluctuations of O(μ) in (x,y).

To observe this more explicitly, we expand x(t), y(t), and

�(t) around the unperturbed solutions x(t) = x0, y(t) = y0,

and �(t) = βt , respectively, in series of μ as

x(t) = x0 + μx1(t) + O(μ2),

y(t) = y0 + μy1(t) + O(μ2), (31)

�(t) = βt + μ�1(t) + O(μ2),

and substitute them into Eq. (30). At the first order O(μ), we

obtain

ẋ1(t) =
(

∂U0

∂x
x1 +

∂U0

∂y
y1

)

+ U1(x0,y0,βt),

ẏ1(t) =
(

∂V0

∂x
x1 +

∂V0

∂y
y1

)

+ V1(x0,y0,βt), (32)

�̇1(t) =
(

∂W0

∂x
x1 +

∂W0

∂y
y1

)

+ W1(x0,y0,βt),

where partial derivatives are estimated at (x,y) = (x0,y0).

It should be noted that the Jacobian matrix J of the fixed

point (x0,y0) appears in the equations for (x1,y1). Numerical

analysis shows that the fixed point (x0,y0) is linearly stable,

i.e., the eigenvalues of the Jacobian have negative real parts,

and the deviation (x1,y1) from the fixed point tends to decay

exponentially. However, the inhomogeneous periodic forcing

terms U1 and V1 drive (x1,y1) away from zero with frequency

β [the solution sufficiently after the initial transient is given

as (x1(t),y1(t))T =
∫ t

−∞ e(t−s)J (U1(s),V1(s))T ds]. Therefore,

from Eq. (31), the fluctuations of O(μ) around (x0,y0) due to

the feedback from the � component is expected.

C. Isolated inhomogeneity at the origin

As an example, we shift the initial phases of the first M =
ρN oscillators from j = 1 to M by a constant a from the splay
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state and take the N,M → ∞ limit while keeping their ratio

0 � ρ ≪ 1 fixed. This limit corresponds to the continuum

limit of the slightly perturbed splay-state initial conditions

that we considered in Sec. III. In this limit, we have a(ψ) = a

for 0 � ψ < 2πρ and a(ψ) = 0 for 2πρ � ψ < 2π , so the

integrals in Eq. (28) can be approximated as

1

2π

∫ 2πρ

0

aF ′(ψ − )dψ ≈ aρF ′(−),

(33)
1

2π

∫ 2πρ

0

aG′(ψ − )dψ ≈ aρG′(−),

and thus P1 and Q1 are explicitly calculated as

P1 = aρ
(1 − γ 2) sin 

(γ cos  − 1)2
,

(34)

Q1 = aρ

√

1 − γ 2(cos  − γ )

(γ cos  − 1)2
,

which may also be expressed as functions of x, y, and �.

It is clear that the combination aρ measures the degree of

inhomogeneity from the splay state.

In Fig. 9(a), the numerical simulations of the original

system (2), equivalent WS equation (18), and approximated

WS equation in the continuum limit given by Eqs. (30) and

FIG. 9. (Color online) (a) Time sequences of the synchronization

rate R obtained by numerical simulations of the original equation

(solid black curve), the WS equations with a finite number of N = 100

(dashed green curve), and the approximated WS equations in the

continuum limit (blue dotted curve). The initial shift is a = 0.1 and

the proportion of the shifted oscillator is ρ = M/N = 1/100 = 0.01.

(b) Trajectories of the approximated WS equations in the continuum

limit on the x-y plane for differing values of a and fixed ρ = 0.01.

(c) Amplitude of the fluctuations 	R vs the small parameter aρ

obtained numerically from the approximated WS equations in the

continuum limit for differing values of a and fixed ρ = 0.01, ρ =
0.005, and ρ = 0.0025. The parameter values are ǫ = 0.5, k = 1.2,

and δ = −0.05π .

(34) are compared for slightly perturbed splay-state initial

conditions. The number of the oscillators is N = 100 and

only a single oscillator (M = 1) is shifted, which gives

ρ = M/N = 1/100 = 0.01. The formal expansion parameter

μ is set to 1, and the small phase shift is set to be a = 0.1. We

observe that the result of the approximated WS equation in

the continuum limit agrees well with the results of the original

system and the equivalent WS equation. The approximation

is generally accurate in a wide parameter region in the

asynchronous state as long as a is small, though deviations

from the direct numerical simulation of the original model

can be enhanced near the border between the asynchronous

state and the locked or synchronized drifting state. Further,

it should be noted also that chaos never occurs within this

first-order approximation.

In Fig. 9(b), typical solutions of the approximated WS

equation in the continuum limit are plotted, where the degree

of the inhomogeneity aρ is varied as the control parameter.

We observe that the trajectories on the x-y plane have almost

the same shape and only their size becomes larger as a is

increased. In fact, the size is proportional to aρ, as expected

from the perturbation analysis given above. Figure 9(c) plots

	R calculated from the approximated WS equation. It is clear

that 	R depends approximately linearly on aρ. In other words,

the amplitude of fluctuations in the synchronization rate is

controlled by the degree of inhomogeneity added to the splay

state in the initial phase distribution.

The above results elucidate the dependence of 	R on N

for the slightly shifted initial conditions that we determined in

Sec. III. When only a single oscillator at the origin is shifted

from the splay state (M = 1) and N is increased, we have aρ =
aM/N and thus 	R is inversely proportional to N . In contrast,

if the proportion ρ = M/N of the shifted oscillator is fixed,

the degree of inhomogeneity aρ = aM/N is also kept constant

and thus 	R remains at the same order even if N is varied.

D. Random initial conditions

The dependence of 	R on N for random initial conditions

can be argued similarly. The functions P and Q in Eq. (16)

can be considered sample averages over a finite number of the

random variables {ψj } (j = 1, . . . ,N ) drawn from a uniform

distribution in [0,2π ), which we denote by PN and QN . Their

continuum limits P0 and Q0 in Eq. (21) can also be interpreted

as ensemble averages 〈P 〉 and 〈Q〉 with respect to a uniform

distribution p(ψ) = 1/2π of the random variable ψ . Therefore

we can estimate the degree of deviations of the sample averages

PN and QN from the true ensemble averages 〈P 〉 and 〈Q〉.
Usually, the variances 〈(PN − 〈P 〉)2〉 and 〈(QN − 〈Q〉)2〉 are

proportional to 1/N if the random variable ψ is selected

independently. Therefore the inhomogeneity of the initial

conditions scales as 1/
√

N for the random initial conditions.

Taking into account the previous results for the shift of the

initial conditions, which suggest that 	R is approximately

proportional to the degree of inhomogeneity given to the splay

state, we expect that 	R for the system with random initial

conditions scales as 1/
√

N .

Figure 10 shows the dependence of 〈	R〉 on N for the

random initial conditions. Here, 〈	R〉 is averaged over 30

different random initial conditions. We can clearly observe
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FIG. 10. (Color online) Dependence of the synchronization rate

R and the amplitude of fluctuations 	R on the number of oscillators

N for systems started from random initial conditions. Averaged

amplitude 	R over 30 trials is plotted as a function of 1/
√

N . The

solid line indicates a linear regression. The parameter values are

k = 1.2, ǫ = 0.5, and δ = −0.05π .

that 〈	R〉 scales as 1/
√

N . This confirms our interpretation

of the numerical simulations in Sec. III, which indicate that

the fluctuations in the synchronization rate are caused by the

inhomogeneity (deviations from the splay state) due to the

finiteness of the number of oscillators.

VIII. SUMMARY

We studied a system of phase oscillators with global

coupling and periodic external forcing. In the asynchronous

state of the system, typically periodic (sometimes chaotic)

fluctuations in the synchronization rate are observed; these

fluctuations strongly depend on the initial configurations of

the phase oscillators. The fluctuations in the synchronization

rate correspond to the limit-cycle (or chaotic) trajectories of the

macroscopic Watanabe-Strogatz variables, i.e., they are deter-

ministic low-dimensional collective dynamics of the system.

The amplitude of the fluctuations in the synchronization rate is

essentially determined by the degree of inhomogeneity of the

initial conditions of the oscillators, i.e., their deviations from

the splay state. The dependence of the amplitude of fluctuations

on the number of oscillators for random initial conditions can

also be interpreted similarly.

The fluctuations in the synchronization rate are reminiscent

of those in the mean field in globally coupled chaotic maps

[31–33]. In the case of globally coupled chaotic maps, owing

to small correlations that remain among the chaotic maps even

in the asynchronous regime, the mean field fluctuations do

not decay to zero even if the number of chaotic maps N is

increased. The main difference in the present case from the

globally coupled maps is that the fluctuations are due to the

existence of the constants of motion and therefore depend

strongly on initial conditions. By virtue of the Watanabe-

Strogatz ansatz, the system can directly be reduced to three

macroscopic variables and the fluctuations can be traced back

to the initial inhomogeneity. However, it is interesting to note

that the perturbative approach to the fluctuations in the WS

variables that we used in the present study somehow resembles

the linear-response approach to the Frobenius-Perron equation

describing the globally coupled maps [32,33].

Our results indicate that the dynamics in the asynchronous

state of the system can differ significantly depending on

initial phase distributions. This is in contrast to the locked or

synchronized drifting states, in which the system settles to the

same simple dynamics irrespective of the initial conditions.

This observation may be relevant in understanding systems

consisting of dynamical elements exhibiting nonstationary

fluctuations.
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