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Persistent hippocampal neural firing and
hippocampal-cortical coupling predict verbal
working memory load

Ece Boran1, Tommaso Fedele1,2,3, Peter Klaver2,4,5, Peter Hilfiker6, Lennart Stieglitz1,

Thomas Grunwald6,7, Johannes Sarnthein1,2*

The maintenance of items in working memory relies on persistent neural activity in a widespread network of
brain areas. To investigate the influence of load on working memory, we asked human subjects to maintain sets
of letters in memory while we recorded single neurons and intracranial encephalography (EEG) in the medial tem-
poral lobe and scalp EEG. Along the periods of a trial, hippocampal neural firing differentiated between success and
error trials during stimulus encoding, predicted workload during memory maintenance, and predicted the subjects’
behavior during retrieval. During maintenance, neuronal firing was synchronized with intracranial hippocampal EEG.
On the network level, synchronization between hippocampal and scalp EEG in the theta-alpha frequency range
showed workload dependent oscillatory coupling between hippocampus and cortex. Thus, we found that persistent
neural activity in the hippocampus participated in working memory processing that is specific to memory mainte-
nance, load sensitive and synchronized to the cortex.

INTRODUCTION

Working memory (WM) describes our capacity to prospectively store
sensory input and translate it into an appropriate behavioral response.
This capacity is necessary for several higher-order cognitive functions,
such as reading and dialing a telephone number (1). If the input is re-
presented in WM for prospective use, then how are these representa-
tions maintained in the brain?

The basic process that underlies the temporary storage of infor-
mation inWM is persistent neuronal firing in a widespread neural net-
work. Sustainedneuronal firing—while information ismaintainedduring
the delay before a response—is a hallmark of WM (2). To date, single-
neuron recordings in humans found persistently active neurons during
WM maintenance for neurons with high stimulus selectivity (concept
neurons) that showed, however, no workload dependence (3, 4).

At a systemic level, WM processing is known to correlate with sus-
tained neuronal oscillations in the theta-alpha range (3 to 12Hz) (5–11).
The anatomical basis of WM involves a widespread network of brain
areas, as shown noninvasively with electroencephalography (EEG)
(5, 6, 10–12) and functional magnetic resonance imaging (fMRI)
(13), and invasively with intracranial EEG (iEEG) (7–9, 14, 15).
The hippocampus has been proposed to be a subcortical node asso-
ciated with frontal theta oscillations (16). Evidence for hippocampal
involvement in WM originated from iEEG studies that revealed
changes in theta and gamma power (15) and cross-frequency cou-
pling that was load dependent during periods of WM activation
(17). However, other studies using simultaneous EEG-fMRI (18)
and fMRI (19) have failed to identify evidence supporting hippocam-
pal involvement in themaintenance ofWM; thus, the involvement of
the hippocampus in WM is far from clear.

Synchronized oscillations have been proposed as a mechanism
for functional interactions within the neuronal networks that under-
lie cognitive tasks (20, 21). These oscillations support phase-locked
high-frequency firing within local networks and temporal coupling
of the low-frequency phase for long-range communication between
cortical areas (9, 10, 12, 22). This synchronization suggests an ac-
tive maintenance process through reverberating signals between brain
regions.

To provide direct evidence of hippocampal involvement in theWM
neural network, we recorded single-neuron activity from microelec-
trodes and iEEG in the medial temporal lobe (MTL, which includes
the hippocampus, entorhinal cortex, and amygdala) simultaneously
with scalp EEG during the presurgical evaluations in patients with ep-
ilepsy. We used a WM task known to elicit frontal theta and parietal
alpha oscillations during the maintenance period (5, 6) to clarify both
the involvement of the hippocampus inWMand themechanism of the
functional hippocampal-cortical interaction.We hypothesized that hip-
pocampal neurons will show load-dependent firing in WM. Since pre-
vious studies demonstrated that highly stimulus-selective cells in the
hippocampus did not exhibit load dependence (3, 4), we tested load
dependence without the constraint of high stimulus selectivity using
letters in a modified Sternberg WM paradigm. We also expected that
neuronal firing in theMTLwould distinguish periods of the trial inWM
and that oscillatory coupling between hippocampal iEEG and scalp
EEG would be associated with WM load during maintenance.

RESULTS

Task and behavior
Subjects performed a modified Sternberg WM task (36 total sessions
from nine subjects). The task differs from the original Sternberg para-
digm in that the itemswere presented all at once rather than sequentially,
thus separating the encoding period from the maintenance period. In
each trial, subjects were instructed tomemorize a set of four, six, or eight
letters presented for 2 s (encoding). The number of letters was thus spe-
cific for the memory load. After a delay (maintenance) period of 3 s, a
probe letter prompted the subjects to retrieve their memory (retrieval)

1Klinik für Neurochirurgie, UniversitätsSpital und Universität Zürich, 8091 Zürich,
Switzerland. 2Zentrum für Neurowissenschaften Zürich, ETH Zürich, Zürich, Switzerland.
3Institute for Cognitive Neuroscience, National Research University Higher School of
Economics, Russian Federation. 4School of Psychology, University of Surrey, Surrey
GU2 7XH, UK. 5University of Applied Sciences in Special Needs Education, 8050
Zürich, Switzerland. 6Schweizerisches Epilepsie-Zentrum, 8008 Zürich, Switzerland.
7Klinik für Neurologie, UniversitätsSpital Zürich, 8091 Zürich, Switzerland.
*Corresponding author. Email: johannes.sarnthein@usz.ch

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Boran et al., Sci. Adv. 2019;5 : eaav3687 27 March 2019 1 of 14

 o
n
 J

u
ly

 2
2
, 2

0
1
9

h
ttp

://a
d
v
a
n
c
e
s
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m
 

http://advances.sciencemag.org/


and to indicate by button press (“IN” or “OUT”) whether or not the
probe letter was a member of the letter set held in memory (Fig. 1A).
Throughout this paper, the term “workload” refers to the number of
letters held in memory. In their effort to solve the task, the subjects re-
ported that they relied on audio-verbal transformation of the letters. Al-
though stimuli were visually presented in this task, letter strings are
thought to activate verbal WM through the phonological loop (1).

The average correct response rates were 90.2 ± 7.8% for IN and
93.1 ± 4.3% for OUT. The rate of correct responses decreased with
set size from a set size of 4 (98.5% correct responses) to set sizes of
6 (90.5%) and 8 (84.7%) [permuted repeated-measures analysis of
variance (ANOVA), F2,70 = 40.25, P = 0.0002; Fig. 1B]. Across all
sessions, the capacity averaged 6.8 [Cowan’s K, (correct IN rate + cor-
rect OUT rate − 1) × set size], which indicates that the subjects were
able to maintain at least six letters in memory. The mean response time
(RT) for the correct trials (1630 trials) increased with workload (48 ms
per item; permuted repeated-measures ANOVA, F2,2007 = 21.10, P =

0.0002; Fig. 1C). Correct IN/OUT decisions were made more rapidly
than incorrect decisions (1.36 ± 0.64 s versus 1.87 ± 1.21 s, respectively;
permutation t test, t = 5.06, P = 5.0 × 10−5). Together, the subjects per-
formed the task within normal limits (7 ± 2 items) and easily performed
the low-workload trials (set size 4) (5, 23). In summary, these data show
that our subjects were able to perform the task and that the difficulty of
the task increased with set size.

Single-unit electrophysiology
To find out whether hippocampal neurons participated in this task, we
performed multielectrode recordings of broadband neuronal activity
from microelectrodes separated into single- or multiunit activity and
local field potentials (LFPs). We refer here to a putative unit by the
term “neuron.”We recorded the activity of 1526 (51 ± 35 per session)
neurons from the hippocampus (n = 676), entorhinal cortex (n = 449),
and amygdala (n = 401) across all microelectrodes. Neurons active
during multiple sessions entered the analysis independently for each

Fig. 1. Task, behavioral results, and recording sites. (A) In the task, sets of consonants were presented and had to be memorized. The set size (4, 6, or 8 letters)

determined WM workload. In each trial, presentation of a letter string (encoding period, 2 s) was followed by a delay (maintenance period, 3 s). After the delay, a probe

letter was shown, and subjects indicated whether the probe was presented during the encoding period. (B and C) Behavioral results. (B) Accuracy of all sessions. The

jitter reflects the rank order of the accuracy in trials with set size 8. Each dotted line connects an individual session. The nine subjects performed a total of 36 sessions.

(C) Median reaction time (relative to onset of the probe letter) as a function of workload. The jitter reflects the rank order of the reaction time in trials with set size 8.

Each dotted line connects an individual session. In (B) and (C), thick and light blue lines represent the means and SEM across all sessions, respectively. (D) Location of

the microelectrodes at the tip of the depth electrodes in MNI’s MNI152 space (see Methods). Recording locations are projected on the parasagittal plane x = −25.2 mm and are

color-coded (cyan, hippocampus; magenta, entorhinal cortex; yellow, amygdala).
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session.We quantitatively assessed the spike sorting quality and iden-
tified the mean firing rate of all neurons as 2.55 ± 3.30 Hz (fig. S1).
Figure 1D shows the microelectrode recording sites projected on a
parasagittal plane in theMontreal Neurological Institute (MNI) space.
In our first analysis of individual neuron types, we focused on the
maintenance period, when stimuli were absent, and the retrieval peri-
od after the presentation of the probe letter. To reduce noise in the
classification, unless stated otherwise, subsequent analyses included
only trials with correct responses.

First, we identified neurons that fired persistently in the mainte-
nance period. These maintenance neurons were defined by their higher
firing rates during the maintenance period than during the fixation pe-
riod (permutation t test; Fig. 2A; further examples in fig. S2). We iden-
tified maintenance neurons in all recorded areas (Fig. 2B); however,
they occurred most frequently within the hippocampus (c21 = 47.30,
P = 6.1 × 10−12), where 20.6% of all recorded neurons were mainte-
nance neurons (permutation test against scrambled data, P = 0.002).
Were the firing rates of maintenance neurons related to workload?
During maintenance, a subset of maintenance neurons in the hippo-
campus (15%, 21 neurons; permutation test against scrambled data,
P = 0.002) increased their firing rates systematically with workload (set
size 4 versus set sizes 6 and 8; Fig. 2C). Across MTL, the hippocampus
stood out with a significant percentage of maintenance neurons with
persistent activity that correlated with the WM load.

Next, we identified neurons, which fired specifically after the presen-
tation of the probe letter that initiated the retrieval period. These probe
neurons were defined based on increased firing only during the presen-
tation of the probe stimulus relative to encoding andmaintenance (per-
mutation t test; Fig. 3). We identified probe neurons in all areas and,
most prominently, in the entorhinal cortex (c21 = 23.16, P = 1.5 × 10−6;
Fig. 3E), in which 9% of neurons were probe neurons (41 neurons; per-
mutation test against scrambled data, P = 0.001).

Was the response of these neurons related to either probe letter pre-
sentation or movement initiation? We compared the maximal firing
rate after alignment to the probe onset with the rate after alignment
to the button press. Aligning the response with the probe stimulus onset
resulted in significantly higher peak firing rates (mean for all probe neu-
rons, 5.47 ± 4.97Hz versus 4.28 ± 4.37Hz; permutation t test, t75 = 4.40,
P = 0.0005; Fig. 3, A and B). Thus, firing of probe neurons reflects the
processing of the probe stimulus more than direct preparation for
movement.However, only a small number of probe neurons (eight neu-
rons, 10.5% of probe neurons) reflected the subject’s decision (IN versus
OUT; Fig. 3, A and B), and only one neuron showed workload
dependence (Fig. 3, C and D), while the substantial majority of the
probe neurons did not reflect specific trial demands. Thus, the respond-
ing neurons may represent the perception of the probe letter and the
subsequent change in behavioral demand.

Attractors in neural population dynamics
We subsequently focused on the neural population firing rate during
the periods of the trial. We used demixed principal component analysis
(dPCA) (24) to project the firing rates from all neurons onto a low-
dimensional component space. To demix the effect of stimulus iden-
tity, dPCA was informed by the workload of the trials. We formed a
three-dimensional space from the first three demixed principal com-
ponents (dPCs 1, 2, and 3, explaining 44.7% of the variance; Fig. 4A,
fig. S3, and movie S1). dPCA distinguished between workloads 4, 6,
and 8. This speaks for a population activity that distinguished between
workloads 6 and 8 very early during the trial, since the projection on

the dPC2-dPC3 plane shows three angles of 120° each, i.e., the optimal
balanced distinction between the three workload conditions.

In this neural state space, we first analyzed the rate of change over
time (speed; Fig. 4B). The speed was highest during encoding, when
maintenance neurons ramped up their firing. By contrast, speed was
lowest during maintenance (permutation t test against the other trial
periods, P = 0.0005). When comparing the two periods without visual
stimulation, the speedduringmaintenancewasmuch lower thanduring
fixation. Analyzing the pairwise distance between trajectories that cor-
responded to different set sizes, we found that the distances during
maintenance were larger than during encoding (permutation t test,
P = 0.0005; Fig. 4C). Thus, during maintenance, the observed pattern
of the firing rates of all recorded neurons resembled an attractor as a
location in state space. Over the trial, the neural trajectories distin-
guished the periods within trials, among which themaintenance period
stood out in clustering neural activity around attractors. Hippocampal
population activity distinguished between trials of set sizes 4, 6, and 8
and was thus indicative of workload.

Decoding of information during the trial
So far, our findings did not answer the question ofwhether the neuronal
activity observed was related to the subject’s behavior. Therefore, we
analyzed neuronal population firing on a trial-by-trial basis. A popula-
tion analysis of single trials seems adequate in this cognitively
demanding task, which, during maintenance, involves internal proces-
sing in the absence of external stimuli. For this analysis, we created pseu-
dopopulations of neurons that were recorded separately in different
subjects; however, they were treated as if they were recorded simulta-
neously. Furthermore, we selected subpopulations that consisted of, e.g.,
only hippocampal maintenance neurons. We subsequently trained a
decoder on a subset of trials and tested its performance on an
independent set of test trials (25). Thus, we assessed whether neuronal
firing was sufficiently salient to be representative of task demands or
performance in single trials. Given the substantial variability in neuro-
nal dynamics during a trial (Fig. 4A), we performed separate analyses
for the different periods within the trials.

For the encoding period (−5 to −3 s), we found that the activity of
hippocampal neurons, but not neurons in other areas, could be used to
decode whether the subject would later reply correctly or incorrectly in
the trial. Themediandecoding accuracywas 80% (permutation test against
scrambleddata,P=0.002; Fig. 4D).This finding suggests that hippocampal
neurons carry information on the memory content of the trial.

For the maintenance period, we found that the workload (set size 4
versus set sizes 6 and 8) of each trial could be decoded fromhippocampal
neurons but not from neurons in the other areas (permutation test
against scrambled data, P = 0.002; Fig. 4E). The median decoding accu-
racy was 80%. The decoder did not distinguish between trials of set sizes
6 and 8, which points to a ceiling effect as illustrated by firing rates of the
neuron in Fig. 2A. To ensure that some subjects did not drive the results,
we performed a leave-one-out analysis. The exclusion of any subject
changed the decoding accuracy to a value in the range [71 to 81%].
We also performed the same analysis using only maintenance neurons;
there was little difference in the decoding accuracy between the use of
only maintenance neurons and the use of the whole population of hip-
pocampal neurons. Conversely, the exclusion of maintenance neurons
reduced the prediction accuracy to 71%. This evidence indicates that
hippocampal neurons carry information on the memory workload of
the trial and that maintenance neurons carry the principal part of this
information.
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For the retrieval period, we found that neurons from all areas en-
coded whether the subject would later reply by pressing the IN or
OUT button in the trial (permutation test against scrambled data, P =
0.002; Fig. 4F). The median decoding accuracy reached 90% if firing
from all neurons was included, thus indicating that all regions
contributed to the response selection during retrieval from WM.

Electrophysiology of cortico-hippocampal
functional coupling
Since it was thus established that hippocampal neurons process
memory workload and contribute to retrieval from WM, we next
examined how the hippocampal neuronal activity was involved with
the network of cortical areas activated during the task. To this end,

Fig. 2. Persistent activity of maintenance neurons. (A) Example of a maintenance neuron recorded from hippocampus. Top: Peristimulus time histogram (bin size, 500 ms;

step size, 20 ms). Shaded areas represent ± SEM across trials of all spikes associated with the neuron. Inset: Mean extracellular waveform ± SEM. Middle: Periods of significance

(black) between low-workload trials (set size 4, 45 trials) andhigh-workload trials (set sizes 6 and8, 46 trials; P<0.05, cluster-basednonparametric permutation test). Bottom: Raster

plot of trials reordered to set size and RT for plotting purposes only. Compared to set size 4 (blue), the neuron firesmore for set size 6 (green) and set size 8 (red). Figure S1 provides

further examples of single neurons. (B) Percentage of all recorded neurons identified as maintenance neurons in the hippocampus (Hipp), entorhinal cortex (Ent), and amygdala

(Amg). The number ofmaintenance neurons is provided below the area label. The hippocampus contained significantly higher proportions ofmaintenance neurons than the two

other areas. (C) Percentage of maintenance neurons for which the firing rate during maintenance differed as a function of load. The hippocampus stood out as containing a

significant percentage of neurons that increased their firing rate under high workloads. For (B) and (C), significance was assessed by comparing with a null distribution with

permuted labels. ***P = 0.002.
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Fig. 3. The activity of probe neurons is related to WM retrieval. (A) Example probe neuron recorded from the entorhinal cortex. Firing rates are shown separately

for trials in which the probe was held (IN, cyan) or not held (OUT, magenta) in memory. Top: Peristimulus time histogram (bin size, 200 ms; step size, 20 ms; shaded

areas represent ± SEM). Bar: Time with significant differences between IN and OUT trials (P < 0.05, cluster-based nonparametric permutation test). Bottom: Raster plot of

reordered trials, black marker at button press. Button press was at median RT 1.1390 s after probe letter presentation. (B) Same neuron as in (A), with trials aligned to

button press. The peak response was reduced (27 Hz versus 18 Hz; permuted t test, P = 0.005). (C) Firing rates of an example probe neuron recorded from the entorhinal

cortex, shown separately for low-workload trials (set size 4, blue) or high-workload trials (set size 6, green, and set size 8, red). Bar: Time with significant differences

between trials of low and high workloads (P < 0.05, cluster-based nonparametric permutation test). Bottom: Raster plot of reordered trials, black marker at button press.

(D) Same neuron as in (C), with trials aligned to button press (button press was at median RT 1.1390 s after probe letter presentation). The peak response was reduced

(15 Hz versus 10 Hz; permuted t test, P = 0.005). (E) Percentage of probe neurons in each area. Probe neurons were most frequent in the entorhinal cortex. Significance

was assessed by comparing with a null distribution with permuted labels. ***P = 0.001.
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we recorded oscillatory activity in the EEG from scalp electrodes and the
iEEG frommacroelectrodes implanted in the hippocampus, entorhinal
cortex, and amygdala.

In our iEEG and EEG data, we here first show the results for selected
electrodes and electrode pairs that illustrate patterns present in the data
in subject 1 (Fig. 5). The depth electrode positions for iEEG are sum-
marized in Fig. 1D, and the positions of the scalp electrodes were based
on the 10-20 system.We then extend these analyses to the connectivity
pattern across the entire dataset in Fig. 6.

As illustrated for subject 1 in Fig. 5, at the cortical level, the scalp
EEG power increased during maintenance for a high workload (set
size 8), with a peak within the 8- to 12-Hz alpha range over parietal
cortex (Fig. 5, A and B). This workload-dependent EEG power increase
extended to frontal electrode Fz (Fig. 5C). While this power increase is
known from healthy subjects for the same or similar task (5, 6), it did

not appear in the other subjects of our study group (fig. S5 and table S1).
At the hippocampal level, the iEEG power increased in the alpha range
with workload during the maintenance period (Fig. 5, G and H). At the
neuronal level, the mean firing rate of the maintenance neurons in this
subject distinguished between low and high workloads (set size 4 versus
set size 8) during the maintenance period (Fig. 5I). The firing rate
became strongest before the onset of the test stimulus, similar to the
time course of power in scalp EEG and hippocampal iEEG (Fig. 5, A
and G). Last, the neuronal action potentials showed an enhanced
spike-field coherence to the LFP in the alpha range duringmaintenance
(Fig. 5J).

Thus, we found workload-dependent increases of scalp EEG
power in frontoparietal areas, hippocampal alpha power, and the
firing rate of hippocampal maintenance neurons. But how are hip-
pocampal and cortical activities related? To help in answering this

Fig. 4. Population firing predicts behavior. (A) Mean trajectories in the neuronal state space constituted by the three largest dPCs during fixation (starting at the

origin), encoding, maintenance, and retrieval. Set sizes are color-coded (4, blue; 6, green; 8, red) (see also fig. S3 and movie S1). (B) Multidimensional speed of the

population in the four periods of a trial. The speed during maintenance was slowest. (C) Multidimensional pairwise distance between all possible pairs of attractors

during the different periods of the task. The distance during maintenance was largest. The combination of low speed and large mutual distance provides evidence for

attractors in state space during maintenance. The analysis in (B) and (C) included the first 15 dPCs that explain 79% of the signal variance. Significance was assessed by

permutation t test. ***P = 0.0005. (D) During the encoding period of trials with high workloads (set sizes 6 and 8), the activity of neurons in the hippocampus (but not

entorhinal cortex or amygdala) carried information about whether the subject would later respond correctly or not. (E) During maintenance, workload (set size 4 versus

set sizes 6 and 8) could be decoded from hippocampal neurons. Sufficient decoding was possible even when using only those hippocampal neurons that we had

identified as maintenance neurons. (F) During retrieval (−500 to 0 ms relative to button press), the subpopulations in all recorded areas were predictive of the response

IN or OUT. In (B) to (F), boxplots represent quartiles (25%, 75%); horizontal lines represent medians; whiskers show ranges up to 1.5 times the interquartile range; dots

outside whiskers show outliers. Markers below bars indicate significance versus chance performance. Significance was assessed on the basis of a null distribution with

scrambled labels (gray boxes). ***P = 0.002.
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Fig. 5. Neuronal responses in the WM network in subject 1. (A) The task induced high alpha power in the scalp EEG at electrode site Pz, predominantly during

maintenance (only trials with set size 8 in this analysis; n = 55). (B and C) During the last 2 s of the maintenance period, EEG power was higher for high-workload

trials (set size 8, red line) than for low-workload trials (set size 4, blue line; n = 61 trials) in (B) the band (8.5 to 16 Hz, black bar) at electrode site Pz and (C) the band (8 to

12.5 Hz, black bar) at electrode site Fz. (D) The task increased the PLV between the hippocampal iEEG and the scalp EEG at electrode site Pz specifically in the alpha

band and during the last 2 s of the maintenance period (−2 to 0 s, only trials with set size 8). (E) During this period, the PLV between the hippocampus and Pz was

higher for trials with high workloads (set size 4 versus set size 8) in alpha (9.0 to 12.0 Hz, black bar), and (F) the alpha PLV was maximal to occipitoparietal scalp

electrodes. (G) Theta-alpha power (7.5 to 10.0 Hz) in the left hippocampal iEEG increased with workload during maintenance. (H) During maintenance, the hippocampal

iEEG power for set size 8 (red) exceeded that for other set sizes in the 7.5- to 10.0-Hz band (normalized to fixation, corrected for multiple comparisons). (I) The average

firing rate of maintenance neurons in this subject was higher for a high workload during encoding and maintenance (n = 5 hippocampal neurons with more than 100 spikes

during both encoding and maintenance). (J) Spike-field coherence between the LFP and the neurons from (I) appears in the alpha frequency range during maintenance (thin

line, individual neurons; thick cyan line, average across neurons) but not during encoding (thick gray line, average across neurons). (B, C, E, and G to I) Black bar: Frequency

range of increase with workload (set size 8 versus set size 4); magenta bar: frequency range of significant PLV; golden bar: frequency range of gating (maintenance versus

encoding). P < 0.05, cluster-based nonparametric permutation test.
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crucial question, we examined the interregional synchronization
with the phase-locking value (PLV) as a measure of functional
connectivity between hippocampal iEEG and scalp EEG. The WM task
enhanced the hippocampal-cortical PLV specifically in the 8–10 Hz
alpha range and during the maintenance period (Fig. 5D and fig. S4).
The PLV increased with workload (Fig. 5E) and was highest at oc-
cipitoparietal electrode sites (Fig. 5F). The hippocampus thus ap-
pears to be a node in the brain network activated during the WM
task in this subject.

Cortico-hippocampal low-frequency coupling in the group
of subjects
We then extended the PLV analysis to all subjects. We included the
electrode contacts that targeted the hippocampus and all scalp electro-
des. For the maintenance period, we calculated the PLV between the

scalp EEG and the iEEG and then identified the electrode pair with
the largest significant PLV for each subject. All subjects showed a sig-
nificant PLV peak for at least one pair of signals recorded from a scalp
electrode and a hippocampal channel (table S1). The frequency band
of the maximal significant PLV indicated individual differences; we
used the frequency bins of significant PLV to define an individual
frequency band for each subject (permutation test, P < 0.05), which
had its lower bound in the theta-alpha band across subjects and
extended up to 17.5 Hz (median band limits, 6.0 to 11.5 Hz; Fig. 6
and table S1). In the majority of the subjects, there were no differences
in the iEEG or EEG power in the individual frequency band during
maintenance, which suggests that the differences in PLV were primar-
ily a result of the differences in phase consistency.

Was the workload dependence of PLV (Fig. 5E) present across the
group of subjects? Duringmaintenance, the PLVwas increased for high

Fig. 6. Maintenance-induced hippocampal-cortical PLV. (A to H) PLV spectra for the electrode pair of maximal PLV for subjects 2 to 9; for subject 1, refer to Fig. 5E [set

sizes: 4 (blue), 6 (green), and 8 (red)]. High PLV between hippocampus iEEG and scalp EEG appeared for set size 8 in all subjects during the last 2 s of the maintenance period

(magenta bar: frequency range of significant PLV with P < 0.05, randomization test against a null distribution with scrambled trials). PLV was higher for high-workload trials (set

size 8) than for low-workload trials (set size 4) in eight of nine subjects (black bar: frequency range of elevated PLV with P < 0.05, randomization test against a null distribution

with scrambled labels). The PLV was higher during the last 2 s of the maintenance period than during encoding (golden bar: frequency range of elevated PLV with P < 0.05,

randomization test against a null distribution with scrambled labels). (I) Maximal PLV for each subject during retention plotted against the location of the electrode site along

the anterior-posterior hippocampal axis. Electrodes in left (right) hippocampus are marked by circles (squares). Marker face colors denote subjects. The linear fit shows a

gradual increase in the PLV toward the posterior end of the hippocampal axis (34 electrode pairs; R2 = 0.118, P = 0.0467, permutation t test).
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workload in eight of nine subjects in the individual frequency band (set
size 4 versus set size 8; permutation test, P = 0.05; range, 5.5 to 16.5 Hz;
median band limits, 7.8 to 10Hz; Fig. 6 and table S1). In the evolution of
the PLV over time (as illustrated for subject 1 in Fig. 5D), the PLV dur-
ing maintenance exceeded the PLV during encoding in eight of nine
subjects (Fig. 6 and table S1). Thus, the functional connectivity between
the hippocampus and cortex in the theta-alpha frequency range
increased specifically during maintenance and with the cognitive de-
mand of the task.

To look for evenmore localized contributions of subregions within
both hippocampi, we selected the scalp electrode from the pairs with
the maximal PLV and plotted the maximal PLV in the individual fre-
quency band for all hippocampal contacts (Fig. 6I). There was no ev-
idence that the PLV differed between the left and right hippocampus.
For the subject group, there was a gradual increase in the PLV from the
anterior end to the posterior end of the hippocampal axis during
maintenance (R2 = 0.118, P = 0.0467) and the PLV to posterior sites
(y < −20mm) was higher than to anterior sites (permutation t test, t =
2.09, P = 0.0405). This posterior preference might be associated with
the functional organization proposed for the hippocampal longitudi-
nal axis (26).

Recordings in the epileptogenic zone
In our analysis, we also included electrodes in brain regions that were
ultimately resected. Among biomarkers that are thought to indicate
the epileptogenic zone, we analyzed high-frequency oscillations (HFOs)
in all patients (27). The rates of clinically relevant HFOs were not
affected by the performance of the task. This points to a clear dissoci-
ation between the ripples observed during cognitive tasks in rodents and
the clinically relevant HFOs that are used to predict seizure outcome in
the individual patient (27).

When comparing hippocampal channels within and outside the
seizure onset zone (SOZ) (table S1), the increase in the PLV was not
significantly different between the non-SOZ electrodes and SOZ elec-
trodes. Although epilepsy may have reduced functional connectivity
to SOZ channels (28), we observed task-dependent connectivity, sug-
gesting residual function in the epileptogenic hippocampus.

Spike-field coherence
Last, we tested whether the action potentials of maintenance neurons
were temporally aligned with the LFP. For this analysis, we included
all maintenance neurons that had at least 100 spikes during both
maintenance and encoding. We found significant spike-field co-
herence to the LFP but not to the iEEG or the scalp EEG. For all fre-
quency bins, the percentage of neurons with spike-field coherence was
higher during maintenance than during encoding (fig. S6). This
finding suggests that during maintenance, the functional coupling in
the WM network was enhanced.

DISCUSSION

We recorded scalp EEG, temporo-medial iEEG, and single-unit activity
fromnine epilepsy patients as they participated in aWMtask.Ourmain
findings refer to neural firing in the MTL and coupling between scalp
EEG and iEEG. The trial-by-trial variability in neural firing in the hip-
pocampus (i) differentiated between success and error trials already
during the encoding period and (ii) predicted workload during mainte-
nance, while (iii) firing in the entorhinal cortex, hippocampus, and
amygdala predicted the behavioral response during the retrieval period.

In addition, workload enhanced the coupling between EEG and hippo-
campal iEEG, particularly (iv) during WM maintenance and (v) in
theta-alpha frequencies, and (vi) coupling increased with the size of
the letter set to be memorized. We interpret this activity as reflecting
enhanced functional connectivity between the cortex and hippocampus
during themaintenance of information aboutWM.We thereby showed
the interaction between the hippocampus and previously identified
frontoparietal sites engaged in WM, which was only feasible using the
combination of modalities used here.

Neuronal firing patterns during the trial
Within theMTL, we identified different roles for neuronal firing in the
hippocampus, entorhinal cortex, and amygdala during the different
task periods.
Encoding
First, during encoding, hippocampal population firing predicted
whether subjects later responded correctly or incorrectly (Fig. 4D).
Several studies (3, 4) have identified individual neurons that represent
a stimulus with a specific concept (e.g., a familiar item on a picture). In
our study, we could not identify concept neurons. The stimulus
material used in our task included letters, which are highly familiar
but represent a far more abstract concept than a picture and convey
minimal emotional content. This aspectmight explainwhy the encod-
ing of a set of letters is not assigned to neurons that form attractors for
the individual items in memory (3). Rather, hippocampal neurons
here seem to participate in generic processes of WM, possibly by es-
tablishing a contextual index in the network with distributed cortical
sites involved in letter processing (2).
Maintenance
Our main question was whether neuronal activity during mainte-
nance predicts workload. We found maintenance neurons that
fired in the absence of stimulation (Fig. 2). The maintenance neu-
rons in hippocampus even predicted the number of items held in
memory in each trial (Fig. 4E). This is remarkable because neurons
that code for the numerosity of memory content were known only in
frontal cortex (3). We now found workload-dependent neurons also in
the MTL.

Our finding of workload dependence seems at variance with a pre-
vious finding that hippocampal neurons were not predictive of the
number of items in memory (3). The different types of stimuli may
explain this difference between the two tasks. While the maintenance
of concepts carried by visual representations in the hippocampus has
been nicely demonstrated (3, 4), there is also evidence that the hippo-
campus is capable of ordering sequences of a number of simple items
(29). Simple items like letters may be retained using rapid sequence
coding (30) and, after audio-verbal transformation, rehearsal in the
phonological loop (1, 7). This is less likely to be the case for complex
pictures that evoke elaborate semantic representations and of which
fewer items can be maintained. The results of these studies point to
a distinction between simple load-dependent and complex concept-
dependent maintenance in WM. Recent studies suggest that the longi-
tudinal axis of the hippocampus reflects this distinction where anterior
parts might support processing of items with lower spatial resolution
(26). Our data thus provide the first direct evidence that hippocampal
firing predicts workload, which matches the trial difficulty as derived
from the subjects’ performance (Fig. 1, B and C).

In previous research on WM maintenance, frontoparietal cortical
regions provided the most important nodes of the circuit (31). The
MTL was long considered unimportant for WM because patients with
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MTL resection had apparently normal short-term memory. This
finding implied that episodic memory, but not WM, is hippocampus
dependent (32). However, MTL activity during WM tasks has been
demonstrated in neuroimaging research (29) and neurophysiology re-
search (3, 15). We extend these findings by reporting a workload-
dependent increase in neural firing across our pool of neurons and
the subsequent decoding of subject behavior.
Retrieval
Last, during retrieval, the highest proportion of neurons reacting to
the probe letter was identified in the entorhinal cortex, whereas neu-
rons in all three of our MTL areas predicted the IN or OUT responses
of subjects (Fig. 4F). This finding supports a contribution of the MTL
in stimulus-response mapping. The differential firing (Fig. 4F) for
letters in memory, compared to letters that were not in memory, sug-
gests a sensitivity of memory content contingent on the task demands,
as all letters had been presented multiple times in the task, whereas
their relevance for memory varied from trial to trial.

Together, hippocampal neuron population firing was content spe-
cific for letter numerosity, showed persistent stimulus-selective delay
activity, and predicted a memory-dependent behavioral response
(right/wrong; in/out). The hippocampus is thus an active node of
the verbal WM network.
Functional connectivity by gated PLV
How does the hippocampus communicate within the WM network
(21)? Maintenance consistently elicited enhanced PLV in a specific
band in the theta-alpha frequency range in all but one subject (Fig.
6). Similarly, the spike-field coherence between neuronal action po-
tentials and LFP was higher during maintenance than during encod-
ing (Fig. 5J and fig. S6). The PLV had a well-defined onset in the last
2 s of the maintenance period and rapidly diminished following the
probe letter. The PLV increased with workload. To explain a similar
finding in iEEG power at selected cortical electrode sites, the term
“gating” has been introduced (8). In our task design, this would indi-
cate that neural communication between brain regions is channeled
through theta-alpha coupling within a limited time window between
the onset and offset of the maintenance phase during trials with a high
workload.

The PLV synchronization occurred strongly with occipitoparietal
scalp electrodes, a common locus for alpha waves. This finding is
consistent with scalp EEG findings in several healthy subjects re-
corded while performing the same task (5, 11) and in similar studies
(6). However, the hypothesis inspired by rodent research—that hip-
pocampal theta would drive human frontal midline theta in the scalp
EEG (5, 16)—is not conclusively supported by our results. Our find-
ing of significant PLV modulation in the theta-alpha band extends
the results of a recent study (22) that focused uniquely on the 3- to
8-Hz theta band for widespread synchronization. The enhanced hippo-
campal coupling between neuronal firing and LFP during maintenance
suggests that neuronal firing may be integrated into the WM network
via coupling to LFP and long-range connectivity in the alpha-theta
band. Thus, the load dependence and the temporal alignment with neu-
ral activity at the population level and the single-neuron level further
suggest that the PLVdirectly gates neural activitywithin the hippocampal
circuits that participate in WM.

Communication through coherence
Given that we have demonstrated the plausibility of our results, we
now suggest how they integrate into the current knowledge about
WM mechanisms. The integration of distributed components of

information across brain regions has been proposed to rely on long-
range recurrent connections that support oscillatory signals (20), for
example, during WM tasks (10, 12). Regarding the frequency of oscil-
lation, a relationship between the rhythm frequency and the spatial
extent of engaged brain networks has been proposed, with low fre-
quencies binding large-scale networks and high frequencies coordinat-
ing smaller networks (22). There are several examples in which neural
oscillations play a role in coordinating functional neuronal assemblies
thought to be responsible for computation and communication in
large-scale brain networks (10, 33). Thus, the interpretation that action
potentials generated in the hippocampus are embedded within the
WM network through coupling with LFP and long-range recurrent
connections seems consistent with the current view on neural com-
munication within and between brain regions.

Hippocampus in the WM network
In the task, the visual perception of the Roman characters was trans-
formed to an abstract representation with reduced complexity. This
verbal representation was maintained over the delay period in the
phonological loop, with the aim of producing an appropriate behav-
ioral response (1). The preferred coupling from hippocampus to fron-
tal and parietal scalp electrodes agrees with the cortical sites where
letter stimuli elicited persistent activity (2).

Neural activity patterns reflected differences between low and
high load. They leveled off at high load and did not incrementally
increase with set size. This finding may reflect the processing ca-
pacity limits (29), which are more closely related to the concept of
workload. It further suggests that the hippocampal activity pattern
decoded the quantity of letters that could actively be maintained in
memory.

The separation of WM trial periods was expected, as single-neuron
data also showed period-dependent differences in WM activity (3, 4)
during object maintenance and as fMRI studies showed that specific
parts of the hippocampus were involved in maintenance (34), encod-
ing, and recognition. It seems plausible that population neuron activity
during encoding and recognition shares processes with long-term
memory; however, maintenance neurons are specific for WM. Fur-
thermore, the time course of activity (Fig. 5) suggests that the WM
network’s function goes beyond memorization toward a task-related
preparation in expectance of the probe.

CONCLUSIONS

We provide direct evidence for hippocampal involvement in proces-
sing workload during the maintenance of information in WM. We
observed enhanced neural activity at high workload that appeared
as both increased persistent firing of hippocampal neurons and
increased functional interaction between hippocampus and cortex
through synchronized theta-alpha EEG oscillations.

METHODS

Task
We used a modified Sternberg task in which the encoding of memory
items, maintenance, and recall were temporally separated (Fig. 1A) (5, 6).
Each trial started with a fixation period ([−6, −5] s), followed by the stim-
ulus ([−5, −3] s). The stimulus consisted of a set of eight consonants at the
center of the screen. Themiddle four, six, or eight letters were thememory
items, which determined the set size for the trial (4, 6, or 8, respectively).

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Boran et al., Sci. Adv. 2019;5 : eaav3687 27 March 2019 10 of 14

 o
n
 J

u
ly

 2
2
, 2

0
1
9

h
ttp

://a
d
v
a
n
c
e
s
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m
 

http://advances.sciencemag.org/


The outer positions were filled with “X,”which was never a memory item.
After the stimulus, the letters disappeared from the screen, and the
maintenance interval started ([−3, 0] s). A fixation square was shown
throughout fixation, encoding, and maintenance. After mainte-
nance, a probe was presented. The subjects responded with a button
press to indicate whether the probe was part of the stimulus. The
subjects were instructed to respond as rapidly as possible without
making errors. The hand used for the response was counterbalanced
across subjects within the clinical constraints. After the response, the
probe was turned off, and the subjects received acoustic feedback re-
garding whether their response was correct or incorrect. Before in-
itiating the next trial, the subjects were encouraged to blink and
relax. The subjects performed 50 trials in one session, which lasted
approximately 10 min. Trials with different set sizes were presented
in a random order, with the single exception that a trial with an incor-
rect response was always followed by a trial with a set size of 4. The task
is freely available at www.neurobs.com/ex_files/expt_view?id=266.
During the recording period of several days, several subjects decided
to perform more than one session of the task up to a total of seven
sessions.

SUBJECTS

Nine subjects participated in the study (table S1). All subjects were im-
planted with depth electrodes in the MTL for the potential surgical
treatment of epilepsy. All subjects provided written informed consent
for the study, which was approved by the institutional ethics review
board (PB 2016-02055). All subjects had normal or corrected-to-
normal vision and were right handed as confirmed by neuropsy-
chological testing. The depth electrodes (1.3 mm diameter, 8 contacts
of 1.6mm length, and spacing between contact centers 5mm;Ad-Tech,
Racine, WI, www.adtechmedical.com) were stereotactically implanted
into the amygdala, hippocampus, and entorhinal cortex. Each macro-
electrode had nine microelectrodes that protruded approximately
4 mm from its tip. In addition, scalp EEG electrodes were placed at
the sites of the 10-20 systemwithminor adaptations to avoid surgical
scalp lesions.

Depth electrode localization
Electrodes were localized using postimplantation computed tomogra-
phy (CT) scans and postimplantation structural T1-weighted MRI
scans. For each subject, the CT scan was registered to the postimplanta-
tion scan as implemented in FieldTrip (35, 36). In the coregistered CT-
MR images, the electrode contacts were visually marked. The contact
positions were normalized to the MNI space and assigned to a brain
region using the Brainnetome Atlas (37). In addition, depth electrode
positions were verified by the neurosurgeon (L.S.) after merging pre-
operativeMRIwith postimplantationCT images of each individual sub-
ject in the plane along the electrode (iPlan Stereotaxy 3.0, Brainlab,
München, Germany). We grouped electrodes according to whether
they were recorded from the SOZ or another area. As an illustration,
we projected the three-dimensional positions of all electrode tips, i.e.,
the positions of themicroelectrodes, on a parasagittal plane (MNI space
x = −25.2 mm; Fig. 1D).

Recording setup
Intracranial data were acquired at sampling frequencies of 4 kHz for
the contacts of the macroelectrodes and 32 kHz for the microelec-
trodes via the ATLAS recording system (0.5- to 5000-Hz passband,

Neuralynx, Bozeman, MT, USA; www.neuralynx.com). iEEG was re-
corded (Neuralynx ATLAS; sampling rate, 4000 Hz; passband, 0.5 to
1000 Hz) against a common intracranial reference and subsequently
transformed to a bipolar montage. Only one bipolar signal from a pair
involving the deepest contacts of each macroelectrode was used for
further analysis. Scalp EEG was recorded (NicOne; sampling rate,
256 Hz; passband, 0.3 to 100 Hz). Scalp EEG was re-referenced to
the averaged mastoid channels.

Spike detection and single-unit identification
The Combinato package 17 (https://github.com/jniediek/combinato)
was used for spike sorting (38). Combinato follows the same
procedure of other freely available software packages: peak detection
in the high-pass (>500 Hz) signal, computation of wavelet coefficients
for detected peaks, and superparamagnetic clustering in the feature
space of wavelet coefficients. As an advantage over other clustering
procedures, Combinato provides better automated artifact rejection
and is more sensitive in the detection of clusters of small size (few
action potentials). We visually inspected each identified cluster based
on the shape and amplitude of the action potentials and the interspike
interval (ISI) distributions. We removed clusters that exhibited a low
firing rate (<0.1 Hz), noisy waveforms, or nonuniform amplitude or
shape of the action potentials in the recorded time interval. Moreover,
to avoid overclustering, we merged highly similar clusters identified on
the same microelectrode. Last, we computed several metrics of spike
sorting quality (fig. S2): The percentage of ISI below 3 ms was 1.58 ±
4.18%, and the ratio of the peak amplitude of the mean waveform to
the SD of the noise was 3.28 ± 1.56.

Statistics
For statistical significance analysis, we used nonparametric permu-
tation tests. To assess the significance of a value, we created a null
distribution estimated from n > 200 permutations on data with scram-
bled labels. The P value is limited by the number of permutations
as P = 1/(number of permutations + 1). Reported P values were based
on the empirically estimated null distribution. If no value of the
null distribution exceeded the observed value, we reported the exact
P value.

To compare two distributions, we used a permutation t test wherein
we randomly mixed values from the two distributions 2000 times to
create a distribution of t values and computed an empiricalP value from
this distribution using the EEGLAB toolbox (39). For comparisons be-
tween more than two groups, we used F statistics. When comparing
firing rates or power spectra, we used cluster-based nonparametric per-
mutation tests (36). For each test, matrix sizes, number of samples, and
features are provided in table S2.

dPCA of firing rates
To illustrate the firing rates of all neurons over the periods of a trial, we
used dPCA as a dimensionality reduction method (24). In contrast to
PCA, which explains the variance of components regardless of task
conditions, dPCA incorporates the task conditions, i.e., set size in our
task, when explaining the variance. We used nonoverlapping bins of
2 ms for neuronal firing and smoothed the rates in a window of 1000ms
with a Gaussian kernel. We z-scored the resulting rates based on the
mean of the firing rate during fixation. We computed time-dependent
and set size–dependent dPCA components and ordered them by ex-
plained variance. To test the significance of the explained variance,
we created a null distribution of explained variance by scrambling labels
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and computing dPCA 200 times. For each component, we compared
the explained variance to the null distribution.

For the component trajectories in the dPC space, we defined
multidimensional distance

dðpðtÞ; qðtÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
n

i¼1ðpiðtÞ � qiðtÞÞ
2

q

ð1Þ

and multidimensional speed

VðtÞ ¼
1

n
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
n

i¼1ðpiðtÞ � piðt � DtÞÞ2
q

Dt
ð2Þ

where p(t) and q(t) are neural activity vectors,Dt =20ms is the step size,
and n is the number of dimensions in the component space. To create a
distribution for multidimensional speed in different trial phases, we ran
dPCA analysis 200 times, subsampling (20%, with replacement) neural
firing rate trajectories for each run.

Neural decoding of firing rates
We pooled the firing rates of all neurons recorded across sessions and
subjects to formapseudopopulationof neurons. In this neural state space,
we trained a decoder to perform population decoding for the predic-
tion of correct/incorrect trials, set size of trials, and IN/OUT trials.
The input was the matrix of neural firing rates of each trial of all neu-
rons, binned in 1-ms windows, and smoothed in a 1500-ms window.
The neurons were grouped according to anatomical location (hippo-
campus, entorhinal cortex, and amygdala). As the classifier, the
decoder was trained and tested at 250-ms steps using a support
vector machine as implemented in the NDT toolbox (25). Indepen-
dently for each time point, classification was performed by assigning
firing rates from randomly selected trials for each neuron to training
and test splits in each of the 500 resampling runs. We first classified
the trials based on workload (set size 4 versus set sizes 6 and 8) using
10 cross-validation splits. We selected units from sessions with at least
five incorrect responses and then classified correct/incorrect trials using
five cross-validation splits. To classify the IN/OUT trials after the
probe, we used a narrowwindow size of 500ms and 10 cross-validation
splits.We tested significance by creating a null distribution of accuracies
with 500 runs of the decoder with scrambled labels and comparing the
true accuracy to the null distribution. This approach resulted in a
minimum value of P = 0.002 for the statistical significance. We cor-
rected the P value formultiple comparisons using Bonferroni’s method.
For the 12 tests performed (Fig. 4, D to F), the corrected value was P =
0.002 × 12 = 0.024 and remained statistically significant.

EEG preprocessing
Data were visually inspected, and trials that contained eye movements
or artifacts were removed using the toolbox EEGLAB (39).

Frequency spectra
To calculate spectra during maintenance (Fig. 5, B, C, E, F, and H), the
data were segmented into 2-s epochs and grouped according to set size.
We focused on the last 2 s of the maintenance period to avoid interfer-
ence from visual evoked responses and eye blink artifacts. We used the
multitaper method (±2 Hz smoothing in the frequency domain with
seven tapers) as implemented in FieldTrip (36) to reduce spectral leak-
age and control the frequency smoothing (36).

Phase-locking value
To probe the functional connectivity between the cortex and hip-
pocampus, we calculated the PLV between the scalp EEG and iEEG
channels (21, 36).

PLVi;jð f Þ ¼
1

N

�

�

�

�

∑
N

n¼1

Xið f Þ⋅ðXjð f ÞÞ*

jXið f Þj⋅jXjð f Þj

�

�

�

�

ð3Þ

where PLVi,j is the PLV between channels i and j, N is the number
of trials, X( f ) is the Fourier transform of x(t), and (∙)* represents the
complex conjugate.

Using the spectra of the 2-s epochs, phase differences were
calculated for each electrode pair (i, j) to quantify the interelectrode
low-frequency phase coupling. The phase difference between the
two signals indexes the coherence between each electrode pair and
is expressed as the PLV. The PLV ranges between 0 and 1, with values
approaching 1 if the two signals show a constant phase relationship
over all trials (21).

To test the statistical significance of the PLV, we first permuted
trials 200 times and computed the 95th percentile threshold within
trials of set size 8. We used this one-tailed test for increase in the
PLV at each frequency bin independently. Only the electrode pairs
with PLV above threshold were selected for further processing. From
the PLV spectra, we selected the electrode pair and frequency range of
the highest PLV for each subject (table S1). Further analysis focused
on these electrode pairs.

The workload-dependent increases in the PLV for the selected
electrode pairs were subsequently assessed by subtracting the PLV
for trials with set size 4 from the PLV for set size 8. The statistical
significance was then estimated using a permutation test, in which
a null distribution was created by randomly assigning trials (i.e., 2-s
epochs) into two set size conditions, computing the PLV differences
between conditions, and repeating this procedure 200 times. From
the frequency spectra of the PLV differences for each subject, we
considered only the frequency band of the PLV difference that was
above the 95th percentile to be statistically significant (table S1). The
edges of this individual frequency band (black bar in Fig. 5E) are
presented in table S1, and further analysis focused on this individual
frequency band.

Next, we determined the PLV difference between the two behavioral
conditions encoding and maintenance by subtracting the PLV during
encoding from the PLV during maintenance. Similar to the results
above, the statistical significancewas estimated using a permutation test,
in which a null distribution was created by randomly assigning 2-s
epochs into two behavioral conditions, computing the PLV differences
between conditions, and repeating this procedure 200 times. Only the
frequency points with PLV above the 95th percentile threshold were
considered statistically significant. Thus, we could relate the PLV to
the behavioral condition during task performance.

Time-frequency analysis
To calculate spectral power in the time-frequency domain (Fig. 5, A
and G), each trial was transformed to a time-frequency map. We used
multitapers with a window width of 10 cycles per frequency point,
smoothed with 0.2 × frequency, and used three tapers (36). We com-
puted power in the frequency range of 4 to 30 Hz with a time resolu-
tion of 0.1 s. The power during fixation ([−6.0, −5.0] s) served as a
baseline for the baseline correction (power − powerbaseline)/powerbaseline
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for each time-frequency point. Using the same parameters, we com-
puted the PLV in the time-frequency domain (Fig. 5D).

Spike-field coherence
Wenext quantified the coupling between the neuronal action potentials
and the surrounding field. We calculated the spike-field coherence be-
tween a neuronal spike and the LFP recorded from the same micro-
electrode. For this step, we used the pairwise phase consistency (PPC;
P̂2) (21, 36, 40). Compared to PLV, this measure is more balanced
toward differences in spike counts. To test the statistical significance
of the PPC, we created a null distribution by permuting trials for spikes
200 times and computed the 95th percentile threshold. Using this
threshold at each frequency bin, we computed the percentage of neu-
rons with significant PPC (fig. S6).
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