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Abstract

We present a novel persistent homological sparse network analysis framework for characterizing

white matter abnormalities in tensor-based morphometry (TBM) in magnetic resonance imaging

(MRI). Traditionally TBM is used in quantifying tissue volume change in each voxel in a massive

univariate fashion. However, this obvious approach cannot be used in testing, for instance, if the

change in one voxel is related to other voxels. To address this limitation of univariate-TBM, we

propose a new persistent homological approach to testing more complex relational hypotheses

across brain regions. The proposed methods are applied to characterize abnormal white matter in

maltreated children. The results are further validated using fractional anisotropy (FA) values in

diffusion tensor imaging (DTI).

1 Introduction

Traditionally tensor-based morphometry (TBM) in magnetic resonance imaging (MRI) has

been massively univariate in that response variables are fitted using a linear model at each

voxel producing massive number of test statistics (Figure 1). However, univariate

approaches are ill-suited for testing more complex hypotheses about multiple anatomical

regions. For example, the univariate-TBM cannot answer how the volume increase in one

voxel is related to other voxels. To address this type of more complex relational hypothesis

across different brain regions, we propose a new persistent homological approach.

The Jacobian determinant is the most often used volumetric mesurement in TBM. We

propose to correlate the Jacobian determinant across different voxels and quantify how the

volume change in one voxel is correlated to the volume changes in other voxels. However,

existing multivariate statistical methods exhibit serious defects in applying to the whole

brain regions due to the small-n large-p problem [2]. Specifically, the number of voxels p

are substantially larger than the number of subjects n so the often used maximum likelihood

estimation (MLE) of the covariance matrix shows the rank deficiency and it is no longer

positive definite. In turn, the estimated correlation matrix is not considered as a good

approximation to the true correlation matrix. The small-n large-p problem can be addressed
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by regularizing the ill-conditioned correlation or covariance matrices by sparse

regularization terms.

Sparse model  is usually parameterized by a tuning parameter λ that controls the sparsity

of the representation. Increasing the sparse parameter makes the representation more sparse.

Instead of performing statistical inference at one fixed λ that may not be optimal, we

propose to quantify how the topology of sparse solution changes over the increasing λ using

the persistent homology. Then it is possible to obtain additional characterization of a

population that cannot be obtained in the univariate-TBM.

The proposed framework is applied in characterizing abnormal white matter alterations in

children who experienced maltreatment while living in post-institutional (PI) settings before

being adopted by families in the US. The main contributions of the paper are (i) the

introduction of a novel persistent homological approach to characterizing white matter

abnormality and (ii) its application to MRI and DTI showing consistent results between the

modalities.

2 Motivation

Let Jn×p = (Jij) be the matrix of Jacobian determinant for subject i at voxel position j. The

subscripts denote the dimension of matrix. There are p voxels of interest and n subjects. The

Jacobian determinants of all subjects at the j-th voxel is denoted as xj = (J1j, ···, Jnj)′. The

Jacobian determinants of all voxels for the i-th subject is denoted as yi = (Ji1, ···, Jip)′. xj is

the j-th column and yi is the i-th row of the data matrix J. The covariance matrix of yi is

given by Cov (yi) = Σp×p = (σkl) and estimated using the sample covariance matrix S via

MLE. To remedy this small–n and large-p problem, the likelihood is regularized with L1-

penalty:

(1)

where || · ||1 is the sum of the absolute values of the elements. L is maximized over all

possible symmetric positive definite matrices. (1) is a convex problem and it is usually

solved using the graphical-lasso (GLASSO) algorithm [4,6].

Since the different choice of parameter λ will produce different solutions, we propose to use

the collection of Σ−1(λ) for every possible value of λ for the subsequent statistical inference.

This avoids the problem of identifying the optimal sparse parameter that may not be optimal

in practice. The question is then how to use the collection of Σ−1(λ) in a coherent

mathematical fashion.

Consider a sparse model (λ), which gets more sparse as λ increases. Then under some

condition, it is possible to have (λ1) ⊃ (λ2) ⊃ (λ3) ⊃ ··· for λ1 ≤ λ2 ≤ ···. Within the

persistent homological framework [5], (λ) is said to be persistent if it has this type of

nested subset structure. The collection of the nested subsets is called filtration.
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3 Persistent Structures for Sparse Network Models

Sparse Correlations

We assume the measurement vector xj at the j-th node is centered with zero mean and unit

variance. These condition is achieved by centering and normalizing data. Let Γ = (γjk) be the

correlation matrix, where γjk is the correlation between the nodes j and k. Sparse correlation

Γ is then estimated as

(2)

where β = (βjk). When λ = 0, the sparse correlation is simply given by the sample correlation,

i.e. . As λ increases, the correlation becomes more sparse. Using the sparse

solution (2), we will explicitly construct a persistent structure on Γ̂(λ) over changing λ.

Let A = (ajk) be the adjacency matrix defined using the sparse correlation:

Let (λ) be the graph induced from the adjacency matrix A. It can be algebraically shown

that the induced graph is persistent and from a filtration:

(3)

for λ1 ≤ λ2 ≤ λ3. The proof follows by simplifying the adjacency matrix A into a simpler but

equivalent adjacency matrix B = (bjk):

(4)

Then it is not difficult to see the graph induced from the adjacency matrix B should be

persistent. Hence, the filtration on (λ) can be constructed by simply thresholding the

sample correlation  for each λ without solving the optimization problem (2). Figure 2

shows filtrations obtained from sparse correlations between Jacobian determinants on

preselected 548 nodes in the two groups showing group difference. It is not necessary to

perform filtrations for infinitely many possible filtration values. For an n-node network, it

can be algebraically shown that at most n − 1 increments are sufficient to obtain a unique

filtration.
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Sparse Likelihood

The identification of a persistent homological structure out of the inverse covariance Σ̂−1(λ)

in (1) is similar. However, it is more involved than the sparse correlation case. Let A = (aij)

be the adjacency matrix

(5)

The adjacency matrix A induces a graph (λ) consisting of κ(λ) number of partitioned

subgraphs

where Vl and El are vertex and edge sets of the subgraph Gl respectively. Unlike the sparse

correlation case, we do not have full persistency on the induced graph . The partitioned

graphs can be proven to be partially nested in a sense that only the partitioned node sets are

persistent [4,6], i.e.

(6)

for λ1 ≤ λ2 ≤ λ3 and all l. Subsequently the collection of partitioned vertex set

 is also persistent. On the other hand, the edge sets El may not be

persistent. The identification of the vertex filtration can be fairly time consuming since it

requires solving the convex optimization problem (1) for multiple λ values. However, it can

be easily obtained by identifying a simpler adjacency matrix B that gives the identical vertex

sets Vl (Figure 3).

Let B(λ) = (bij) be another adjacency matrix given by

(7)

where ŝij is the sample covariance matrix. The adjacency matrix B similarly induces the

graph  with τ(λ) disjoint subgraphs:

with Hl = {Wl(λ), Fl(λ)}. Wl and Fl are vertex and edge sets of the subgraph Hl respectively.

Then trivially the node set Wl forms a filtration over the sparse parameter:
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(8)

It can be further shown that κ(λ) = τ(λ) and Vl(λ) = Wl(λ) for all λ > 0 [6]. Hence, the

filtration on the vertex set Vl(λ) is constructed by simply thresholding the sample covariance

ŝij(λ) for each λ without solving the time consuming optimization problem (2). Figure 3

shows the schematic of constructing the filtration on sparse likelihood by the covariance

thresholding.

4 Application to Maltreated Children Study

MRI Data and Univariate-TBM

T1-weighted MRI were collected using a 3T GE SIGNA scanner for 23 children who

experienced maltreatment while living in post-institutional (PI) settings before being

adopted by families in the US, and age-matched 31 normal control subjects. The average age

for PI is 11.26 ± 1.71 years while that of controls is 11.58 ± 1.61 years. A study specific

template was constructed using the diffeomorphic shape and intensity averaging technique

through Advanced Normalization Tools (ANTS) [1]. Image normalization of each individual

image to the template was done using symmetric normalization with cross-correlation as the

similarity metric. The 1mm deformation fields are then smoothed out with Guassian kernel

with bandwidth σ = 4mm.

The computed Jacobian maps were feed into univariate-GLM at each voxel for testing the

group effect while accounting for age and gender difference. Figure 1 shows the significant

group difference between PI and controls. Any region above the T-statistic value of 4.86 or

below −4.86 is considered significant at 0.05 (corrected). However, what the univariate-

TBM can not determine is the dependency of Jacobian determinants at two different

positions. It is possible that structural abnormality at one region of the brain might be related

to the other regions due to interregional dependency. For this type of more complex

hypothesis, we need the proposed persistent homological approach.

Inference on Barcodes

Since Jacobian determinants at neighboring voxels are highly correlated, we uniformly

subsampled p = 548 number of nodes along the white matter template mesh vertices in order

not to have spurious high correlation between two adjacent nodes (Figure 1). The proposed

method is very robust under the change of node sizes. For the node sizes between 548 and

1856, the choice of node sizes did not affect the subsequent analysis. Following the

proposed method, we constructed the filtrations on sparse correlations and inverse

covariance without solving the optimizations (1) and (2). The filtrations are quantified using

the barcode representation, which plots the change of Betti numbers over filtration values

[5] (Figure 4). The first Betti number β0(λ) counts the number of connected components of

the graph (λ) at the filtration value λ.

Given the barcode  for group i, we tested if the barcodes were different between the

groups, i.e.  for some λ ∈ [0, 1]. A Kolmogorov-Smirnov (KS) like test
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statistic  is used. Since each group produces one barcode, we

used the Jackknife resampling technique for inference. For a group with n subjects, one

subject is removed and the remaining n − 1 subjects are used in constructing the barcode.

This process is repeated for each subject to produce n barcodes (Figure 4). The Jackknife

resampling produces 23 and 31 barcodes respectively for PI and controls. In order for the

permutation test to converge for our data set, it requires tens of thousands permutations and

it is really time consuming. So we used a much simpler Jackknife resampling. Then the test

statistic T is constructed between 23 × 31 pairs of barcodes. Under the null, T is expected to

be zero. One-sample T-test on the collection of T is then subsequently performed to show

huge group discrimination for sparse correlations in Figure 4 (p-value < 0.001). The

barcodes for normal controls show much higher Betti numbers at the given threshold. This

suggests higher non-uniformity in Jacobian determinants across the brain that causes

increased disconnections in correlations. The inverse covariance was not able to

discriminate the groups. The MATLAB codes for constructing barcodes and statical

inference is given in http://brainimaging.waisman.wisc.edu/~chung/barcodes.

Validation Against DTI

For children who suffered early neglect and abuse, white matter microstructures are more

diffusely organized [3]. So we expect less white matter variability not only in the Jacobian

determinants but also in the fractional anisotropy (FA) values in DTI as well. The MRI data

in this study has the corresponding DTI. The DTI acquisition are done in the same 3T GE

SIGNA scanner and the acquisition parameters can be found in [3]. We applied the proposed

persistent homological method in obtaining the filtrations for sparse correlations and inverse

covariances in the same 548 nodes (Figure 1). The resulting filtration patterns also show

similar pattern of rapid increase in disconnected components (Figure 2 and 4) for sparse

correlations. The Jackknife-based one-sample T-test also shows significant group difference

for correlations (p-value < 0.001). This results are due to consistent abnormality observed in

both MRI and DTI modalities. PI exhibited stronger white matter homogeneity and less

spatial variability compared to normal controls in both MRI and DTI measurements. The

inverse covariance was not able to discriminate the groups.

5 Conclusions and Discussions

Using the persistent homological framework, we have shown that PI group shows less

anatomic variation in MRI compared to the normal controls. This result is consistent with

DTI, which shows similar patterns. The reason we did not detect the group difference in the

inverse covariances might be that, as shown in Figure 4, the changes in the first Betti

number are occurring in a really narrow window and losing the discrimination power. On

the other hand the sparse correlations exhibit more slow changes in the Betti number over

the wide window making it easier to discriminate the groups. The proposed method is

general enough to run on any type of volumetric imaging data that is spatially normalized.
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Fig. 1.
(a) T-statistic map of group differences (PI-controls) on Jacobian determinants. (b) 548

uniformly sampled nodes in MRI where the persistent homology is applied. The nodes are

sparsely sampled in the template to guarantee there is no spurious high correlation due to

proximity between nodes. (c) The same nodes are taken in DTI to check the consistency

against the MRI results.
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Fig. 2.
Networks (λ) obtained by thresholding sparse correlations for the Jacobian determinant

from MRI and fractional anisotropy from DTI at different λ values. The collection of the

thresholded graphs forms a filtration. PI shows more dense network at a given λ value. Since

PI is more homogenous, in the white matter region, there are more dense high correlations

between nodes. The filtration is visualized using the equivalent dendrogram [5], which also

shows more dense linkages for PI at high correlations.
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Fig. 3.
Schematic of graph filtrations obtained by sparse-likelihood (5) and sample covariance

thresholding (7). The vertex set of (λ1) = (λ1) consists of gray nodes. For the next

filtration value λ2, (λ1) ≠ (λ1). However, the partitioned vertex sets (yellow and red) of 

(λ1) and (λ1) match.
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Fig. 4.
The barcodes on the sparse inverse covariance (top) and correlation (bottom) for Jacobian

determinant (left) and FA (right). Unlike the inverse sparse covariance, the sparse

correlation shows huge group separation between normal controls and post-institutionalized

(PI) children (p-value < 0.001).
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