
1

Persistent Homology for Path Planning in

Uncertain Environments
Subhrajit Bhattacharya∗ Robert Ghrist† Vijay Kumar‡

Abstract

We address the fundamental problem of goal-directed path plan-

ning in an uncertain environment represented as a probability (of

occupancy) map. Most methods generally use a threshold to reduce

the gray scale map to a binary map before applying off-the-shelf

techniques to finding the best path. This raises the somewhat ill-

posed question, what is the right (optimal) value to threshold the

map? We instead suggest a persistent homology approach to the

problem – a topological approach in which we seek the homology

class of trajectories that is most persistent for the given probability

map. In other words, we want the class of trajectories that is free

of obstacles over the largest range of threshold values. In order to

make this problem tractable and practical, we use homology in Z2

coefficients (instead of the standard Z coefficients), and describe how

graph search-based algorithms can be used to find trajectories in

different homology classes. Our simulation results demonstrate the

efficiency and practical applicability of the algorithm proposed in the

paper.

I. INTRODUCTION

A. Related Work

Motion planning in uncertain environments is an important field

of research in robotics. Uncertainty naturally arises in unknown

environments, in the presence of process and/or observation noise,

and unknown dynamics of the environment. For mobile robots, the

most common representation of the environment is an occupancy

grid in which each cell is assigned a value of probability of oc-

cupancy [27], [26], [14]. Path planning is generally solved by first

designating all cells with a probability of occupancy below some

threshold to be free (and traversable), while others above the threshold

are designated as occupied [24], [4], [23]. Graph search algorithms

such as Dijkstra’s [11] and A* [17] can be used for finding shortest

paths in this graph representation of the environment. However, in

this approach, it is unclear how to select this threshold. Low values

of threshold result in suboptimal paths while higher values may result

in unsafe trajectories.

Alternatively, weights/costs can be assigned to the edges of the

graph according to the probability value at the location of the edge,

thus penalizing paths that tend to pass through regions with high

possibility of occupancy [28], [9]. However, these approaches lack

robustness because there are cases when the penalties for some edges

are not high enough to offset the incentive offered by a shorter path,

and the resulting plan may very well pass through regions with high

probability of occupancy.

We note that incremental search algorithms like D* [25] can be

used in conjunction with either of the above approaches when the

probability map can be updated using incoming sensor data. However

these algorithms do not address the fundamental question of how to

plan a path for a given probability map.

∗ Department of Mathematics, University of Pennsylvania.
subhrabh@math.upenn.edu

† Department of Mathematics and Department of Electrical and Systems
Engineering, University of Pennsylvania. ghrist@math.upenn.edu

‡ Department of Mechanical Engineering and Applied Mechanics, Univer-
sity of Pennsylvania. kumar@seas.upenn.edu

In this paper we consider the fundamental problem of finding a safe

trajectory between two points in an environment, given the probability

of occupancy/inaccessibility at each point in the environment. We

take a topological approach to solving this problem using concepts

from the field of persistent homology [12], [29], [15], and find the

homology class of trajectories that is most persistent for a given

probability map. We formulate this problem using coefficients in Z2

(integer coefficients modulo 2) and reduce it to a discrete graph search

which can be solved efficiently.

B. Problem Description

We are given a workspace, W ⊆ R
n, and a (continuous) prob-

ability distribution on it P : W → [0, 1]. This is the probability

that a point in W is inaccessible (otherwise known as the occupancy

probability). In robotics applications, such a probability map may

be obtained from sensor readings and filtering algorithms [27], [14].

Define the ǫ-thresholded space1 U ǫ = {q ∈ W | P (q) ≤ ǫ} for

ǫ ∈ [0, 1]. This is the subset of W where the probability of occupancy

is less than or equal to ǫ – the free space assuming that we threshold

the probability map at ǫ. For convenience we also define the obstacle

set, Oǫ := W −U ǫ. Typically [24], [4], [23] the problem of planning

trajectories for a robot in W , given the probability distribution P ,

boils down to finding an “optimal” ǫ∗ that, on one hand should

minimize net probability (or some indicator of probability) that a

trajectory planned in U ǫ∗ will be invalid (or will require substantial

change/re-planning during the course of execution), while on the

other hand should take into account the objective of minimizing the

cost or length of the trajectory.

In this paper we suggest that the correct solution approach to this

problem is not to find an optimal value for ǫ. Instead, using concepts

from persistent homology [12], [29], [15], we suggest processing all

ǫ-values and extracting the most persistent class of trajectories.

We assume some background in algebraic topology and differential

topology. Although we give a quick overview of some of the required

concepts in the next section, for more details the reader may refer to

the standard texts, [18] and [5], on these respective subjects.

II. PRELIMINARIES

In this section we review some of the standard concepts from

topology and algebraic topology [18], [22] and its basic application

in search-based path planning [2], [3].

A. Homology

We specialize to (persistent) homology of 1-dimensional curves,

which constitute trajectories. This will be indicated as a subscript 1
in various notations for groups that will follow. The homology of a

space X , H1(X), consists of equivalence classes of cycles (“closed

loops”) [18]. The definition is as follows: In a topological space

X (in this paper, X will be the free configuration space, U ǫ), one

considers the set Z1(X) of all cycles (closed oriented loops), given

a group structure by means of a formal sum with Z-coefficients.

The boundary group, B1(X), is the subgroup of Z1(X) generated

1Throughout this paper the threshold parameter in superscripts of various
symbols will indicate an indexing, and not exponential or power.

2

(a) Probability map, P : W →
[0, 1]. White: P = 0.0, black: P =
1.0.

(b) Surface M =
{[x, y, z] | [x, y] ∈ W, z =
P ([x, y])} ⊂ R3.

(c) U0.2 = {q ∈ W | P (q) ≤
0.2} (in white).

(d) U0.9 = {q ∈ W | P (q) ≤
0.9} (in white).

Fig. 1: Probability map, P , and the change in topology of Uǫ as ǫ is changed.

as boundary cycles of a 2-d oriented region (formally, a 2-chain) in

X . The (first) homology group of X is then defined as the quotient

group H1(X) = Z1(X)/B1(X). What this means is that two cycles,

γ1 and γ2, are equivalent (written [γ1] = [γ2]) if their difference

is the boundary of an oriented 2-d region; furthermore, any cycle

which bounds a 2-d region represents the zero class 0 ∈ H1(X) (see

Figure 2(a)). For comprehensive definitions, see [18].

This definition can be naturally extended for defining homology

classes of trajectories connecting fixed start and goal points [2], [3].

We say trajectories τ and τ ′ connecting fixed start (qs) and goal

(qg) points, belong to the same homology class if (τ ⊔ −τ ′) is a

boundary (i.e. [τ ⊔−τ ′] = 0 ∈ H1(X)). Thus, in Figure 2(b), since

(τ1⊔−τ3)∈Z1(X) is not a boundary, τ1 and τ3 are not homologous.

But since (τ1 ⊔ −τ2) ∈ B1(X) ⊆ Z1(X), we say τ1 and τ2 are

homologous. There is however a caveat in the later definition: The

set of homology classes of paths/trajectories (connecting fixed end

points) defined this way does not have a preferred 0 (trivial) element,

and thus does not form a group (unlike the set of homology classes

of cycles). It however forms a set on which H1(X) acts freely and

transitively.

Note 1 (Some remarks on the distinction between ho-

motopy an homology [18]). The “first homotopy group”

(denoted π1(X)) as well as the “first homology groups”

(denoted H1(X)) give classifications of closed loops in an

arbitrary topological space, X , and both have higher di-

mensional generalizations (πn(X) and Hn(X)). However,

the main distinction between homotopy and homology are

that homotopy groups, in general, are non-abelian (non-

commutative) groups. Homotopy yields a classification with

a finer resolution. A homology group, on the other hand,

is always an abelian (commutative) group and yields a

coarser classification of the closed loops. As a result of this,

homology groups can be given a vector space-like structure

O1

O2

O3

γ1

A

γ2

(a) γ1 is the boundary of A. Thus
γ1 ∈ B1(X) ⊂ Z1(X), and its
homology class, [γ1] = 0 ∈ H1(X).
But γ2 cannot be expressed as a
boundary. So, γ2 ∈ Z1(X), γ2 /∈
B1(X), and hence [γ2] 6= 0 (non-
trivial homology class).

qs

qg

O1

O2

O3

τ1

τ2

τ3

-τ2

A

(b) (τ1⊔−τ2) is the boundary of A.
Thus, [τ1⊔−τ2] = 0 ∈ H1(X). We
say τ1 is homologous to τ2 or that
they belong to the same homology
class. But (τ1 ⊔ −τ3) /∈ B1(X).
Thus τ3 belongs to a different homol-
ogy class.

Fig. 2: Homology classes of cycles and trajectories.

(R-modules, to be more precise) unlike homotopy groups,

and lend themselves to computation using standard tools in

linear algebra. Unlike homotopy, there are multiple closely

related homology theories (e.g. simplicial homology, singu-

lar homology, De Rham cohomology), all or any of which

can be used for efficient computations of homology.

Homotopy and homology are used to classify trajectories

connecting fixed points in analogous manner [2] – both

form spaces on which respectively the homotopy and

homology groups act freely and transitively. However, as

mentioned, in many contexts homotopy is significantly

more difficult computationally, and being non-abelian does

not give some of the nice properties that homology gives.

It’s the very reason why “persistent homology”, and not

“persistent homoopy” has been vastly studied and could be

developed as a fundamental tool in computational topology

[12], [29], [15], [8].

The fact that the distinction between homotopy and ho-

mology is mainly in the resolution of the classification can

be seen from the Hurewicz theorem – abelianization of the

first homotopy group gives us the first homology group (i.e.

H1(X) ≅ π1(X)/[π1(X), π1(X)], where [π1(X), π1(X)]
is the commutator subgroup of π1(X)). As a consequence,

all closed loops that belong to the same homotopy class also

belongs to the same homology class, but the converse is not

necessarily true. Furthermore, the Z2 coefficients which we

will use in this paper, is typically used in the context of

homology, and not homotopy. [2] provides an intuitive and

simple explanation with examples of this distinction, and

shows how the concept of homology can be leveraged for

path planning. An interested reader may refer to [18] for a

more formal/algebraic description.

Z2 coefficients: The standard definition of homology groups is with

coefficients in Z: H1(X) is just a shorthand for H1(X;Z), which

explicitly mentions the coefficient group Z. Such coefficients detect

winding about an obstacle with orientation (cf. “winding numbers”).

For example, in Figure 3, since there is a single obstacle in the

plane, the homology group H1(X) is isomorphic to Z. The homology

classes of the cycles shown are then [γ1] = 1 ∈ H1(X), [γ2] =
2 ∈ H1(X), [γ3] = 3 ∈ H1(X) — the number in each case

being the corresponding winding number. Other coefficients are

possible and are introduced at the chain level [18]. For example,

with coefficients in Z2 = Z/2Z, the homology group, denoted

H1(X;Z2), in Figure 3 is isomorphic to Z2, with a loss of resolution:

[γ1]Z2
= [γ3]Z2

= 1 ∈ H(X;Z2) and [γ2]Z2
= 0 ∈ H(X;Z2)

(since the quotient map Z → Z2 records even/odd parity). In this

case, the homology class of a cycle that winds around the obstacle

twice is in the trivial class, while a cycle that winds around thrice

will be in the same class as winding once, and no distinction is

made between clockwise and counterclockwise windings. We exploit

3

this coefficient change in the context of robot path planning in

Section IV-A.

B. A Homology Invariant

As described in [2], [3] homology invariants of cycles (with coeffi-

cients in R) in a topological space X can be constructed as integrals

of closed differential 1-forms that generate the de Rham cohomology

group, H1
dR(X). In particular, in X = (R2−O) (where O is the set

of obstacles consisting of n connected components), we can choose

the vector of differential 1-forms, ω = [dθ1, dθ2, · · · , dθn]
T

where, dθj :=
(x−xj) dy−(y−yj) dx

(x−xj)2+(y−yj)2
is the angle subtended by a

differential element at (x, y) from the representative point (xj , yj)
— one for each connected component of the obstacles (Figure 4(a)).

(Note that one can write dθj = Im(dz
z−zj

) where z = x+ iy, zj =

xj+iyj are complex representation of the coordinates – a formulation

presented in [2].)

We thus define the H-signature of a path τ (which may or may

not be a cycle) as H(τ) :=
∫

τ
ω. Then, if γ is a cycle in Z1(X), the

ith element of H(γ) gives the winding number of γ about the ith

obstacle. This computes a complete invariant for homology classes

of cycles: H(γ1) = H(γ2) ⇐⇒ [γ1] = [γ2] ∈ H1(X), with

H(γ) = 0 iff [γ] = 0 ∈ H1(X;R).

Because we fix a coefficients of 1 on the paths in constructing

chains and cycles, and the way we construct ω (multiplying the vector

of dθi by 1
2π

), H(γ) takes values in Z
n for every cycle γ (i.e. the

elements of H(γ) have integer values for cycles γ, each computing

the winding number about a connected component of an obstacle).

Thus, in Figure 4(a), H(γ) = [0, 1]T and H(γ′) = [0, 2]T .

C. H-augmented Graph

The idea behind construction of a graph, G, for use in search

algorithms such as Dijkstra’s or A* [10], [20], for finding optimal

trajectories for robots, is to sample points from the free space, X ,

call them vertices, and establish edges between neighboring vertices

(Figure 4(b)). Paths in the graph are then curves in X on which

the differential 1-form, ω, can be integrated, and H-signature can be

qs

γ1
γ2

O

γ3

Fig. 3: A space with a single obstacle and cycles that loop around it multiple
times. [γ1] 6= [γ3] 6= [γ2] ∈ H1(X) (homology group with coefficients in
Z), but [γ1]Z2

= [γ3]Z2
6= [γ2]Z2

∈ H1(X;Z2).

((xx22, , yy22))dx
dy

dθ1

dθ2

((xx11, , yy11))

γ
γ'

(a) Homology invariants can
be computed by integrating
1
2π

[dθ1, dθ2, · · · , dθn]T over cycles.

(b) Graph formed by uniform
discretization of configuration
space and connecting each ver-
tex with its neighbors. Dark
gray indicate obstacles.

Fig. 4

γ1

γ2

γ1

γ2
β1

ε

γ1 γ2

γ3
(a) (b)

γ3

Fig. 5: Change in topology of the union of ǫ-balls (yellow disks) centered
around data points (dark dots) as ǫ is increased. (a) and (b) show the union of
balls with different values of ǫ. The barcode diagram for H1 is shown below.

computed. By convention we assume a coefficient of 1 on every edge

(1-simplices) on any path in the graph.

The H-augmented graph [2], [3] essentially augments the infor-

mation of the H-signature of paths leading up to the vertices from a

fixed base-point (the start point, qs, for all practical purposes), so that

the homology classes of paths can be ‘tracked’ during the execution

of the search algorithm. More precisely, theH-augmented graph, GH,

has its vertex set as points sampled from a covering space [18] of X
(we will call this covering space XH), for which the covering map

is p : (q, h) 7→ q for every point q ∈ X and h the H-signature of

some curve in X joining qs to q (see Figure 7(a-b)). Note that for a

given q, the set of H-signatures of paths connecting qs to q (values

that h can assume) is countable (one for each homology class), and

that p indeed is a covering map.

Since search algorithms like A* and Dijkstras can find only unique

paths connecting two vertices in a graph, paths in different homology

classes connecting two given vertices, qs and qg cannot be found

by running the algorithms in G. However these paths are lifted

to different paths with different end points in GH (Figure 7(b)).

Thus the algorithm needs to find paths to different goal vertices,

(qg, h), (qg, h + n1), (qg, h + n2), · · · (where ni ∈ Z
n), each of

which project to paths in G connecting qs and qg , but in different

homology classes (say τ1 and τ2 in Figure 7(b)).

III. PERSISTENT HOMOLOGY

Persistent homology was pioneered for the topological analysis of

point-cloud data [8], [12]. Given a collection of data points in a high

dimensional space, one wants to infer an underlying subspace on (or

near) which the data points lie, as well as its qualitative features.

One can imagine growing balls of radius ǫ around each data point,

and tracking the unions of all those balls as a 1-parameter family

of spaces. Of course, the choice of the radius ǫ will dictate the

topology (cf., Figure 5(a)). Persistent homology considers the rank

of the homology (H1 in our setting) as a function of ǫ. This rank is

called the Betti number β1.

We use a similar idea for computing persistent features of the free

space for robot path planning, when we are given an occupancy prob-

ability map P : W → [0, 1]. As we vary the probability threshold,

ǫ, in computing U ǫ, homology classes will appear and disappear.

Consider different homology classes in H1(U
α) (represented by

cycles, for example, γα
1 , γ

α
2 , as shown in Figure 6(a)). For a β > α we

have the inclusion map iβα : Uα →֒ Uβ . Thus upon passing through

the inclusion map, the cycles in Uα (γα
1 and γα

2) are valid cycles in

Uβ (dashed curves in Figure 6(b)). However, as can be observed in

the example of Figure 6, γα
1 , after passing through the inclusion map,

becomes trivial (a boundary) in Uβ . Persistent homology groups are

defined to capture this information:

Definition 1 (Persistent Homology [13], [29]). The (β−α)-persistent

first homology group of Uα is defined to be the set of homology

4

γ

γ

 α
1

 α
2

(a) γα
1 and γα

2 are two non-trivial
cycles in Uα

i (γ)
i (γ)

γ

γ
 β

α
 α
1 α

2

 β

α

 β
2

 β
1

(b) In Uβ (⊃ Uα) the cycle
γα
1 becomes trivial, whereas γα

2
‘splits’ such that its homology class,

[iβα(γ
α
2)] = [γβ

1] + [γβ
2] ∈ H1(Uβ).

Fig. 6: Illustration of how homology classes in Uα can either become trivial
or ‘split’ upon inclusion in Uβ for α < β.

classes in H1(U
α) that survive or persist into Uβ . Formally it is

defined as Hα,β−α
1 = Z1(U

α)/
(

B1(U
β) ∩ Z1(U

α)
)

— that is, we

consider all cycles in Uα and then quotient out the ones that are

trivial (i.e., boundaries) in Uβ (after passing through inclusion map).

Thus, in the example of Figure 6, [γα
1], [γ

α
2] ∈ H1(U

α) are non-

zero homology classes in Uα. But in the (β−α)-persistent homology,

[γα
1]

α,β−α = 0 ∈ Hα,β−α
1 and [γα

2]
α,β−α ∈ Hα,β−α

1 is non-zero —

implying that the cycle γα
1 does not ‘survive’ into Uβ , but γα

2 does.

Persistent homology is typically visualized in form of a diagram

known as barcode, representing changes in Betti number, β1 (bottom

of Figure 5) – each horizontal bar represents a homology generator.

The longest surviving (over the longest range of ǫ) generators indicate

the most persistent topological feature of the space underlying the

dataset. See [8], [12] for details. In its usual presentation, at a

particular value of ǫ (say α), each bar above ǫ corresponds to a

generator of H1(U
α). In our case, however, since we are interested

in finding the longest surviving homology classes of trajectories, each

bar will correspond to a homology class.

IV. THEORETICAL AND ALGORITHMIC TOOLS

A. H2-augmented Graph, GH2

As described earlier, the merit of using Z2 coefficients is that if a

cycle winds around an obstacle w number of times, then it is mapped

to the same homology class as a cycle that winds around the particular

obstacle (w mod 2) times (assuming winding numbers about other

obstacles are the same). This is useful in a search algorithm like A*

or Dijkstra’s when we want to avoid computation of trajectories that

“loop around” obstacles multiple times, since such trajectories are

highly suboptimal and mostly irrelevant in most robotics application

(an issue addressed in [2] only informally).

In order to systematically attain this in graph search we need

to alter the topology of the H-augmented graph to reflect the fact

that two trajectories (starting at qs) leading up to q, and whose

H-signatures are h + 2u and h + 2w (for some u,w ∈ Z
n)

have the same goal vertex in the augmented graph (see Figure 7(b-

c)). Thus the modification we need to make to the H-augmented

graph is that we set (q, h) ≡ (q, h′) (i.e. identify the vertices as

same) whenever h − h′ is a vector of even integers (i.e., we glue

points in the covering space XH which are at “alternate levels”,

and thus obtain a new covering space XH2). We call this the H2-

augmented graph, and the underlying covering space XH2 (the ‘2’

here indicate that the lifts of paths starting at qs have end points

that are unique for every Z2-coefficient homology class of the path).

The H-signatures, mod 2, are called the H2-signatures, and for a

trajectory τ it is basically equal toH2(τ) = (H(τ) mod 2). (Note: x
mod 2 = x− 2⌊x

2
⌋, ∀x ∈ R, where ⌊·⌋ is the floor). The following

proposition formally justifies the claim that this construction correctly

computes the Z2-coefficient homology invariants:

Proposition 1. Suppose γ1 and γ2 are closed loops with homology

classes [γ1], [γ2] ∈ H1(X;Z). (These classes, as described in

Section II-B, can be explicitly represented as the H-signatures of

γ1 and γ2 respectively.) Suppose [γ1]Z2
, [γ2]Z2

∈ H1(X;Z2) are

the Z2-coefficient homology classes of the same closed loops. Then

[γ1]Z2
= [γ2]Z2

if and only if ([γ1]− [γ2]) mod 2 = 0 (equivalently,

(H(γ1) − H(γ2)) mod 2 = 0, which, using the new notation, is

equivalent to H2(γ1) = H2(γ2)).

Proof. First recall that H1(X;Z) ≅ Z
n is a Z-module and [γ1] and

[γ2] are elements in it. Thus, by definition, [γ1] mod 2, [γ2] mod 2,

and ([γ1]−[γ2]) mod 2 are elements of H1(X;Z)/(2Z H1(X;Z))
(generally speaking, if M is a R-module, and I ⊆ R is an ideal,

then IM = {αm | m ∈M,α ∈ I} is a sub-module, and M/IM =
{m+ IM | m ∈M} is the quotient module).

A fundamental theorem [19] gives us the following isomorphism:

H1(X;Z)/(2Z H1(X;Z)) ≅ H1(X;Z)⊗Z2 (generally, M/IM ≅

M⊗(R/I)). Furthermore, since the topological spaces under consid-

eration (subsets of R2) are torsion free, by the Universal Coefficient

Theorem [18] we have H1(X;Z)⊗Z2 ≅ H1(X;Z2). Thus we have

the isomorphism H1(X;Z)/(2Z H1(X;Z))
ρ
−→
≅

H1(X;Z2). It is

easy to check that this isomorphism can be explicitly expressed in

terms of cycles, γ, as ρ : ([γ] mod 2) 7→ [γ]Z2
. Thus it follows that

only 0 ∈ H1(X;Z)/(2Z H1(X;Z)) maps to 0 ∈ H1(X;Z2) under

the map ρ, thus proving our claim.

The explicit construction of H2-augmented graph from G, like that

of H-augmented graph [2], is described as follows: We assume that

we are given a set of points sampled from the original free space,

X , which constitute the vertex set, VG . A set of unordered pairs of

vertices that are ‘neighbors’ to each other constitute the edge set,

EG . This defines a discrete graph representation of the free space

X (Figure 4(b)), and we write it as G = (VG , EG). We furthermore

assume that the chosen base-point, qs, is in VG . From such a graph

we can describe a H2-augmented graph, GH2 = (VGH2
, EGH2

) as

follows:

1) General description: Vertices in VGH2
are pairs of the form (q, h),

where q ∈ VG and h ∈ ⊕n
i=1R/2Z (note that unlike the H-

augmented graph, h does not take value in R
n).

2) Base vertex: (qs,0) is a vertex in VGH2
.

3) Recursive construction: For a vertex v=(q, h)∈VGH2
and edge

[q, q′]∈EG , there is a vertex v′=
(

q′, (h +H([q, q′])) mod 2
)

∈
VGH2

and an edge [v, v′] ∈ EGH2
. [By ‘mod 2’ of a vector we

mean the element-wise modulo operation.]

The cost of edges in the H2-augmented graph are chosen to

be the same as their projected counterparts on to G. That is,

CGH2
([(q, h), (q′, h′)]) = CG([q, q

′]) (where CG : EG → R+ is

the cost function for graph G).

The consequence of constructing the H2-augmented graph are the

following:
• H2-augmented graph, unlike the H-augmented graph, is finite and

bounded if G is finite.

• The paths obtained by searching in the H2-augmented graph using

an optimal search algorithm like A* or Dijkstra’s will return only a

finite number of paths – one for each homology class (the optimal

one in the class) with coefficients in Z2.

• Optimal path connecting (qs,0) to (qg, h mod 2) in GH2, when

projected back to G, give optimal path in G restricted to homology

class corresponding to H2-signature (hmod 2).

U ǫ-specific notations: It is obvious that the function H, and hence

H2, depend on the particular space, X , and hence the choice of the

representative points (xi, yi) in the obstacle set, O = W −X . When

we compute the H2-signature for a path in U ǫ, in order to explicitly

5

Identify
 /glue

Identify
 /glue

Identify
 /glue

Identify
 /glue

. . .

. . .

. . .

. . .

. . .

. . .

(a) (b) (c)

(qg, h-1)

(qg, h)

(qg, h+1)

(qs, 0) (qs, 0)

qg

qs

Identify
 /glue

(qg, h mod 2)

(qg, (h+1) mod 2)

τ1

τ3

τ2

Fig. 7: Vertex sets (blue dots) of G, GH and GH2, and the spaces that they live on: X , XH and XH2 (light gray surfaces): (a) The vertices of graph G
formed by cylindrically-uniform sampling of points in a disk-shaped region of a plane, X , (light gray) with a single disk-shaped obstacle (black). Also shown
3 paths. (b) The vertex set of the corresponding H-augmented graph, GH, sampled from XH. Vertices in GH are of the form (q, h) for q ∈ VG and h the
H-signatures corresponding to homology classes of paths connecting qs to q. Lifts of corresponding paths are shown. (c) The vertex set of the H2-augmented
graph, GH2, sampled from XH2. This graph is obtained by identifying or gluing every vertex (q, h) ∈ VGH

with vertices of the form (q, h+ 2u) ∀u ∈ Z

(note that the image shows an immersion of GH2 in R3). Lifts of corresponding paths are shown.

indicate that the space under consideration is U ǫ, we will write H2ǫ

as the function that computes the H2-signature of trajectories in U ǫ

(with representative points on Oǫ := W − U ǫ), and call it H2ǫ-

signature. Likewise, we write GǫH2 = (Vǫ
GH2

, EǫGH2
) to denote the

H2-augmented graph obtained from discretization of U ǫ.

B. Algorithm for Generating the Barcode

As discussed earlier, in the standard representation of a barcode

diagram, at a particular value of ǫ each bar corresponds to a

generator (representative cycles of elements of a generating set) of

the homology group of U ǫ. However, in our presentation, each bar

will correspond to a homology class of trajectories, thus the number

of bars will be equal to the number of homology classes (with Z2

coefficients) in Uα. Thus in Figure 9, at ǫ = 0.2, we observe that

there are 4 trajectories in different homology classes. In the barcode

diagram shown below it, at the mark of ǫ = 0.2, one can observe

4 bars corresponding to these classes. Likewise for ǫ = 0.55 and

ǫ = 0.9. The colors of the bars in the barcode diagram correspond

to the colors of the trajectories in the figures above.

1) Computations at each ǫ: In practice we start at ǫ = 1.0 and

decrease the value of ǫ at regular intervals of δ (the reason for not

going the other way starting from 0.0 will become clear later), and

for every value of ǫ we perform the following operations (using

OpenCV [6] and YAGSBPL [1] libraries):

i. Compute U ǫ (as a binary image, which is naturally represented as

a graph – see Figure 4(b)), and thus have a representation for Gǫ,

ii. Identify connected components of the obstacles (that are not

connected to the boundary of the environment and is not enclosed

in a disconnected patch of the free space isolated from qs and

qg) — say, nǫ counts of them — and place a representative

point inside each and call them pǫ1, p
ǫ
2, · · · , p

ǫ
nǫ , (for computing

a representative point inside an obstacle we perform a scan along

a single line parallel to the X axis passing through the mid-height

of the obstacle, and choose a point on the line that lies inside the

obstacle),

iii. Starting from (qs,0 mod 2), expand all vertices in the H2-

augmented graph, GǫH2, using an optimal search algorithm (this

uses the underlying graph, Gǫ, which is obtained as a uniform

square 8-connected discretization as in Figure 4(b)), and store paths

to vertices of the form (qg, ∗) (where ‘∗’ are H2-signatures of the

respective found paths), and we do this until every vertex in GǫH2

has been expanded.

Thus, at the end of each search, we have a set of mǫ trajectories

and corresponding H2-signatures: {τ ǫ
i , h

ǫ
i}i=1,2,··· ,mǫ (with hǫ

i ∈
(R/2Z)n

ǫ

). This set contains all the homology classes of trajectories

in U ǫ connecting the given points.

This algorithm is straightforward. The more challenging part is to

associate this data from ǫ to the data obtained for ǫ− δ.

2) Relating Data Between ǫ and ǫ−δ: We first make a few simple

observations about the change in topology as we go from U ǫ−δ to

U ǫ (i.e., increase the parameter by a value of δ) – see Figure 8:

0. Obstacles can shrink in size, without changing topology of the

free space or the obstacles, and hence not changing the number of

homology classes of trajectories,

1. Obstacles can disappear, resulting in some of the homology classes

of trajectories to disappear as well (this is illustrated in Figure 8(b)

and can be observed in Figure 9 in the transition from U0.85 to

U0.86).

2. Obstacles can split, resulting in potential creation of new homol-

ogy classes of trajectories (this is illustrated in Figure 8(a) and

can be observed in Figure 9 in transition from U0.5 to U0.51).

The splitting can happen in a part of a single obstacle as well

(or multiple obstacles simultaneously), due to which a previously

disconnected region of the free space (and features contained inside

it) can get connected to the free space containing qs and qg
(illustrated in Figure 8(c)(ii)).

3. A disconnected component of the free region (that is isolated from

the rest of the free space where start, goal and trajectories reside)

can appear inside an obstacle (illustrated in Figure 8(c)(i)).

The justification behind the fact that only these three types of events

(‘1’, ‘2’ and ‘3’) can create changes in global topology comes from

Morse theory [21], with points 1, 2, and 3 corresponding to critical

points with Morse index 2, 1, and 0 respectively. The assertions about

the relation between the topology of the obstacles and that of the free

space follow from Alexander duality [18], [3], as is obvious.

Suppose upon performing search in GǫH2 we find mǫ counts of

trajectory and H2-signature pairs, {τ ǫ
k, h

ǫ
k}k=1,2,··· ,mǫ . Likewise,

suppose searching in Gǫ−δ
H2 gives us mǫ−δ counts of trajectories and

their H2-signatures, {τ ǫ−δ
j , hǫ−δ

j }j=1,2,··· ,mǫ−δ . The main objective

of the following algorithm (algorithm ComputeCorrespondences) is

to relate these two sets of data. We achieve this in two stages:

Stage I: Since U ǫ−δ ⊂ U ǫ, a trajectory τ ǫ−δ
j in U ǫ−δ is a

valid trajectory in U ǫ as well (formally, via the inclusion map

iǫǫ−δ , which we will assume implicitly) – see Figure 8(a). This

induces a well-defined map [18] between the homology classes

6

start

goal goal

start

p
1

ε-δ

p
1

ε

p
2

ε

τ1
ε-δ

τ2
ε-δ

τ2
ε

τ1
ε

τ3
ε

τ4
ε

(a) An obstacle splits into multiple obstacles. Note the unambigu-

ous correspondences: τǫ−δ
1 7→ τǫ2 and τǫ−δ

2 7→ τǫ3 .

goal

start

p
1

ε-δ

p
2

ε-δ

τ2
ε-δ

τ1
ε-δ

τ3
ε-δ

τ4
ε-δ

p
1

ε

τ1
ε

τ2
ε

goal

start

(b) An obstacle disappears. Note the ambiguity in correspon-

dences simply by topological consideration: τǫ−δ
1 , τǫ−δ

2 7→ τǫ2
and τǫ−δ

3 , τǫ−δ
4 7→ τǫ1 .

start

goal

start

goal

start

goal

(i) (ii)

(c) A new disconnected region of the free space is created, which eventually gets linked to the free region.

Fig. 8: Change in topology (as ǫ is increased).

of the trajectories: ιǫǫ−δ : H1(U
ǫ−δ;Z2) → H1(U

ǫ;Z2). So

the obvious first step in computing the correspondences (Lines 4-

12 of algorithm ComputeCorrespondences) is to compute the H2-

signatures of τ ǫ−δ
j , ∀j ∈ {1, 2, · · · ,mǫ−δ} when they are viewed as

trajectories in U ǫ (i.e. compute H2ǫ(τ ǫ−δ
j), ∀j = 1, 2, · · · ,mǫ−δ),

and compare them with the H2-signatures {hǫ
k}k=1,2,··· ,mǫ (which,

by computation, is an exhaustive set of H2-signatures of trajectories

in U ǫ connecting the given points). Thus we establish a map

CI : {1, 2, · · · ,mǫ−δ} → {1, 2, · · · ,mǫ} defined as j 7→ k iff

H2ǫ(τ ǫ−δ
j) = hǫ

k. Thus, corresponding to each homology class in

U ǫ−δ we find a homology classes in U ǫ.

Stage II: However the relationship obtained using the above

process may map multiple different elements in {1, 2, · · · ,mǫ−δ} to

a same element in {1, 2, · · · ,mǫ} (this happens when, for example,

an obstacle vanishes while going from ǫ− δ to ǫ. See Figure 8(b)).

We thus need to resolve this conflict in order to match the classes in

H1(U
ǫ−δ) with those in H1(U

ǫ) unambiguously.

Note: In computing persistent homology for cycles in a filtered

simplicial complex, the standard algorithms [13], [29] choose a

preferred basis (as a set of cycles) that generate the homology

group. This preferred basis is such that if two or more different

elements from the basis chosen for H1(Uǫ−δ) maps to a single

element of H1(Uǫ) under the inclusion map (the conflict situation

described above), then it is always the element 0 ∈ H1(Uǫ) that

they map to. We first notice that this choice is intrinsically related

to a metric (for example, in Figure 5(a), any choice of two cycles

out of γ1, γ2 and γ3 will be a valid basis for generating the first

homology group of the space. The space is typologically a sphere

with 3 punctures, as shown in the the inset figure, and no choice

of a pair from {γ1, γ2, γ3} can be given preference over the others

as far as topology is concerned). In particular, the choice of the

basis depends on the order in which simplices are inserted into the

complex. The consequence is that cycles in the preferred basis tend

to be ones encircling smaller holes (which get filled first).

In our case, where we are concerned with finding persistent homol-

ogy classes of trajectories, we make the following observations:

i. We desire to compute the persistence of all individual homology

classes of trajectories (and not just the Betti numbers, as done in

standard persistence computation for cycles). Thus choosing a

basis for homology group is not sufficient – we wish to consider

all elements in the set of homology classes (finitely many of

them when coefficients are in Z2).

ii. There is no preferred ‘0’ element among the homology classes

Algorithm 1: Pseudocode for ComputeCorrespondences.

CII = ComputeCorrespondences
(

{τ ǫ−δ
j }j=1,2,··· ,mǫ−δ , {τ ǫ

k, h
ǫ
k}k=1,2,··· ,mǫ , H2ǫ

)

:
Inputs: i. Trajectories at ǫ− δ,

ii. Trajectories and their H2ǫ-signatures obtained in Gǫ
H2, and,

iii. The function H2ǫ for computing H2-signatures in Uǫ.
Output: Correspondences between the homology classes of trajectories at

ǫ− δ and those obtained at ǫ.
Expressed as CII : {1, 2, · · · ,mǫ−δ} → {1, 2, · · · ,mǫ} ∪ 0.

1. |Compute hi = H2ǫ(τǫ−δ
i), ∀i = 1, 2, · · · ,mǫ−δ .

2. |Initiate CI := array of length mǫ−δ , CII := array of length mǫ−δ .
3. |Initiate c := array of length mǫ, c(i) = 0, ∀i ∈ {1, 2, · · · ,mǫ}.

| // First stage in computing correspondences. CI can map multiple
| // elements in its domain to same element in {1, 2, · · · ,mǫ}.

4. |for j = 1, 2, · · · ,mǫ−δ

5. |for k = 1, 2, · · · ,mǫ

6. |if hj == hǫ
k

7. |CI(j) := k
8. |c(k) + +
9. |break for // Break inner for loop, since there can’t be

| // another k′ such that hǫ
k′ = hǫ

k = hj .

10. |end if

11. |end for

12. |end for

| // Second stage in computing correspondences. The only

| // element in its codomain that C can map to multiple times is ‘0’.
13. |for k = 1, 2, · · · ,mǫ

14. |if c(k) > 0
15. |Let J := {j | CI(j) = k} // All classes in Uǫ−δ that map to

| // the kth class in Uǫ under inclusion iǫǫ−δ

16. |j∗ := argminj∈J dHf (τ
ǫ−δ
j , τǫk)

17. |Set CII(j
∗) := k

18. |Set CII(j) := 0, ∀j 6= j∗, j ∈ J
19. |end if

20. |end for

21. |return CII

of trajectories.

iii. It is most natural to use a metric for measuring distance between

the paths for directly resolving the aforesaid conflict.

Thus, when the aforesaid relationship, CI , maps, say, j1, j2, · · · ∈
{1, 2, · · · ,mǫ−δ} to the same element, say, k0 ∈ {1, 2, · · · ,m

ǫ},
we resolve the conflict by comparing the distances between the

trajectories (Lines 13-20 of algorithm ComputeCorrespondences).

7

start

goal

(a) U0.2.

start

goal

(b) U0.7.

start

goal

(c) U0.95.

start

goal

(d) U0.5.

start

goal

(e) U0.51.

start

goal

(f) U0.85.

start

goal

(g) U0.86.

ε
0.2 0.950.5 0.51 0.85

0.860.7

Most persistent
classes

Second-most
persistent classes

(h) Barcode diagram.

Fig. 9: (a), (d), (e), (b), (f), (g), (c): Uǫ in increasing order of epsilon, and optimal trajectories in different homology classes. (h): Barcode diagram for
homology classes of trajectories. Note that the colors of the bars at a particular value of ǫ correspond to the colors of the trajectories in the corresponding
Uǫ. In generating these sets of barcodes we used δ = 0.01.

Out of τ ǫ−δ
j1

, τ ǫ−δ
j2

, · · · , we choose the one that is closest to τ ǫ
k0

for establishing the correspondence, and all others are marked as

dead (mapped to 0 in algorithm ComputeCorrespondences). Thus, in

Figure 8(b), although the classes of both τ ǫ−δ
1 and τ ǫ−δ

2 would map

to the class of τ ǫ
2 under the inclusion map (Stage I), since τ ǫ−δ

1 is

closer to τ ǫ
2 the class of τ ǫ−δ

1 maps to the class of τ ǫ
2 , while the class

of τ ǫ−δ
2 is simply declared dead in U ǫ.

For comparing the distance between trajectories we use the Haus-
dorff metric [16] which can be used to measure the distance between
arbitrary sets A and B in a metric space:

dHf (A,B) = max

{

sup
a∈A

inf
b∈B

dE(a, b), sup
b∈B

inf
a∈A

dE(a, b)

}

where dE is the Euclidean distance on the workspace W .

Thus, ComputeCorrespondences computes the correspondences

between the mǫ−δ counts of homology classes of trajectories in U ǫ−δ

and mǫ counts of homology classes of trajectories in U ǫ. This lets

us construct the barcode diagram incrementally.

C. Heuristic Function taking Advantage of Previous Searches

As noted earlier, at every ǫ we compute all the Z2-homology

classes of trajectories by expanding all the vertices in GǫH2. However,

if we know the number of disconnected components of obstacles

present in the active workspace (obstacles which are not connected to

the boundary of W and are not enclosed in a disconnected component

of the free space isolated from qs and qg), say nǫ, then we can

predict that the number of homology classes of trajectories will be

2n
ǫ

. This can be seen as follows: Since there are nǫ representa-

tive points, there are nǫ components in a H2-signature. Suppose

h = [(h1 mod 2), (h2 mod 2), · · · , (hnǫ mod 2)]T is the H2-

signatures of one of the trajectories connecting qs to qg . Then the set

of possible H2-signatures of trajectories connecting the same points

will be [((h1 + u1) mod 2), ((h2 + u2) mod 2), · · · , ((hnǫ + unǫ)
mod 2)]T , for each ui ∈ {0, 1}. This is a total of 2n

ǫ

classes.

With this knowledge we can stop the graph search once all the 2n
ǫ

classes have been found during a single search, without having to

expand all the vertices in the H2-augmented graph. Thus it is useful

to use A* search algorithm with an admissible heuristic function to

speed the search (which would have been irrelevant if all the vertices

in the graph had to be expanded). In particular, if we perform the

searches in decreasing order of ǫ, then for the search in Gǫ−δ
H2 it is

possible to exploit the search result obtained at GǫH2 to design an

admissible heuristic function due to the following observation:
The length of the shortest path connecting (qs,0) to a vertex

(q, h) ∈ Vǫ−δ
GH2

in Gǫ−δ
H2 is greater than or equal to the length of

the shortest path connecting qs to q ∈ Vǫ−δ
G in Gǫ−δ , which in

turn is greater than or equal to the length of the shortest path

connecting qs to q ∈ Vǫ
G in Gǫ (since Gǫ−δ is a subgraph of Gǫ

due to U ǫ−δ ⊂ U ǫ). Also, note that the length of the shortest

path connecting qs to q ∈ Vǫ
G is simply the minimum of the

“g-scores” of vertices of the form (q, ∗) ∈ Vǫ
GH2

when searching

in GǫH2 using A* algorithm starting from (qs,0). Let’s call this

value hǫ(qs, q).

Thus hǫ(qs, q) can be used as the heuristic for vertex (q, h) ∈ Vǫ−δ
GH2

if the search is started from qg (rather than qs) when searching in

Gǫ−δ
H2 using A* algorithm (since heuristics function requires to return

an underestimate of the least cost to the target vertex). Thus in the

searches we alternate between starting the search from qs and starting

it from qg . In the later cases the orientation of the trajectories obtained

from the search and the signs of the H2-signatures of the trajectories

need to be flipped before calling ComputeCorrespondences.

D. Noisy Probability Distributions

As described in the previous section, the number of Z2-coefficient

homology classes grows exponentially with the number of repre-

sentative points. If the probability distribution, P , is constructed

8

(a) U0.9. (b) U0.8. (c) U0.72. (d) U0.7. (e) U0.6. (f) U0.4.

(g) (h) (i) (j) (k) (l)

start

goal

(m) Probability map. (n) Final complete barcode. Note the
longest bar (5th from the bottom).

(o) Overlay of trajectories corresponding to the most
persistent class (longest bar) obtained from the barcode.

Fig. 10: (a)-(f): Uǫ for different values of ǫ in decreasing order. (g)-(l): The corresponding barcode diagram in the process of being constructed as ǫ is
decreased. The final barcode is in (n). The decrement step in the value of ǫ used was δ = 0.01. Probability map is shown in (m). The trajectories in the most
persistent homology class shown in (o) clearly indicates the most reliable set of trajectories to follow.

from the readings of a noisy sensor, an ǫ-thresholded space, U ǫ

may contain many small irrelevant obstacles created only due to the

presence of noise in the probability map. Placing a representative

point on each of those only makes the computation complexity grow

exponentially at certain small ranges of ǫ, where a large number

of obstacles and homology classes may pop into existence and die

shortly thereafter. This computation is mostly redundant because the

short-lived homology classes do not contribute towards our main

subject of interest – the most persistent homology classes. In order to

handle this issue we use two techniques. In the following sub-sections

we describe them and justify their computationally correctness.

1) Ignoring Obstacles Smaller than a Threshold Size: When

computing trajectories in U ǫ one can choose not to put representative

points on components of obstacles that are smaller than a certain

size (say, diameter smaller than a certain value) – Oǫ
small ⊆ Oǫ.

Subsequent discretization and search in the H2-augmented graph

will only return feasible trajectories that have different H2-signatures

purely because of the presence of obstacles that are not small (Fig-

ure 11). Topologically, the operation performed on U ǫ for computing

the H2-signatures is that of taking a small tubular neighborhood

of every connected component of Oǫ
small, and identifying each to a

point. In the resulting quotient spaces [22] (which we will informally

refer to as U ǫ/∼N (Oǫ
small

), or simply U ǫ/∼) the small obstacles

are essentially non-existent when making distinction between the

topological classes of trajectories.

The size-based choice of the small obstacles guarantee that

every obstacle that is small at a particular value of ǫ will re-

main small at an ǫ′ < ǫ. This defines an inclusion map i
β
α :

Uα/∼N (Oα
small

) →֒ Uβ/∼
N (O

β
small

)
, which indices a well-defined

map between the homology classes: ιβα : H1(U
α/ ∼N (Oα

small
)

;Z2) → H1(U
β/ ∼

N (O
β
small

)
;Z2) (just as the inclusion map

iβα induced the map ιβα between the homology classes of the un-

quotiented spaces). This observation justifies the comparison of the

homology classes of trajectories obtained in Uα with those obtained

in Uβ using the algorithm ComputeCorrespondences, even when we

choose not to place representative points on the small obstacles.

goal

start

goal

start

goal

start

Uα Uβ

τα

τα

τα

τα

τβ

τβ

τγ

Uγ

τγOα

2

1

3

4

1

2

1

2small

Oβ
small Oγ

small

Uα/~ Uβ/~ Uγ/~
Fig. 11: Ignoring small obstacles (α < β < γ). Top row: The com-
putation of trajectories in different Z2-coefficient homology classes with
small obstacles not being used in making distinction between the homol-
ogy classes. Bottom row: The corresponding abstract topological spaces in
which each connected component of the neighborhoods of small obstacles
are identified to points. Note how the inclusion maps are well-defined:
Uα/ ∼ →֒ Uβ/ ∼ →֒ Uγ/ ∼. This lets us establish well-defined
correspondence between the Z2-coefficient homology classes: τα1 , τα2 7→

τβ1 ; τα3 , τα4 7→ τβ2 and τβ1 7→ τγ1 ; τβ2 7→ τγ2 .

2) Adaptively Change ǫ step: As described in the previous sec-

tions, in computing the bar diagram we start at a value of 1.0 for ǫ,
and decrease it at each iteration by an amount δ, and establish corre-

spondences between the classes obtained at the consecutive values of

ǫ. However, given an upper bound, nmax, on the number of obstacles

that we can computationally deal with, we can choose to skip a value

of ǫ if the number of obstacles at that value is larger than that bound.

For example, say we compute the homology classes in U ǫ′ . Following

that, suppose at the beginning of computation for U ǫ′−δ we find that

9

the number of non-small obstacles, nǫ′−δ > nmax. We can then skip

the search in Gǫ
′−δ

H2 , and instead move on to U ǫ′−2δ . If the number

of non-small obstacles in there is within the bounds, we compute the

homology classes in U ǫ′−2δ and compare them with ones obtained at

ǫ′ to establish correspondence (using the ComputeCorrespondences

algorithm). In general we can establish correspondence between U ǫ′

and U ǫ′−sδ by skipping (s− 1) intermediate steps.

However, since this may result in comparison of homology classes

between environments with large (metric) differences, we perform

an additional check on the Hausdorff distance between a pair of

corresponding trajectories determined by Line 16 of ComputeCor-

respondences algorithm — we establish correspondence (i.e. set

CII(j
∗) := k as in Line 17) only if dHf (τ

ǫ−sδ
j∗ , τ ǫ

k) < dthresh.

Otherwise we set CII(j
∗) := 0 — i.e. the j∗th class in U ǫ−sδ is

marked as dead.

V. RESULTS

We implemented the above algorithm in C++ programming lan-

guage. All computations were performed on a dual core machine

with processor clock speed of 2.6GHz and 4MB memory.

Figure 9 shows the results obtained for the probability map shown

in Figure 1(a). The optimal trajectories generated at different value

of ǫ, along with the entire barcode diagram are shown in figures Fig-

ure 9(a),(d),(e),(b),(f),(g),(c) (in order of the value of ǫ). At each ǫ the

graphs Gǫ are created out of 400×320 uniform square discretization

of the workspace. The entire computation (including thresholding,

finding representative points and trajectory computations at all the

100 values of ǫ, as well as the generation of the barcode diagram,

along with all the graphics output) took about 246s.

Figure 10 shows results in another probability map. In this case

the workspace was 200× 181 discretized and δ = 0.01 was chosen.

The total computation time was about 67s. The accompanying video

shows the barcode in the process of being built as trajectories in

different homology classes are obtained in decreasing order of ǫ.
Figure 12 shows a 400 × 320 discretized environment with two

“blobs” of high probability of occupancy joined by a “bridge” of

very low probability of occupancy. Note that the most persistent class

(the bottom-most bar in the barcode diagram) dies at a low value of

threshold due to the presence of the bridge, and two other classes

survive at even lower values of ǫ. Note how the most persistent class

does not survive at the lowest value of ǫ.
Figure 13 shows an example of an indoor environment where the

probability map (of size 188 × 142 discretization units) contains

significant amount of noise. Setting the small obstacle criteria at 5%
of the maximum map dimension, nmax = 7 and dthresh at 20% of

the maximum map dimension, we computed the shown bar diagram

in about 129s (including all steps as well as generation of the plots).

The overlay of the trajectories in the most persistent classes are also

shown. Note how, due to the noise, U0.10 does not allow any feasible

trajectory, and as ǫ increases, a large number of spurious classes show

up due to the noise.

VI. CONCLUSION AND FUTURE DIRECTION

In this paper we propose an approach to path planning in un-

certain environments that is fundamentally different from existing

approaches. We formulate the problem in terms of finding optimal

trajectories in different Z2-coefficient homology classes, and compute

the persistent homology classes of trajectories from a given occu-

pancy probability map. Paths belonging to more persistent homology

classes are more robust to uncertainty in the sense that they are

less likely to require changes in homology classes. Our paper is the

first to formulate path planning under uncertainty using a topological

framework invoking the powerful tools of persistent homology.

A natural question is if this framework can be extended to integrate

models of sensing and allowing us to go beyond simplistic static

probability-based representations of occupancy. In this paper we

restricted ourselves to the requirement that Uα ⊂ Uβ whenever

α < β so that we have the inclusion map iβα : Uα →֒ Uβ . However,

if such a relationship is not available between a sequence of spaces,

one can always consider the inclusion maps Uα →֒ Uα∪Uβ ←֓ Uβ ,

and thus relate the homology classes between Uα and Uβ via the

homology classes in Uα ∪ Uβ . This principle will compute a zig-

zag persistence [7] for the sequence of spaces and can be used to

pursue online re-planning as updates to the probability map become

available from sensor data. Refinement of the proposed algorithm and

its implementatuion for improved efficiency is also within the scope

of future work.

REFERENCES

[1] Subhrajit Bhattacharya. A template-based c++ library
for large-scale graph search and planning, 2011. See
http://subhrajit.net/index.php?WPage=yagsbpl.

[2] Subhrajit Bhattacharya, Maxim Likhachev, and Vijay Kumar. Topologi-
cal constraints in search-based robot path planning. Autonomous Robots,
pages 1–18, June 2012. DOI: 10.1007/s10514-012-9304-1.

[3] Subhrajit Bhattacharya, David Lipsky, Robert Ghrist, and Vijay Kumar.
Invariants for homology classes with application to optimal search and
planning problem in robotics. Annals of Mathematics and Artificial Intel-

ligence (AMAI), 67(3-4):251–281, March 2013. DOI: 10.1007/s10472-
013-9357-7.

[4] Subhrajit Bhattacharya, Nathan Michael, and Vijay Kumar. Distributed
coverage and exploration in unknown non-convex environments. In Pro-

ceedings of 10th International Symposium on Distributed Autonomous

Robotics Systems. Springer, 1-3 Nov 2010.
[5] R. Bott and L.W. Tu. Differential Forms in Algebraic Topology. Graduate

texts in mathematics. Springer-Verlag, 1982.
[6] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer Vision

with the OpenCV Library. O’Reilly, Cambridge, MA, 2008.
[7] G. Carlsson and V. de Silva. Zigzag Persistence. ArXiv e-prints, nov

2008.
[8] Gunnar Carlsson. Topology and data. Bull. Amer. Math. Soc., 46:255–

308, 2009.
[9] Benjamin Cohen, Sachin Chitta, and Maxim Likhachev. Search-based

planning for dual-arm manipulation with upright orientation constraints.
In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA), 2012.
[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction

to algorithms. MIT Press, 2nd edition, 2001.
[11] Edsger W. Dijkstra. A note on two problems in connexion with graphs.

Numerische Mathematik, 1:269–271, 1959.
[12] Herbert Edelsbrunner and John L. Harer. Computational Topology.

American Mathematical Society, 2009.
[13] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topo-

logical persistence and simplification. Discrete and Computational

Geometry, 28(4):511–533, November 2002.
[14] D. Fox, J. Ko, K. Konolige, B. Limketkai, D. Schultz, and B. Stewart.

Distributed multirobot exploration and mapping. Proc. of the IEEE,
94(7):1325–1339, July 2006.

[15] Robert Ghrist. Barcodes: The persistent topology of data. Bull. Amer.

Math. Soc., 45:61–75, 2008.
[16] M. Gromov, J. Lafontaine, and P. Pansu. Metric structures for Rieman-

nian and non-Riemannian spaces. Progress in mathematics. Birkhäuser,
1999.

[17] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems,

Science, and Cybernetics, SSC-4(2):100–107, 1968.
[18] Allen Hatcher. Algebraic Topology. Cambridge Univ. Press, 2001.
[19] M. Hazewinkel, N. Gubareni, and V.V. Kirichenko. Algebras, Rings and

Modules. Number pt. 1 in Algebras, Rings and Modules. Springer, 2004.
[20] S. M. LaValle. Planning Algorithms. Cambridge University Press,

Cambridge, U.K., 2006. Available at http://planning.cs.uiuc.edu/.
[21] J.W. Milnor. Morse Theory. Annals of mathematics studies. Princeton

University Press, 1963.
[22] James Munkres. Topology. Prentice Hall, 1999.
[23] C. Stachniss. Exploration and Mapping with Mobile Robots. PhD thesis,

University of Freiburg, Freiburg, Germany, April 2006.

10

(a) Probability map. (b) U0.01. (c) U0.1. (d) U0.42. (e) U0.75.

(f) Barcode diagram.

Fig. 12: An example in which the most persistent class (the bottom-most bar in the barcode diagram) dies at a low value of ǫ due to the presence of the
bridge, although two other classes survive.

U0.10 U0.20 U0.27

U0.40 U0.46 U0.60 U0.84

Probability map.

Barcode diagram.

Overlay of trajectories
corresponding to two longest
(most persistent) bars in the

barcode diagram.

start goal

Fig. 13: An example with a noisy probability map. Observe the large number of short-lived classes created due to noise.

[24] C. Stachniss. Robotic Mapping and Exploration. Springer Tracts in
Advanced Robotics. Springer, 2009.

[25] A. Stentz. The focussed D* algorithm for real-time replanning. In Pro-

ceedings of the International Joint Conference on Artificial Intelligence

(IJCAI), pages 1652–1659, 1995.
[26] P. Svestka and M. H. Overmars. Probabilistic path planning. Technical

Report UU-CS-1995-22, Department of Information and Computing
Sciences, Utrecht University, 1995.

[27] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic

Robotics (Intelligent Robotics and Autonomous Agents). The MIT Press,
2005.

[28] Paul Vernaza, Maxim Likhachev, Subhrajit Bhattacharya, Sachin Chitta,
Aleksandr Kushleyev, and Daniel D. Lee. Search-based planning for a
legged robot over rough terrain. In Proceedings of IEEE International

Conference on Robotics and Automation (ICRA), pages 2380–2387, 12-
17 May 2009.

[29] Afra Zomorodian and Gunnar Carlsson. Computing persistent homology.
Discrete Comput. Geom, 33(2):249–274, February 2005.

	Introduction
	Related Work
	Problem Description

	Preliminaries
	Homology
	A Homology Invariant
	H-augmented Graph

	Persistent Homology
	Theoretical and Algorithmic Tools
	H2-augmented Graph, GH2
	Algorithm for Generating the Barcode
	Computations at each
	Relating Data Between and -

	Heuristic Function taking Advantage of Previous Searches
	Noisy Probability Distributions
	Ignoring Obstacles Smaller than a Threshold Size
	Adaptively Change step

	Results
	Conclusion and Future Direction
	References

