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A B S T R A C T 

Using a set of Lambda cold dark matter simulations of cosmic structure formation, we study the evolving connectivity and 

changing topological structure of the cosmic web using state-of-the-art tools of multiscale topological data analysis (TDA). We 

follow the development of the cosmic web topology in terms of the evolution of Betti number curves and feature persistence 

diagrams of the three (topological) classes of structural features: matter concentrations, filaments and tunnels, and voids. The 

Betti curves specify the prominence of features as a function of density level, and their evolution with cosmic epoch reflects the 

changing network connections between these structural features. The persistence diagrams quantify the longevity and stability of 

topological features. In this study, we establish, for the first time, the link between persistence diagrams, the features they show, 

and the gravitationally driven cosmic structure formation process. By following the diagrams’ development over cosmic time, the 

link between the multiscale topology of the cosmic web and the hierarchical buildup of cosmic structure is established. The sharp 

ape x es in the diagrams are intimately related to key transitions in the structure formation process. The apex in the matter concen- 

tration diagrams coincides with the density level at which, typically, they detach from the Hubble expansion and begin to collapse. 

At that level many individual islands merge to form the network of the cosmic web and a large number of filaments and tunnels 

emerge to establish its connecting bridges. The location trends of the apex possess a self-similar character that can be related to 

the cosmic web’s hierarchical buildup. We find that persistence diagrams provide a significantly higher and more profound level 

of information on the structure formation process than more global summary statistics like Euler characteristic or Betti numbers. 

Key words: methods: data analysis – large-scale structure of Universe. 

1  I N T RO D U C T I O N  

In this study, we analyse the topological structure and connectivity 

of the cosmic web (Bond, Kofman & Pogosyan 1996 ; van de 

Weygaert & Bond 2008 ) in terms of the multiscale topological 

formalism of persistence and Betti numbers. These state-of-the- 

art tools of topological data analysis (TDA) represent measures 

of structural aspects of the cosmic web (Sousbie 2011 ; van de 

Weygaert et al. 2011 ; Nevenzeel 2013 ; Shi v ashankar et al. 2016 ; 

Pranav et al. 2017 ; Xu et al. 2019 ; Biagetti, Cole & Shiu 2021 ). 

With a solid mathematical foundation in the context of algebraic and 

computational topology (Edelsbrunner & Harer 2010 ), they offer an 

intricate quantitative description of how the structural components 

⋆ E-mail: georg.wilding@gmail.com (GW); weygaert@astro.rug.nl (RVDW) 

of the cosmic web are assembled and organized within its complex 

network. The principal intentions of this study are (1) to assess 

and quantify the connectivity of the cosmic web in terms of the 

levels at which its various structural components get joined into the 

o v erall web-lik e netw ork, (2) establish the relationship between the 

characteristics of the Betti number curves and persistence diagrams 

and the gravitationally driven cosmic structure formation process, 

(3) to explore the sensitivity of the structure and topology of the 

cosmic web to the underlying cosmology, and (4) to assess the extent 

to which the topological measures are able to extract cosmological 

information. This concerns aspects such as the nature of dark matter, 

dark energy, possible deviations from standard gravity, and/or non- 

Gaussian initial conditions. 

The use of persistence diagrams as a tool of topological analysis 

will pro v e valuable, as it enables us to measure non-linear features 

in the large-scale structure. In line with using it to differentiate 
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between cosmologies, we aim to turn this manner of analysing 

persistence into a new probe for fundamental cosmology and physics 

in general. Ultimately, we will apply this probe also to observational 

data, with the aim of differentiating between models and providing 

constraints on the nature of dark matter, dark energy and other global 

cosmologically rele v ant factors. 

1.1 Cosmic web: connectivity 

The matter and galaxy distribution on scales of a few up to a hundred 

Megaparsec defines an intricate multiscale network, characterized 

by a complex connectivity, that is known as the cosmic web (Bond 

et al. 1996 ). Dark matter, interg alactic g as and g alaxies have arranged 

themselves in a salient, wispy pattern dominated by elongated fila- 

ments that intersect at compact cluster nodes and that are embedded 

in tenuous sheet-like walls that form the boundary of large near- 

empty void regions (van de Weygaert & Bond 2008 ). Maps of the 

nearby cosmos produced by large galaxy redshift surv e ys such as 

the 2dFGRS, the SDSS, and the 2MASS redshift surv e ys (Colless 

et al. 2003 ; Tegmark et al. 2004 ; Huchra et al. 2012 ), as well 

as by recently produced maps of the galaxy distribution at larger 

cosmic depths such as VIPERS (Guzzo & VIPERS Team 2013 ) 

and GAMA (Driver et al. 2009 ), have revealed the existence of 

this structure. Filaments are the most visually outstanding features 

of the Megaparsec Universe, in which around 50 per cent of the 

mass and galaxies in the Universe reside. On the other hand, almost 

80 per cent of the cosmic volume belongs to the interior of voids (see 

e.g. Cautun et al. 2014 ; Ganeshaiah Veena et al. 2018 ). Together, they 

define a complex spatial pattern of intricately connected structures, 

displaying a rich geometry with multiple morphologies and shapes. 

This complexity is considerably enhanced by its intrinsic multiscale 

nature, including objects o v er a considerable range of spatial scales 

and densities. For a recent up-to-date report on a wide range of 

rele v ant aspects of the cosmic web, we refer to the volume by van de 

Weygaert et al. ( 2016 ). 

The organization of this network in an ordered web – in which 

voids are surrounded by walls and filaments, connecting at high- 

density compact clusters at the nodes evidently – is a characteristic 

that is in need of a systematic and quantifiable characterization. 

Filaments appear at the edges of the walls in the mass distribution. 

The way in which the various features connect into the web-like 

pattern pervading space includes local as well as global aspects. 

Locally, it concerns questions like the dependence of the number 

of connecting filaments on the properties of a (cluster) node, or the 

connection between walls and surrounding or embedding filaments. 

Globally, it pertains to issues of percolation, i.e. how fast and at what 

le vel the v arious structural elements are connecting up in a network 

that permeates an entire volume. 

The study by Arag ́on-Calvo, van de Weygaert & Jones ( 2010a ) 

was amongst the first to address this question systematically, and 

established that the number of connecting filaments is linearly 

increasing with the mass of the node and is typically of the order of 

3–5 filaments per node. Recent work by Codis, Pogosyan & Pichon 

( 2018 ) on the basis of a topological analysis has confirmed this trend. 

The more global aspect of connectedness concerns the o v erall per- 

colation properties of the web-like network, focusing on how the var- 

ious structural features connect up into the final permeating network. 

Early studies within the context of percolation theory by Zeldovich 

and cow ork ers (Zeldovich, Einasto & Shandarin 1982 ; Shandarin 

1983 ; Klypin & Shandarin 1993 ; Colombi, Pogosyan & Souradeep 

2000 ), and others (Dekel & West 1985 ; Sahni, Sathyaprakash & 

Shandarin 1997 ), explored the spatial connectedness of galaxies as a 

function of linking length, assessing the length at which all galaxies 

would link up and comparing this with the expectation for different 

cosmologies. For the connectedness of the structural components 

of the cosmic web – nodes, filaments, walls, and voids – a similar 

approach may be pursued by using the criterion or physical quantity 

according to which they are identified. 

In this study, we restrict ourselves to using the density field for 

identification of structures affiliated to the cosmic web. The levels 

o v er which filaments and walls exist in the density field establish the 

connection of the different components. By following the changing 

pattern and population of components at different density levels, one 

may study how the structural elements have connected into a volume 

pervading network. Rather than using density, a more sophisticated 

analysis would use a physical influence that is more rele v ant for 

distinguishing cosmic web identities. An example of this is the 

tidal force field or the closely related deformation field. The recent 

analytical formulation of the caustic skeleton of the cosmic web 

on the basis of the eigenvalues and eigenvectors of the deformation 

field (Feldbrugge et al. 2019 ) will therefore yield a more detailed 

and profound quantitative characterization of the global cosmic web 

connectedness. 

Following this procedure defines a sophisticated multiscale anal- 

ysis of the connectivity of the cosmic web. The mathematical 

formalism for this we find in topology, more specifically within 

homology theory. 

1.2 Topology: Betti numbers and persistence 

Topology is the branch of mathematics that addresses the connectiv- 

ity of this multitude of features, as well as their occurrence in various 

dimensions and shapes. The study of the topology of the cosmic mass 

distribution started out with the e v aluation of the Euler characteristic 

and the genus of its iso-density surfaces. Gott and collaborators (Gott, 

Melott & Dickinson 1986 ; Hamilton, Gott & Weinberg 1986 ) studied 

the genus as function of density threshold. Later, further and more 

discriminative information on the topology became available with 

the introduction of Minkowski functionals (Mecke, Buchert & 

Wagner 1994 ; Schmalzing & Gorski 1998 ). Ho we ver, most of these 

studies had a largely heuristic character and represented a global 

statistical assessment of the cosmic mass distribution. The first study 

focusing on the connectivity of distinct morphological elements in the 

mass distribution is the SURFGEN formalism developed by Sahni, 

Sathyaprakash & Shandarin ( 1998 ). It uses Minkowski functionals 

to define shapefinders , allowing the identification of morphological 

features of different geometric shapes, and carry out a systematic 

assessment of their embedding within the o v erall cosmic mass 

distribution (Sheth et al. 2003 ; Shandarin, Sheth & Sahni 2004 ; 

Sheth & Sahni 2005 ). 

Van de Weygaert and collaborators (van de Weygaert et al. 2010 , 

2011 ) introduced the concept of homology, Betti numbers (Poincar ́e 

1892 ) and persistence (Edelsbrunner, Letscher & Zomorodian 2002 ; 

Edelsbrunner & Harer 2010 ), in a cosmological context. These 

are homology measures, concepts of algebraic and computational 

topology, describing in a quantitative manner how features in a 

manifold are connected through their boundaries (Munkres 1984 ). 

These early studies assessed Betti number systematics in a range 

of web-like spatial mass and galaxy distributions, for which they 

provide a summary of information on the topology of the cosmic 

mass distribution. This was followed up by recent studies that invoked 

homology in a cosmological context along more systematic and 

formalized lines (Sousbie 2011 ; van de Weygaert et al. 2011 ; Park 

et al. 2013 ; Pranav et al. 2017 , 2019a ; Feldbrugge et al. 2019 ). 
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Betti numbers are topological invariants that formalize the topolog- 

ical information content of the cosmic mass distribution in terms of 

the population of topological features (Edelsbrunner & M ̈ucke 1994 ; 

Zomorodian & Carlsson 2005 ; Robins 2006 ; Edelsbrunner & Harer 

2010 ; Wasserman 2018 ). The zeroth Betti number counts the number 

of connected components, the first Betti number is the number of 

independent loops, while the second Betti number is the number 

of independent shells enclosing troughs. Within the context of the 

spatial pattern of the cosmic web, tunnels are intimately related 

to loops of filamentary bridges of the cosmic web connecting the 

o v erdense clusters. It is important to appreciate that the homological 

measures are fundamentally non-local . While homology and the Betti 

numbers do not fully quantify the topology of a manifold, they 

extend the information beyond conventional cosmological studies 

of topology in terms of genus and Euler characteristics. 

The profound significance of Betti numbers is underlined by their 

intimate relationship to the singularity structure of the cosmic density 

field (Morse 1925 ; Milnor 1963 ). According to Morse theory the 

topology of a field is coupled to the presence, location and nature of 

the singularities. It reflects the notion that the topology of a manifold 

changes once a singularity is added, or remo v ed, upon variation of 

the level set. As a result, the existence of and connectivity between 

topological features is completely determined by the location and 

nature of the critical points in a density field. The importance and 

prominence of topological features is characterized through their 

persistence (Edelsbrunner et al. 2002 ; Edelsbrunner & Harer 2010 ). 

Persistence facilitates the assessment of the multiscale nature of 

the topology of the Megaparsec cosmic mass distribution. Of key 

significance is the ability to assess its structural nested hierarchy, 

i.e. the possibility to study how the structural elements of the 

web-lik e netw ork connect up upon v ariation of the le vel set. The 

corresponding change in topology represents a highly informative 

and versatile description of the connectivity of the cosmic web 

network (Edelsbrunner et al. 2002 ; Edelsbrunner & Harer 2010 ). 

Persistence relates the creation or birth of topological features 

(e.g. holes) that constitute the mass distribution with that of their 

annihilation or death upon variation of the level set. 

1.3 This study: persistent topology of the cosmic web 

In recent years, we have seen a large increase in the popularity 

of persistent topology and TDA in general (for a recent re vie ws, 

see Wasserman 2018 ). Persistent topology finds application in a 

diverse range of fields, ranging from brain research (Petri et al. 

2014 ; Reimann et al. 2017 ) and materials science (Hiraoka et al. 

2016 ) to cosmology and astrophysics. Sousbie ( 2011 ), Sousbie, 

Pichon & Kawahara ( 2011 ), Shi v ashankar et al. ( 2016 ), and Pranav 

et al. ( 2017 ) invoke persistence to identify and characterize the 

structure and connectivity of the spine of the cosmic web (Bond 

et al. 1996 ; van de Weygaert & Bond 2008 ; Arag ́on-Calvo et al. 

2010a ; Cautun et al. 2014 ; Libeskind et al. 2018 ). Persistence-based 

identification of features of the cosmic web is also the aim of Xu et al. 

( 2019 ), with a focus on identifying filaments and voids in heuristic 

models of the matter distribution (also see Shi v ashankar et al. 2016 ), 

while Kimura & Imai ( 2017 ) determined persistence diagrams for 

(small) volume-limited samples of the DR12 release of the SDSS 

galaxy redshift surv e y. Kono et al. ( 2020 ) applied TDA towards 

studying baryonic acoustic oscillations in the galaxy distribution, 

while Biagetti et al. ( 2021 ) studied persistence properties of the 

large-scale matter distribution in cosmologies with non-Gaussian 

primordial conditions (also see Feldbrugge et al. 2019 ). The explicit 

application of homology measures in the study of the primordial 

temperature perturbations in the cosmic microwave background are 

reported in Pranav et al. ( 2019b ) and Adler, Agami & Pranav ( 2017 ). 

A fundamental aspect of the connectivity of the cosmic web 

concerns the number of filaments connecting to nodes. Arag ́on- 

Calvo et al. ( 2010b ) addressed this on the basis of the MMF 

formalism (Arag ́on-Calvo et al. 2007 ). In a more thorough and 

profound analysis, the persistence-based study by Codis et al. ( 2018 ) 

confirmed the dependence of the node-filament connectivity on the 

mass of the cluster nodes. The use of persistence and Betti numbers is 

also a natural way of tracing the evolving topology of the reionization 

bubble network (Elbers & van de Weygaert 2019 ). In an astrophysical 

conte xt, the y were also applied as descriptors of the topological 

structure of interstellar magnetic fields (Makarenko et al. 2018 ). 

Following the work laid out in van de Weygaert et al. 

( 2011 ), Nevenzeel ( 2013 ), Pranav et al. ( 2017 , 2019a , b ), and Feld- 

brugge et al. ( 2019 ) in this study, we extend the topological analysis 

of the cosmic web to the analysis of the redshift evolution of structure 

on simulations within the Lambda cold dark matter ( � CDM) cos- 

mology. In Section 2 , we first describe the simulation of structure 

formation in � CDM cosmology that we used in this study, as well 

as the tools, methods and implementation of persistent topology. 

The Betti numbers and persistence of the dark matter distribution at 

redshift z = 0 is discussed in Section 3 , with the purpose of identify- 

ing the topological characteristics of the web-like mass distribution. 

The systematic development of these characteristics in the evolving 

mass distribution in � CDM cosmologies follows in Section 4 . We 

conclude with the summary and conclusions in Section 5 . 

2  SIMULATIONS,  TOOLS,  A N D  M E T H O D S  

Our analysis concentrates on the dark matter distribution in a 

� CDM cosmology. The gas, halo, and galaxy distribution in this 

cosmology possess similar topological characteristics, although the 

details display significant and systematic differences. We will address 

the topological characteristic of, for example, the dark matter halo 

distribution in accompanying studies (see e.g. Bermejo, Wilding, van 

de Weygaert & Jones, in preparation). 

2.1 Simulation and density field 

We analyse the simulated evolving dark matter distribution in a set of 

� CDM simulations of cosmic structure formation. The simulations 

were performed with Gadget 3 (Dolag et al. 2004 ; Springel 2005 ). We 

use five runs, each with 256 3 particles of mass 0.443 × 10 10 h −1 M ⊙
in a box of 300 h −1 Mpc, using periodic boundary conditions. The 

cosmological parameters are based on the WMAP3 data (see Bos 

et al. 2012 , for a detailed discussion of the simulations). 

The dark matter particle distribution produced by the Gadget 

simulations is transformed into a density field by means of the 

Delaunay Tessellation Field Estimator ( DTFE ; Schaap & van de 

Weygaert 2000 ; van de Weygaert & Schaap 2009 ; Cautun & van de 

W eygaert 2011 ). T o this end, the Delaunay tessellation (Delone 1934 ; 

Okabe et al. 2000 ) of the N -body particle distribution is determined, 

and the densities at each v erte x of the tessellation computed from 

the inverse of the volume of the star of the v erte x, the union of 

all Delaunay tetrahedra incident to the v erte x. The densities at the 

vertices (which correspond to the particles in the simulation) are then 

linearly interpolated to a regular grid. This impro v es the sampling of 

underdense regions, at the expense of losing some resolution in the 

density peaks. By using the density and shape adaptive properties of 

the Delaunay tessellation (see van de Weygaert & Schaap 2009 ), DTFE 

optimally retains the multiscale, geometric and topological nature of 
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Figure 1. Cosmic web evolution in � CDM cosmology. We show the evolution at four redshifts, starting at z = 3.8 at the left and proceeding clockwise. The 

slices show a 150 by 150 h −1 Mpc as a projection from a 24 h −1 Mpc thick region around a height of 117 h −1 Mpc. 

the underlying mass distribution that the N -body particle distribution 

is supposed to sample. The density values are specified in terms of 

the density contrast δ( x , t ) 

δ( x , t) = 
ρ( x , t) − ρu ( t) 

ρu ( t) 
, (1) 

with ρ the densities from the DTFE , and ρu ( t ) the global density value 

at the appropriate cosmic epoch. As δ ranges from −1 to ∞ , in our 

plots we usually use δ + 1, in order to enable logarithmic scale plots 

(by a v oiding ne gativ e values). 

For the topological analysis, we use eight different snapshots of 

the simulation. These correspond to the redshifts z = 3.8, 2.98, 2.05, 

1.00, 0.51, 0.25, 0.1, and 0.00. To get an impression of the resulting 

spatial pattern in the matter distribution, Fig. 1 shows the particle 

distribution in a 300 × 300 × 24 h −1 Mpc slice around a height of 

117 h −1 Mpc. The evolution of the web-like structure is followed 

through four snapshots, from z = 3.8 down to the current epoch at 

z = 0. The four panels sho w ho w the relati vely lo w contrast mass 

distribution at high redshift evolves in the prominent and complex 

web-like pattern that pervades the entire box and attains scales in the 

order of dozens of Megaparsec. 

2.2 Cosmic web evolution and topology 

2.2.1 Density field dynamics 

At all snapshots we see the web-like pattern characteristic of the 

quasi-linear mass distribution that evolves from the initial linear 

gravitational growth to more advanced non-linear stages (Bond et al. 

1996 ; van de Weygaert & Bond 2008 ; Arag ́on-Calvo et al. 2010a ; 

Cautun et al. 2014 ). The set of panels reveal how gravitational 

contraction and collapse manifests itself into increasing density 

contrasts and gradual contraction of o v erdensities into more compact 

clump-like, filamentary and wall-like features, and ever emptier 

void regions. 

The hierarchical buildup of structure in the � CDM scenarios 

involves the emergence of ever larger complexes or islands, the 

hierarchical development of large near-empty void regions that 

emanate from the merging of smaller scale troughs (see Sheth & 

van de Weygaert 2004 ; Aragon-Calvo & Szalay 2013 ) and the 

establishment of major filamentary arteries as the transport channels 

along which mass flows through the universe, connecting all mass 

concentrations throughout it. We first see the emergence of web-like 

structures at small scales, which through gravitational interactions 

subsequently grow and merge into larger structures. While this 

happens, the evolution of structure also establishes new or more 

pronounced connections. Towards the current cosmic epoch at z = 

0, it yields the characteristic web-like pattern dominated by filaments 

and voids on scales of tens to even hundreds of Megaparsec. 

The left-most panel in Fig. 1 shows the mild density contrast at a 

redshift z = 3.8. By z = 2.05, we see that the mass distribution has 

evolved into one marked by a substantially higher density contrast. 

The mild density enhancements at z = 3.8 have contracted into steep 

density ridges and comple x es, within which we observe compact 

clumps of high-density and moderately dense elongated filaments. 

These island comple x es appear to be connected by lower contrast 

filamentary and w all-lik e bridges. We see that the regions of lower 

density have grown in size and contrast, into large near-empty 

troughs. It is the result of the continuation of gravitational contraction 

and collapse, manifesting itself into increasing density contrasts and 

gradual contraction of o v erdensities into more compact clump-like, 

filamentary, and w all-lik e features, and ever emptier void regions. 

2.2.2 The topological point of view 

For a visual appreciation of the effects of these dynamical and 

hierarchical processes on the changing topology of the cosmic 

mass distribution, Fig. 2 follows the cosmic web patterns at three 

dif ferent structural le vels. The figure sho ws these patterns in terms 

of the density superlevel sets at three density thresholds, and follows 

their evolution at three redshifts, z = 3.8, z = 1.0, and z = 0. 

The three threshold levels have been carefully chosen such that 

the superlevel sets are typically representing the presence for three 

structural components of the cosmic web (see Section 4.3 for their 

definition). An immediate visual impression of the evolving structure 

from redshift z = 3.8 to 0 is the increasing sharpness of the 

morphological features in the mass distribution. It is most outstanding 

in the development of the intricate filamentary network (middle row) 

and the pronounced topology marked by void cavities (bottom row). 

The top row shows the structures at the highest threshold, at which 

lev el we observ e the presence of high-density peaks and islands –

their immediate surroundings – which congregate near the nodes of 

the cosmic web. Following their evolution, from top left to top right, 

we observe two processes. Existing peaks and islands merge into 

higher density compact clumps. Also, we see the emergence of new 

peaks and islands that have gravitationally grown o v er the threshold 

level. The latter occurs abundantly from z = 1.0 to z = 0, to such 

an extent that at z = 0 we start to see that the clumps delineate large 
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Figure 2. Density superlevel sets of the � CDM mass distrib ution. Ev olution of structure for three redshifts ( z = 3.8, 1, and 0, from left to right), in a 24 h −1 Mpc 

slice around a height of 117 h −1 Mpc. The structure is depicted as superlevel sets with three different thresholds to outline the disjoint nodes of the cosmic web 

(top row), its filamentary structure (middle row), and the walls enclosing the cosmic voids (for the calculation of the thresholds see Section 4.3 ). The evolution 

of structure and the emergence of the increasingly geometric and organized web is particularly visible in the middle row, where noisy, short, and disjoint (but 

already elongated) clumps connect up to form a network of long and more massive filaments that (in three dimensions) fills the whole volume. 

elongated features, the superclusters that trace the most prominent 

filaments and walls of the cosmic web. 

At the intermediate le vel, the superle vel pattern is shown in the 

central row of Fig. 2 . At this level, filaments and walls – and 

the tunnels that go along with them – manifest themselves as the 

dominant structure visible. Going from z = 3.8 to z = 0, we also 

note that these features are generally smaller at the earlier epochs, 

and that we see them connect up into ever larger and more massive 

features and agglomerates. It demonstrates the hierarchical buildup 

of the filamentary and w all-lik e backbone of the cosmic web (see 

Cautun et al. 2014 ). It is also interesting that the features at z = 0 are 

more sharply outlined than their peers at z = 3.8, which are shorter 

and stubby, as a result of their gravitational contraction into more 

pronounced and compact configurations. 
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At the lowest threshold, represented by the panels in the bottom 

row, nearly all structure has percolated into a foam-like network 

that permeates the entire cosmic volume. This is certainly the case 

for the z = 0.0 cosmic web, while at earlier epochs we still find 

disconnected parts: at the smoothing scale of the density field, the 

universe is not yet permeated by a percolating cosmic web. Also the 

void population is evolving characteristically, from a large number of 

smallish underdense regions at z = 3.8, to one of a considerably lower 

number of much larger void regions. It illustrates the hierarchical 

nature of void evolution, akin to a soapsud of bubbles which merge 

into ever larger ones (see Sheth & van de Weygaert 2004 ; Aragon- 

Calvo & Szalay 2013 ). 

The final pattern and topology of the resulting hierarchically 

evolving mass distribution is determined by the relative dynamical 

time-scales at the different spatial scales of the mass distribution. 

For the Gaussian initial conditions in the early Universe, this is 

fully determined by the primordial power spectrum of density and 

velocity fluctuations. Processes in the early Universe, as well as 

important factors such as the nature of dark matter, arrange the 

power spectrum. It therefore determines in how far we are dealing 

with a clumpy distribution of objects arranged in larger scale web- 

like configurations, or one in which the structures on the scale 

dominating at that epoch have a more coherent appearance. The 

connectivity of these patterns will be radically different. It translates 

into fundamental differences in the multiscale – and hence persistent 

– topology, representing the global phenomenon of connectivity that 

cannot be described by power spectra or correlation functions. 

This study is based on the realization that the visually appreciable 

change in multiscale topology as we proceed from the panel in Fig. 1 

at z = 3.8 up to the panel at the current cosmic epoch at z = 0 should 

allow us to determine with considerable precision the underlying 

cosmology. 

2.3 Persistent homology: background and implementation 

It is useful to summarize the terminology rele v ant to this study. 

Technical details can be found in many of the previously cited 

papers (e.g. Edelsbrunner et al. 2002 ; Edelsbrunner & Harer 2010 ; 

Wasserman 2018 ), while a more detailed summary than can be given 

here is to be found in Pranav et al. ( 2017 ). 

When describing the structural elements of the cosmic web, 

we loosely talk in terms of ‘clusters, filaments, and voids’. In 

topology, we speak descriptively of ‘islands, loops, and shells’ or of 

‘components, tunnels, and cavities’. More precisely, these structures 

are referred to as k -c ycles: 0-c ycles (a connected component), 1- 

cycles (loops surrounding tunnels), and 2-cycles (shells enclosing 

voids). Formally defined in terms of homology groups , the number 

of independent structures, and the size of these groups, are the 

Betti numbers βk . The topology of structures in three dimensions 

is characterized through a triple of Betti numbers: β0 , β1 , β2 . 

At any instant in a cosmological simulation, the character of the 

topology of the superlevel density field (outlined by structures abo v e 

a threshold density) changes with the value of the threshold (see 

Fig. 2 ). With the topology tied to the three Betti numbers, we will 

obtain three curves determining the Betti numbers as a function 

of the threshold. The curves will vary with cosmic epoch, and at 

each characterize the structure. Topology addresses the identity and 

shape of each superlevel set and the spatial connectivity of features 

like islands, tunnels, and cavities or voids. Islands in a superlevel 

set are the regions with a mass density in excess of a specific 

threshold. One may study the connections with different thresholds, 

and with decreasing threshold determine how many tunnels percolate 

their interior, compute the number of cavities they encompass, and 

consider a range of additional questions of interest (e.g. the shape 

or orientation of either of the rele v ant components). One of the 

most important notions in this context is the fundamentally non-local 

character of the topological measures. 

On a more detailed level than that of the Betti curves, and focusing 

in particular on the multiscale nature and interactions of these 

features, we can depict them in so-called persistence diagrams. In 

these diagrams, features are represented as points in two dimensions, 

with the coordinates being the threshold values at which they appear 

in the superlevel density field (they are born ) and at which they 

disappear again (they die ). Accordingly, these values of the threshold 

density are referred to as birth density and death density. Persistence 

diagrams show features at all densities, as opposed to Betti curves 

which show only features ‘alive’ at specific densities. The relation 

between a Betti curve and a persistence diagram is outlined in 

Fig. 3 . We show a mock persistence diagram (bottom panel) and 

the straightforward connection to the corresponding Betti curve (top 

panel). At each density, the Betti curve shows the number of existing 

features, i.e. features that have been born before (at higher birth 

densities) and will die later (at lower death densities). 1 This can be 

imagined as ‘counting’ the number of features in the persistence 

diagram that are to the left and abo v e of the point on the diagonal 

with the chosen threshold density. In Fig. 3 , we illustrate this with 

three examples, at threshold densities of 0.2, 0.5, and 0.7, leading to 

respective Betti numbers of 5, 35, and 14. 

Fig. 3 also illustrates the concept of persistence and topological 

noise. Persistence refers to the stability and lifetime of a feature. It 

is simply the difference between the birth and the death densities, 

and thus quantifies a density range at which it exists in the field. 

Features with high persistence are long-lived, stable and prominent 

(e.g. an isolated high-density island), whereas a low-persistence 

value indicates features that are short-lived or transient, and can 

sometimes be mere noise. In Fig. 3 , the blue shaded region close 

to the diagonal indicates this topological noise, and the red shaded 

region in the upper part of the diagram marks several points of high 

persistence. In particular, the high-persistence points are of great 

rele v ance for this study, as they trace the most prominent features of 

the cosmic web (clusters, filaments, and voids). 

The persistence calculation is done on the basis of decreasing 

superlevel sets of the DTFE density contrast (equation 1 ). Essentially, 

the simplices of the Delaunay triangulation are sorted according 

to their density value. The nested hierarchy of superlevel sets of 

the density field are generated by gradually decreasing the density 

threshold. It is therefore not necessary to recalculate the underlying 

Delaunay triangulation at each threshold. The homology of these 

nested superlevel sets is calculated using the Persistent Homology 

Algorithms Toolbox ( PHAT ) by Bauer, Kerber & Reininghaus ( 2014 ) 

and Bauer et al. ( 2017 ). For all calculations in this study we used 

the ‘chunck’ algorithm of PHAT version 1.2.1. It offers a significant 

speed-up with respect to earlier algorithms. 

PHAT uses a boundary matrix as an input. This matrix stores the 

relation of all sorted simplices to each other, i.e. it specifies whether 

a specific simplex belongs to the boundary of another simplex. A 

more detailed description concerning the boundary matrix can be 

found in Pranav et al. ( 2017 ). Subsequently, the PHAT algorithm 

reduces this matrix and returns a list of independent features with 

associated dimension, birth density and death density. In order to 

1 This assumes a decreasing threshold of the superlevel set, leading to birth 

densities being higher than death densities. 
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Figure 3. A mock persistence diagram and Betti curve. In the lower panel, 

we show 60 randomly generated persistence points (blue dots), with birth and 

death densities between 0 and 1. The points signify k -dimensional features that 

are, respectively, born and destroyed at these densities. All points lie abo v e 

the diagonal (grey dashed line). Points with low persistence (i.e. horizontal 

distance to the diagonal) have a small distance to the diagonal, indicated by 

the blue shaded region adjacent to the diagonal. The red shaded region in the 

upper part of the panel co v ers an area with several points of high persistence. 

The Betti curve in the top panel can be calculated from the diagram below by 

‘sliding’ a rectangular region along the diagonal and counting the persistence 

points that lie in it. This is shown for three densities: 0.2 with 5 features (in 

red), 0.5 with 35 features (in yellow), and 0.7 with 14 features (in blue). 

facilitate the homology computation by PHAT , the computation of 

the Delaunay triangulation is done on a slightly dithered version 

of a completely regular grid, with slightly perturbed positions of 

the completely regular grid (see Bendich, Edelsbrunner & Kerber 

2010 ). This a v oids degenerate point constellations and the resulting 

non-unique structures. 

Due to the computational requirements of the DTFE and PHAT 

codes, we restricted our calculations to a set of simulations with 256 3 

particles. In upcoming related research projects, we are switching 

to the more recent optimized code for persistence computations 

GUDHI (The GUDHI Project 2021 ). A notable example will be by 

Bermejo, Wilding, van de Weygaert & Jones (in preparation), 

which includes the topological analysis of the much larger Planck- 

Millennium simulation (Baugh et al. 2019 ). 

2.4 Persistence visualization 

Depictions of persistence diagrams include one more simplification: 

instead of plotting the persistence points as points, we provide a 

persistence histogram, showing the density of points per h 3 Mpc −3 at 

a certain birth/death densities. Due to the large number of persistence 

points (more than 200 000), depicting them as points is problematic, 

as separate points would be impossible to discern, hence the mo v e 

to indicate the density of points instead. Due to the wide range of 

birth/death densities o v er which structures are present at this stage, 

this wide range is also present in the persistence diagram. With 

the hierarchical process of structure formation, there is also a very 

large number of small-scale structures, as opposed to much fewer 

large-scale (persistent) structures. In the persistence diagram, this 

topological noise occurs with many more persistence points being 

located close to the diagonal (where birth- and death densities are 

similar) than further away (in the region of high persistence). The 

orders of magnitude difference makes logarithmic scales both in the 

axes and the colour bar necessary. This behaviour, as well as the 

roughly triangular shape, is similar in all three dimensions. 

3  H O M O L O G Y  O F  T H E  COSMI C  W E B  IN  

� C D M  C O S M O L O G Y:  z = 0 

The topology of the � CDM cosmic web at z = 0 is used as base 

reference for the other snapshots. We first discuss the o v erall topology 

of the � CDM mass distribution in terms of the one-dimensional Betti 

curves β i [at superlevel density threshold log ( δ + 1)]. Subsequently, 

we turn towards the persistence diagrams for a detailed investigation 

of the multiscale structure and connectivity of the cosmic web. 

It allows us to identify and establish the relationship between 

the physics of the structure formation process and the topological 

characteristics of the cosmic web. 

3.1 Betti cur v es: global homology of the cosmic web 

In the third row of Fig. 4 , we present the redshift z = 0 Betti curves 

for dimensions zero, one, and two (left to right). The three panels 

share the same density axis to facilitate comparison between the 

different Betti curv es. F or all three topological elements, islands 

(dimension zero), loops of filaments/tunnels (dimension one), and 

voids (dimension two), we find a comparable behaviour. For all 

dimensions, the Betti curves are peaked functions centred around a 

maximum, indicating the density at which the (superlevel) density 

field contains the highest number of independent topological features 

components. The Betti curves fall off towards zero towards both 

lower and higher density thresholds. 2 The decrease at the high- 

2 The zero-dimensional Betti curves actually fall off to one, resulting in one 

connected component after the lowest threshold is reached, with a theoretical 

death density of −∞ . As this is al w ays the case (regardless of redshift) and 

to allow the presentation of persistence diagrams on logarithmic scales, we 

ignore this single point. The behaviour of Betti curves at the lowest thresholds 

becomes more rele v ant when treating observational data with non-periodic 

behaviour. Research in this direction is currently being finished and prepared 

for publication (Wilding et al., in preparation). 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
0
7
/2

/2
9
6
8
/6

3
5
3
5
3
2
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

art/stab2326_f3.eps


Cosmic web homology for � CDM cosmologies 2975 

MNRAS 507, 2968–2990 (2021) 

Figure 4. Redshift z = 0 persistence and Betti curves. In the top row from left to right, we depict the logarithmic persistence point density for topological 

features of dimensions zero, one, and two (in red, yellow, and blue) for one of the five independent runs. The birth and death densities on the axes also follow 

a logarithmic scale. The centre ro w sho ws the SD of the persistence diagrams of the five runs (note that darker shading indicates higher agreement, i.e. lower 

SD). The bottom row shows the corresponding Betti curves, also with logarithmic density scale. 

density wing indicates that the corresponding features become 

increasingly rare towards higher density levels. As we proceed 

to e ven lo wer density le vels, dif ferent components start to merge 

into ever larger agglomerates. Ultimately all components merge 

into one percolating structure, and all individual features disappear 

entirely. 

While the Betti curves display the same generic behaviour, 

the density ranges differ considerably. The two-dimensional void 

population reaches significance only at density le vels belo w the 

average density, δ = 0. By contrast, a distinct presence of zero- 

dimensional islands is seen to characterize the density field o v er 

more than two orders of magnitude: we find islands at δ ≈ 100 −1000, 

whereas their numbers are skewed strongly towards higher density 

levels. None the less, we even find some at δ ≈ −0.5. The highest 

number of individual objects is that of the tunnels and filaments. 

They dominate the density field around the average density, with a 

slight skew towards lower density levels. 

Fig. 5 has superimposed the curves β0 (red, dash–dotted), β1 

(yellow, solid), and β2 (blue, dashed) in order to better appreciate 

the systematic differences between the Betti curves. The overlap 

ranges of the different curv es pro vide substantial information on the 

formation process that has produced the density field. For a more 

detailed discussion, it is helpful to infer quantitative information on 

the Betti curves. Towards this end, we parametrize the curves by a 

skew normal distribution. 

3.1.1 Betti curve parametrization 

The Betti curves in Fig. 4 appear to be largely symmetric in terms of 

the logarithm of the density field contrast δ, be it with some moderate 
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Figure 5. Betti curve comparison at redshift z = 0. The Betti curves of 

dimension zero, one, and two (red, yellow, and blue lines), in logarithmic 

scale (top), superimposed. The crosses indicate the Betti number at specific 

filtration densities that were used as a basis for the parameter estimation 

(Table 1 ). Bottom panel: Residuals of the Betti curve skew normal fits, with 

the RMSD given in the legend. 

le vel of ske wness (Prana v 2015 ; Prana v et al., in preparation). The 

moderate skewness in terms of the logarithmic density contrast 

is related to the o v erall near lognormal density distribution of 

the evolved non-linear cosmic mass distribution (Coles & Jones 

1991 ). Within this context, the skewness of each of the Betti 

curves can be understood from the realization that it is the evolved 

manifestation of the symmetric lognormal density distribution for 

each of the structural components (i.e. of the matter concentrations, 

filaments, and voids). Based on this observation, we use the first- 

order term of the normal distribution expansion, the skew normal 

distribution (O’hagan & Leonard 1976 ; Azzalini 1985 ). The function 

is the product of the standard normal distribution function φ and its 

cumulative distribution function (CDF) � . 

f ( x| ξ, ω, α, c) = 
2 c 

ω 
φ

(

x − ξ

ω 

)

� 

(

α
x − ξ

ω 

)

. (2) 

In this expression, x is the filtration density δ. ξ is the location 

parameter and ω the scale factor of the distribution, while c is a 

normalization constant. The value of α parametrizes the shape of the 

curve and relates directly to the skewness of the distribution: when α

> 0 the curve is right skewed, when α < 0 it is left skewed. For the 

fitting routine ( scipy.optimize.curve fit ), we use Python’s 

implementation of the normal distribution from scipy.stats . 

The uncertainty in the value of the parameters is estimated from the 

variation between the five different realizations. 

Following the above, we fit a skew normal distribution to the Betti 

curves, yielding four characteristic parameters. The fit works very 

well, as evidenced by the residuals in the bottom panel of Fig. 5 and 

the low root-mean-square deviation (RMSD). 

Among the parameters of the skew normal distribution, the mean 

μ and standard deviation (SD) σ can be inferred directly from the 

identities 

μ = ξ + ωμz , and (3) 

σ = 

√ 

ω 2 

(

1 −
2 δ2 

π

)

, (4) 

in which 

μz = 

√ 
2 

π
δ , δ = 

α
√ 

1 + α2 
. (5) 

3.1.2 Betti curves and structural connectivity 

A fe w observ ations with respect to the Betti curves in Fig. 5 bear 

directly on the connectivity of the various topological features. 

The first observation is that there are clearly distinguishable 

density regimes over which the topology is almost exclusively 

dominated by only one of the topological features. The regions 

hav e substantial o v erlap, in which we can distinguish two or more 

different topological features in the superlevel density field. The most 

substantial o v erlap re gimes concern those between the islands and 

filamentary loops, i.e. between β0 and β1 , and those between the 

filaments and voids, i.e. between β1 and β2 . There is a narrow range, 

around the average density δ = 0, at which we see a significant 

presence of all three feature classes. 

There is a large density range o v er which the topology is almost 

e xclusiv ely dominated by zero-dimensional features, i.e. by density 

islands. The mass distribution for δ � 5 is mainly that of disconnected 

island clusters. It is interesting to note that this is approximately the 

density contrast corresponding to density enhancements undergoing 

gravitational contraction (Gunn & Gott 1972 ). On the low-density 

side, we find a similar behaviour with respect to the β2 curve 

characterizing the presence of voids: below δ ≈ −0.8 voids are 

the sole topological features in the density field. Also this we may 

relate to the dynamics of the structure formation process: voids in 

the cosmic mass distribution mature and stand out as individual 

low-density basins as they have decreased their density to δ ≈
−0.8 (Blumenthal et al. 1992 ; Sheth & van de Weygaert 2004 ). 

F or the comple x geometry and topology of the cosmic web, the 

most interesting regime is that where we see a substantial o v erlap 

between the Betti curves, most prominently between β0 and β1 . 

Starting from the maximum of β0 at δ = 3.4 (see Table 1 ), which 

is indeed close to the theoretically expected value of δ � 5 for 

gravitational contraction (and only lower because noisy features at 

lower densities are considered as well), we see that the number of 

individual islands/clusters rapidly decreases towards lower density 

thresholds, while at the meantime noticing from the β2 curve a quick 

rise in the number of tunnels/filaments. 

The latter reflects the fact that while individual island clusters 

merge into ever larger agglomerations, the number of tunnels and 

filaments connecting these is increasing at an even higher rate. 

It is the topological signature of the emergence of structure from 

perturbations (Doroshkevich 1970 ), in particular that of the cosmic 

web (Zeldovich 1970 ; Bond et al. 1996 ; van de Weygaert & Bond 

2008 ): high-density ridges get connected into an increasingly per- 

colating structure characterized by filamentary bridges. Ultimately, 

at the near universal density δ = 0, all islands are connected into a 

single percolating and volume pervading structure, the cosmic web . 

The o v erlap between the β2 and β1 curves differs slightly from that 

between islands and filaments, in the sense that the corresponding 

features co-e xist o v er a larger density range (from the perspective 

of the voids). Physically, it entails the transition from a situation in 

which the superlevel set at higher density thresholds consists mostly 

of filamentary bridges to one in which these filaments are absorbed 
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Table 1. Betti peak positions in � CDM simulations. The filtration densities are based on δ + 1 for redshifts 

z = 0, 1, and 3.8 in columns 2 to 4 from the left, and compared to a Gaussian random field based on 

ν = 
δ
σ

(transformed to mean-zero densities, see equation 8 ) after smoothing on a scale of 2 h −1 Mpc. This is 

discussed in more detail later in Section 4.2 . The uncertainties are the combined uncertainties from the five 

runs, and calculated from the bin size of the Betti curves. 

Dim δ + 1 δ
σ

z = 0 z = 1 z = 3.8 � CDM GRF 

0 4.4 ± 0.2 4.1 ± 0.2 1.90 ± 0.05 2.0 ± 0.1 
√ 

3 ≈ 1 . 7321 

1 0.64 ± 0.02 0.85 ± 0.02 0.93 ± 0.03 − 0.10 ± 0.03 0 

2 0.181 ± 0.005 0.297 ± 0.009 0.53 ± 0.02 − 1.23 ± 0.02 −
√ 

3 ≈ −1 . 7321 

into slabs that fill in the boundaries of underdense void basins. We 

notice there still is a substantial number of filamentary loops while 

the superlevel set has attained a near maximum number of fully 

enclosed voids. Only towards the voids with the lowest densities, we 

see a rapid decrease of filamentary loops as they get absorbed into 

their boundary shells. 

3.2 Persistence analysis: multiscale structure and connections 

in the � CDM cosmic web 

While the Betti curves provide information on the global topological 

structure of a density field, insight into the detailed multiscale 

structure, and the corresponding hierarchical evolution of the field, 

can only be obtained from the far richer information content of the 

persistence diagrams. 

The persistence diagrams in Fig. 4 reveal the multiscale nature of 

topological features of various dimensions. We show them in the top 

row, together with the SD for each bin of the persistence diagrams 

of the five independent runs (centre row). The points (associated 

with pairs of birth–death densities) in all three diagrams display a 

characteristics triangular shaped morphology. They have a firm and 

broad diagonal base, at which we find the vast majority of detected 

points, which correspond to lo w-significance short-li ved features. 

The more interesting region of the diagrams concerns the triangular 

region. In all dimensions, the hierarchical process of structure 

formation leads to the convergence of the (birth and death) density 

ranges towards (for the respective dimension) characteristic values, 

producing the distinct triangular shape. Typically, it is bounded by the 

diagonal and two concave edges, with the latter meeting at a sharply 

defined apex. The (birth, death) pair density along the diagonal is 

up to four orders of magnitude higher than in the interior of the 

triangular region. The diagonal points represent topological noise, 

noisy features that are annihilated shortly after they are born. The 

better agreement (indicated by the lower SD) for the regions closer to 

the diagonals is largely due to the high number of persistence points 

located there. While the SD increases towards the more relevant apex, 

it is still moderate, although shot-noise starts to appear in regions with 

exceptionally few persistence points. 

Reflecting the behaviour of the Betti curves, there is a substantial 

difference in the density range o v er which the zero-, one-, and two- 

dimensional features – in the triangular shaped region of significant 

features – are found in the persistence diagrams. High-density islands 

expand a density range of more than two orders of magnitude, while 

filaments and tunnels are found in a much narrower density range of 

slightly more than one order of magnitude around δ ≈ 1. Voids, the 

two-dimensional features, are mostly confined to an even narrower 

density range of less than one order of magnitude near δ ≈ −0.8. 

The interior and concave boundaries of the triangular regions in the 

persistence diagrams contain a wealth of information on the structure 

and topology of the corresponding features. This concerns both the 

o v erall global distribution of these features, as well as the detailed 

multiscale structure emanating from the hierarchical evolution of 

the dark matter distribution. For all three persistence diagrams, we 

find that one concave boundary tends to have a sharper outline, 

while the other is more curved and tends to have a more fuzzy and 

slowly fading outline. Apart from this similarity, we observe telling 

differences between the diagrams that reflect interesting differences 

in the multiscale nature and connectivity of peaks and islands, 

tunnels and filaments and voids. One such difference is visible in 

the zero-dimensional diagram, where the left-hand wing appears 

concave at the lowest densities while, separated by an inflection 

point, exhibiting an almost convex behaviour when approaching the 

apex. In general, these differences reflect the different density ranges 

o v er which the corresponding structural features are born, exist, and 

die – global information that is also found in the corresponding 

Betti curves. In addition, the differences in shape and morphology 

of the persistence diagrams reflect more profound differences in 

the multiscale structure and hierarchical evolution of the structural 

components of the cosmic web. 

In terms of their morphology, the most outstanding aspect of the 

diagrams is the presence of an ape x. The e xistence of such distinct, 

discontinuous features suggests the presence of a sharp ‘phase’ 

transition in the multiscale embedding of topological features. Also, 

we find that such a transition works out differently for islands, 

tunnels, and voids. 

3.2.1 Cosmic web formation: island and filament persistence 

In the case of the zero-dimensional islands (Fig. 4 , top left-hand 

panel), the apex of the persistence diagram marks the location of the 

features with the most extreme birth density. They are the islands 

that have gravitationally formed in and around the highest density 

peaks in the initial Gaussian field of density fluctuations and which 

evolved into prominent high-density clusters. These objects reflect 

the steep Gaussian tail of density peaks (see Adler 1981 ; Bardeen 

et al. 1986 ). The fact that they are found at such a narrowly defined 

apex suggests they all disappear at almost the same death density. 

It is as if these islands get joined – along with a large number 

of entities created at more moderate density levels – into a large 

agglomerate (or agglomerates) at one particular critical density, δ

≈ 5. Interestingly, this is around the density value where matter 

enhancements decouple from the Hubble expansion and gravitational 

contraction sets in (Gunn & Gott 1972 ). 

Turning to the corresponding one-dimensional persistence dia- 

gram, we gain more insight into the fate of the disappearing islands 

in the zero-dimensional diagram. Here, we observe that the triangle 

containing most features has an almost horizontal fuzzy edge. It 

suggests that there are not many filaments and tunnels that are born 
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abo v e δ � 5.0, almost at the same level where we find the apex in 

the one-dimensional diagram. 

While the sharp transition marked by the persistence ape x es 

represents the principal process of cosmic web formation, it may 

not be surprising that the process is marked by a more varied and 

richer evolutionary history. We also recognize the imprint of these 

in the zero-dimensional persistence diagram (Fig. 4 ). We see that on 

both sides of the apex, the zero-dimensional persistence diagrams 

widens. On the low-density side, we find a substantial fraction of 

density islands that merge and disappear at a lower density than that 

marking the emergence of the cosmic web at δ ≈ 5.0. Individual 

density islands remain in existence even while the major share of 

mass resides in the cosmic web, to get absorbed into the o v erall 

web-lik e netw ork at a lower density. At the high-density side, the 

persistence diagram is marked by a fuzzy edge. This marks objects 

that get absorbed by surrounding agglomerations relatively fast after 

their birth, before these got incorporated in the cosmic web. 

The observed transitions in the zero- and one-dimensional per- 

sistence diagrams represent a telling illustration of the birth of the 

cosmic web . W ith δ ≈ 5.0 marking the level where we notice a 

characteristic transition in which islands get connected into per- 

colating mass agglomerations, we also observe the birth of many 

filaments and tunnels. It suggests that the assembly of the merging 

islands proceeds via the establishment of filamentary connections, 

along with corresponding tunnels. The zero-dimensional persistence 

diagram apex indicates that the density concentrations that join into 

the percolating network of the cosmic web are the ones that decouple 

from the Hubble expansion and undergo gravitational contraction. 

3.2.2 Void hier arc hy: two-dimensional persistence and the void 

population 

On the low-density side of the matter field, we turn towards the 

two-dimensional persistence diagram. Its shape differs to that of 

the zero- and one-dimensional diagrams. It has a sharp apex that 

marks a narrow ridge of void birth densities around δ ≈ −0.8. 

This is indeed the characteristic density for voids in the galaxy and 

matter distribution (see e.g. Blumenthal et al. 1992 ; Sheth & van de 

Weygaert 2004 ; van de Weygaert & Platen 2011 ; van de Weygaert 

2016 ). Comparison between the zero- and two-dimensional diagrams 

therefore reveals that whereas cluster peaks and conglomerates 

possess a high diversity of densities, voids tend to have a largely 

similar underdensity. 

A particularly outstanding aspect of the two-dimensional diagram 

is the sharp apex. It delineates an indentation to wards lo wer birth 

density levels. It is a reflection of the fact that individual deep 

voids are non-existent. More towards the right, we encounter voids 

at such low densities. They tend to be the deepest pits in a larger void 

complex of a more moderate average density . Evidently , soon after 

they appear as individual topological features they disappear as they 

fill up with decreasing density threshold. Also some shallower voids 

can be discerned, emerging at density levels δ > −0.7. However, 

these tend to be substantially closer to the diagram’s diagonal. Most 

of these are small shallow void regions near the boundary of large 

void regions (see e.g. Sheth & van de Weygaert 2004 ; Hidding, van 

de Weygaert & Shandarin 2016 ). 

In summary, the abo v e rev eals that at any one cosmic epoch, most 

significant – topologically identified – voids are the ones that show 

up at a density threshold δ ≈ −0.8. At a higher density level, most 

of these individual voids are embedded and connected in a larger 

underdense depression, a percolating region that grows in extent 

towards the higher density levels that demarcate these regions. 

It is highly interesting to realize that the two-dimensional mul- 

tiscale topological structure that we just described is a reflection 

of the known hierarchical evolution of the void population. The 

characteristic density ridge in the persistence diagram at δ ≈ −0.8 

is a reflection of the fact that voids become truly non-linear as 

they undergo shell crossing, i.e. when their interior mass elements 

o v ertake the outer layers (Blumenthal et al. 1992 ; Sheth & van de 

Weygaert 2004 ). 3 Blumenthal et al. ( 1992 ) pointed out that it is 

these matured voids that are the ones found in the matter and galaxy 

distribution, which Sheth & van de Weygaert ( 2004 ) translated into 

a theory for the hierarchically evolving void population (see also 

Dubinski et al. 1993 ). 

3.2.3 Filaments and tunnels: the one-dimensional persistence 

diagram 

Armed with the insight provided by the zero-dimensional diagram 

on islands and the two-dimensional one on voids, we are equipped 

to establish the relation with the role of filaments and tunnels in the 

o v erall mass distribution. These exist at intermediate densities, where 

the one-dimensional persistence diagram traces the one-dimensional 

filamentary network (Fig. 4 , middle column). 

The one-dimensional persistence diagram also displays several 

distinctive features. It has a rather symmetric shape, it also has an 

apex, although it is a rather broad one at the tip of slightly concave 

edges and whose location differs substantially from that of the zero- 

and two-dimensional diagrams. The apex is located at a formation 

density of δ ≈ 5 and elimination density δ ≈ −0.7 

For our focus on the cosmic web, we may argue that the upper 

edge of the one-dimensional diagram, the nearly horizontal fuzzy 

border that slopes slightly upward, is of central importance. In 

a sense, it demarcates the formation of the cosmic web in the 

form of a percolating network. From our discussion of the zero- 

dimensional diagram, we already learned that it coincides with a 

sharp topological transition. To better investigate this transition, we 

highlight the connected structure in Fig. 6 by enlarging a region of the 

density field shown earlier (cf. Figs 1 and 2 ). The comparison of the 

filamentary structure (centre panel) with the DM particle distribution 

(left-hand panel) shows that the careful selection of the threshold 

(see Section 2.4 for the details) allows the enhancing of a particular 

component of the cosmic web. This also holds for the depiction of 

cosmic walls (right-hand panel), although the visualization using 

slices can suffer due to the fact that walls intersecting the slice would 

appear similar to (less dense) filaments. The actual filaments in the 

centre panel are shown at a critical threshold (which depends on the 

number of filamentary loops), where a large number of prominent 

filaments have already connected up while forming tunnels. These 

filaments and tunnels are born in the narrow density range of δ

≈ 5 in which individual high-density islands get merged into one 

perv asi ve network. The corresponding connections are established 

via the filamentary bridges that we see emerging at this narrow range 

of density levels in the one-dimensional diagram. 

We also find that the web-like network is quite fragile and transient. 

As we proceed to lower density thresholds the network starts to fill 

up and incorporate walls, filling loops of filaments and turning them 

3 Ideally, δ = −0.8 is the non-linear density of isolated spherically symmetric 

voids, δv = −2.81 the corresponding linear extrapolated underdensity for a 

shell crossing void (see Sheth & van de Weygaert 2004 ). 
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Figure 6. The filamentary cosmic web – zoom. We show an enlarged region of the density field from Fig. 1 . To highlight the connecting structure, we compare a 

slice through the DM particle distribution (left-hand panel) with slices through the density field of the filamentary structure (centre panel), and the wall structure 

(right-hand panel). 

Figure 7. Redshift z = 0 marginal death CDF. We show the marginal CDF of persistence points for a set of constant birth densities and for increasing death 

densities [left-hand panel, the log ( δ + 1) birth densities are indicated in the legend]. The right-hand panel shows the corresponding persistence diagram, with the 

birth densities of the CDFs indicated in the same colour as in the left-hand panel. Highlighted (with lines in bold in both panels) are the regions where the CDFs 

intersect the boundary of the persistence diagram, which is mirrored in a steep rise of the distribution functions, after which they level off. This levelling-off is 

perceptibly stronger for the curves at high birth densities. 

into sheets. Once these are joined into a shell, an isolated cavity 

splits off and is born as a fully enclosed void. This process relates 

to the left-hand edge of the one-dimensional persistence diagram –

it is the transition marking the formation of voids. From the diagram 

we infer that it also occurs in a comparatively narrow density range, 

corresponding to the steep, nearly vertical, edge on the left-hand side 

of the two-dimensional apex. It delineates the narrow boundary – at 

a density of δ ≈ −0.7 – below which nearly all filaments and tunnels 

die. At that level, we are actually dealing with the remaining tenuous 

tendrils and interstices in underdense re gions. The y are the last 

v estiges and representativ es of the filamentary bridges and tunnels 

that mark the connections between the largest mass concentrations 

in the cosmic web. 

3.2.4 Persistence and cosmic structure formation 

Persistence diagrams open up a significantly higher and more 

profound level of information on the structure formation process 

than possible with the more global summary statistics like Euler 

characteristic or Betti numbers. They are unique in their ability to 

unco v er the nature of structural transitions, such as the sharp ‘phase’ 

transitions we found and discussed in the previous paragraphs. While 

some of these relate to known physical effects, others – such as the 

sharp connectivity transition producing the cosmic web – are in need 

of further investigation. 

As an illustration of furthering the exploration of the information 

content of persistence diagrams, Fig. 7 provides more details on 

the (birth, death) process of topological features, by focusing on 
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Figure 8. Evolution of � CDM homology, Betti curves. Betti curves of dimensions zero, one, and two (left to right) for all redshifts, in linear (top row) and 

logarithmic scale (bottom row). To illustrate the time evolution, the curve corresponding to the earliest snapshot (redshift z = 3.8) is the darkest (black) and 

brightness increases when progressing towards lower redshift, until the curve for redshift z = 0 is red, yellow, or blue, according to the respective dimension of 

zero, one, and two. We see a clear shift in the position of the curve maxima, as well as in their height. 

their marginal CDF. The diagram reveals the density levels at which 

features born at one particular density threshold finally disappear. 

We obtain this by assessing the distribution along horizontal lines 

in the persistence diagrams (see right-hand panel of Fig. 7 ). In all 

cases, we find a steep rise, coinciding with a density level at which 

these features enter the left-hand edge of the persistence diagram 

(left-hand panel, Fig. 7 ). In the interior of the persistence diagram, 

there is a near uniform distribution of densities at which features 

disappear, translating into a near linear increase of the CDF. This 

situation changes only near the diagonal, as we get to deal with noisy 

structure. 

From the left-hand panel of Fig. 7 , we also see the systematic shift 

of death densities as we proceed from high filament and tunnel birth 

densities to the lowest birth densities: the last vestiges of filaments 

and tunnels, that go along with the formation of low-density basins, 

are of a different nature than the prominent filamentary bridges and 

tunnels that are born as the percolating network of the cosmic web 

established itself at a density level δ ≈ 5.0. Turning to the low-density 

side, in the marginal CDF we see that below birth density δ = −0.76, 

the filaments/tunnels are hardly significant: they disappear almost 

at the same level as they are born. Thus, at the level where we see 

the formation of individual voids, there are no longer filamentary 

tendrils bridging along these regions. 

4  � C D M  COSMI C  W E B  H O M O L O G Y:  

E VO L U T I O N  

Following the detailed analysis of the topology of the � CDM mass 

distribution at redshift z = 0, we address the evolution of that 

topology in terms of the development of the Betti curves and the 

persistence diagrams. 

To assess the evolution of the cosmic web topology in � CDM, 

we analyse the � CDM mass distribution at 8 redshifts, z = 3.8, 

2.98, 2.05, 1.00, 0.51, 0.25, 0.1, and 0.0. We use five different 

simulation runs to obtain estimates of the variance and uncertainty 

in the resulting mass distribution at each of the redshifts. 

4.1 Betti cur v es: ev olving global cosmic web homology 

Fig. 8 presents the evolving Betti curves for the three topological 

features – islands (dimension zero), filamentary loops (dimension 

one), and voids (dimension two). In each of the panels, we super- 

impose the Betti curves of the corresponding dimension for each of 

the probed redshifts. The top row panels list the Betti curves with 

the x - and y -axis both in linear scale, and the corresponding log–log 

diagrams are lined up in the bottom row. The evolving topology of 

the mass distribution can be most straightforwardly appreciated from 

the log–log plots. They provide the following observations: 
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Figure 9. Betti curve evolution: parameters. Fit parameters location ξ (top left), scale ω (top middle), skew α (bottom left), and scaling constant c (bottom 

middle) of the Betti curves and their evolution at eight different redshifts, calculated as the mean of five simulation runs. The uncertainties are the combined 

uncertainties as provided from the fitting routing. Except for the skew α, the uncertainties are too small to be visible. Clear trends are apparent, but more 

meaningful descriptive parameters can be calculated in an additional step and are shown in the right column: the mean μ (top right) and the mode (bottom right). 

The mean and the corresponding uncertainty is calculated directly from the fitting parameters. The mode is measured from the Betti curves, with uncertainties 

as the SD of the five measurements. We point out that uncertainties are al w ays known but only discernible for the zero-dimensional mode). 

(i) The zero- and one-dimensional Betti curves are systematically 

broadening as the mass distribution evolves. Both the low-density and 

high-density wings are widening, around a maximum that is shifting 

only relatively weakly. Also the two-dimensional Betti curve is 

broadening, but only moderately, accompanied by a large systematic 

shift of the peak towards lower densities. 

(ii) The height of the one- and two-dimensional Betti curves 

sho ws a do wnward trend. By contrast, the zero-dimensional sho ws 

an upward trend. 

(iii) The maximum of all three Betti curves at early times and 

high-redshift centres around the mean density, i.e. δ + 1 = 1. As 

the mass distribution evolves, the maximum of all three curves shifts 

away from the mean density. The maximum of the zero-dimensional 

curves shifts towards higher densities. The maximum for the one- 

dimensional curve shifts to slightly lower densities, while the peak 

of the two-dimensional Betti curve shows a large systematic shift 

to wards lo wer densities. 

4.1.1 Betti curve evolution: quantitative analysis 

To quantify the systematic changes of the Betti curves we assess the 

evolution of the parameters of the fitting skew normal curves (see 

equation 2 ). As discussed in Section 3.1.1 , the skew normal curves 

are fully specified by four parameters, a location ξ , scale factor ω 

and shape α, together with a normalization constant c . We determine 

the values of these four fitting parameters for each of the three Betti 

curves, at each of the eight analysed snapshots. 

Fig. 9 shows the development of these parameters (left and 

middle column) as function of redshift z. A few systematic trends 

immediately stand out: 

(i) For dimensions one and two, the location parameter ξ ( z) (top 

left) displays a monotonic decrease from high redshift to z = 0. 

Over nearly the entire redshift range we see an increase for the zero- 

dimensional location parameter ξ 0 ( z), nearing a plateau or minor 

decrease from z = 0.5 to z = 0. 

(ii) All Betti curves are monotonically broadening. The width 

ω 0 ( z) for dimension zero is most steeply increasing, while the width 

ω 2 ( z) of the two-dimensional Betti curves reveals a moderate growth. 

(iii) The evolution of the shape parameter α( z) is not uniform. 

For dimension two, we see a monotonic increase of the shape 

parameter α2 ( z). It indicates a continuous increase of the skewness 

of the void Betti curve towards higher densities, as it shifts from 

the initial near Gaussian phase towards an ever more stronger non- 

Gaussian distribution. The shape of the zero- and one-dimensional 

Betti curves does not reveal major systematic changes, although 

they both show deviant values at and around z = 2.0, with a 

sharp minimum for dimension zero and a maximum for dimension 

one. 

(iv) Also the normalization constant c ( z) reveals characteristic 

behaviour. While the scaling parameter shows a monotonic and steep 

increase for the zero-dimensional Betti curve, c 2 ( z) retains an almost 

constant value. The Betti curve for loops of filaments reveals a mild 

increase towards z = 0.0. 
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Figure 10. Betti curv es: � CDM v ersus Gaussian random field. For dimensions zero, one, and two, we show the Betti curves of the � CDM cosmic web 

at redshift z = 3.8 (averaged over the five runs) on the left and of a Gaussian random field in the middle. In particular, the position centred at zero of the 

one-dimensional Betti curve is similar, as well as the positions of the peaks of the zero- and two-dimensional Betti curves to the right and left, at roughly ±
√ 

3 . 

The right-hand panel shows the Euler characteristic for the Gaussian random field and that for the evolved web-like distribution at redshift z = 3.8. 

The evolution of one inferred parameter [the mean μd ( z)] is plotted 

in Fig. 9 (top right-hand panel). It provides a more direct view of 

the evolving Betti curv es: the dev elopment of the mean μd directly 

reveals the shift of the peak maximum. This is also borne out by the 

mode, 4 which we show in the bottom right-hand panel of Fig. 9 . Both 

panels show a clear increase of the mean and mode of the peak of 

the zero-dimensional Betti curve, along with a monotonic decrease 

of that for the two-dimensional Betti curves. The one-dimensional 

Betti curves indicate a filamentary network that appears to evolve 

more strongly after z = 1.5, from which epoch onward we notice a 

gradual decrease of its characteristic density. 

4.2 The � CDM cosmic web and Gaussian initial random field 

The process of structure formation in the Universe proceeds along 

distinctly different regimes of dynamical development. It starts with 

the initial field of Gaussian random density and velocity fluctuations. 

Subsequently, structure evolves from a long linear evolution phase 

in which it retains a near perfect Gaussian character. The first 

v estiges of comple x structure emerge during the quasi-linear phase, 

ultimately culminating in the development of highly non-linear 

collapsed structures and objects in the fully non-linear regime. 

Given that the cosmic web and non-linear structure are the 

product of the gra vitationally ev olved initial Gaussian conditions, it 

is interesting to investigate in how far it has retained – topologically –

the memory of the primordial density and velocity field out of which 

it arose. In several accompanying studies, we analysed in detail the 

structure and topology of Gaussian random fields (Feldbrugge et al. 

2019 ; Pranav et al. 2019a ; Pranav et al., in preparation). 

Fig. 10 compares the topology – in terms of the Betti curves – of 

the earliest epoch represented in the simulations at redshift z = 3.8 

with that of a related Gaussian random field. To facilitate comparison, 

we use the normalized density ν as filtration quantity, 

ν = 
δ

σ
. (6) 

4 Which unfortunately cannot be calculated analytically for the skew normal 

distribution. Also notice that the uncertainties of the mean are much lower 

than the uncertainties of the mode. The mean is calculated directly from fitting 

parameters, whereas the mode is measured from the original curve itself. The 

uncertainties of the latter depend on the sampling of the curves. 

To allow a comparison, both fields are smoothed on a scale of 

2 h −1 Mpc using a Gaussian filter. The first observation is that of 

a prime difference between the symmetric Gaussian field and the 

non-linear density field. In a Gaussian field the β0 and β2 curves 

are mirrored, symmetric images of each other. This reflects the 

perfect symmetry between underdense and o v erdense re gions in 

Gaussian fields. Non-linear gravitational e volution e vidently breaks 

the symmetry between underdense and o v erdense re gions. This is 

clearly reflected in the strong asymmetry between the β0 and β2 

curves in the left-hand panel of Fig. 10 . 

As a result, the field develops an ever larger asymmetry between 

underdense and o v erdense re gions. While underdense re gions are 

confined to a density deficit in the limited range of −1 < δ < 

0, o v erdense re gions dev elop a long tail of almost unconstrained 

o v erdensities, such as massiv e clusters of galaxies with o v erdensities 

in excess of δ ≈ 1000. Gravitational evolution leads to the develop- 

ment of a field with an increasingly non-Gaussian character. In the 

strongly non-linear situation, this can be reasonably approximated 

as a lognormal field (Coles & Jones 1991 ). 

Topologically speaking, we find that at z = 3.8 the β0 and 

β2 curves are strongly deformed, skewed and shifted versions of 

the corresponding Betti curves in the linear-regime Gaussian field. 

Whereas the order of the Betti curve maxima remains the same, their 

exact positions help to illustrate the differences. In the case of the 

Gaussian random field they are located at ν = −
√ 

3 ≈ −1 . 732, 0, 

and + 
√ 

3 ≈ 1 . 732. For the evolved mass distribution at z = 3.8, we 

find that the maxima of the β0 , β1 , and β2 curves have shifted to ν

≈ 2.0, −0.1, and −1.23 (see also Table 1 ). 

The β0 curve has developed a long high-density tail reflecting 

the formation of the gravitationally contracted and collapsed mass 

concentrations. The β2 curve shows that the void population is 

much smaller than that of the wide spectrum of o v erdense mass 

concentrations. Evidently, almost by definition it remains within a 

narrow density range. As a consequence of the hierarchical evolution 

of voids – through merging of smaller voids into ever large ones – the 

number density of voids (and hence the area below the Betti curve) 

is decreasing. In combination with the fact that voids occupy most of 

the cosmic volume (see e.g. van de Weygaert & Platen 2011 ; Cautun 

et al. 2014 ), and hence do not leave space for additional ones, the 

implication is a decrease in the number of voids. 

The development of the filament and tunnel population as repre- 

sented by the β1 curve appears to entail a more modest evolution. The 
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Figure 11. Shaded slices through the density field. We show the evolution of the cosmic web for decreasing redshift from left to right. Structural components 

are emphasized by shading the pixels depending on the Betti numbers. The cut-off densities are the same as in Fig. 2 and depend on the maxima of the Betti 

curves (Table 1 ). High-density regions are coloured black, regions of intermediate density are coloured dark grey, low-density regions are coloured light grey 

and the regions of lowest density are coloured white. We associate black with clusters, dark grey with filaments, light grey with walls, and white with voids. 

β1 curve at z = 3.8 still resembles the curve of the Gaussian initial 

conditions, though now modestly skewed with a slightly longer tail 

towards higher densities. For lower densities it appears to fall off 

towards 0 faster than in the initial Gaussian field. This suggests that 

in particular the population of higher density filamentary bridges, a 

key element in establishing the cosmic web, is gradually becoming 

a more prominent aspect in the cosmic mass distribution. This is in 

line with our view of the dynamical evolution and buildup of the 

cosmic web (see e.g. van de Weygaert & Bond 2008 ). 

We know that the Betti numbers are intimately related to the Euler 

characteristic (see e.g. van de Weygaert et al. 2011 ; Pranav et al. 

2019a ). The Euler characteristic χ is the alternating sum of Betti 

numbers, 

χ = 
∑ ∞ 

k= 0 ( −1 ) k βk 

= β0 − β1 + β2 . (7) 

The right-hand panel of Fig. 10 presents the comparison of the Euler 

characteristic χ for the Gaussian initial conditions (red, dashed) with 

the evolved web-like distribution at redshift z = 3.8 (black, solid). 

The Euler characteristic at z = 3.8 has clearly evolved away from the 

well-known symmetric shape for a Gaussian random field (see Adler 

1981 ; Bardeen et al. 1986 ; Hamilton et al. 1986 , for the analytical 

expression). 5 Instead, we see a narrow low-density wing and a broad 

high-density wing. 

4.3 Topological visualization of density fields 

One aspect of Betti curves that we may use to provide an informative 

topological visualization of the mass distribution is the finding that 

the characteristic topological features – voids, loops of filaments, and 

clusters – typically dominate the mass distribution o v er specific den- 

sity ranges. We infer this directly from the fact that the corresponding 

Betti curves delineate different ranges o v er which the y peak. In other 

words, Betti curves of different dimensions dominate at characteristic 

5 Strictly speaking, the symmetric expression for the Euler characteristic of 

Gaussian random fields is only valid for compact manifolds without boundary. 

The correct expression for any (more realistic) configuration is given by the 

Gaussian Kinetic Formula (Adler & Taylor 2007 ; Pranav et al. 2019a ). 

density level, which implies that the mass distribution at different 

density levels is dominated by different structural components (Figs 2 

and 6 ). 

The indication that each of the specific topological features is 

dominant o v er a specific density range suggests the possibility to –

at least roughly – visualize the occurrence of islands, filaments and 

tunnels, and voids and walls by identifying typical density thresholds 

and plotting the corresponding superlevel sets. Fig. 2 shows the 

superlevel sets corresponding to density levels equal to the maxima 

of the zero- (top row), one- (medium row), and two-dimensional 

(bottom row) Betti curves. The evolution of the evolving structural 

elements of the cosmic web can be appreciated from the three panels 

in each row: the left-hand panel shows the high-redshift configuration 

at z = 3.8, the middle panel that at a medium redshift z = 1.0, and 

the right-hand panel the low-redshift situation at the present epoch, 

z = 0. The values for the densities at the corresponding Betti curve 

maxima are listed in Table 1 . 

The topologically selected patterns elucidate the role and devel- 

opment of clusters and islands, filaments and tunnels, and voids and 

walls, in defining the cosmic web. The first structures to emerge in 

the cosmic matter distribution are the peaks and the matter islands 

forming around them. While they represent rare mass concentrations 

at high redshift, from z = 1 onward their distribution reveals a spatial 

organization along web-like patterns, where they are found in the 

most prominent filaments and walls of the cosmic web. Along with 

this, the accompan ying dev elopment of the intricate filamentary and 

w all-lik e structures reveals the hierarchical buildup of the spine of 

the cosmic web (see Arag ́on-Calvo et al. 2010b ; Cautun et al. 2014 ). 

At the lowest threshold, corresponding to the dominance of voids, 

we see that the mass distribution is evolving from one with large 

disconnected web-like patches into one that consists of a percolating 

foam-lik e netw ork permeating the entire cosmic volume. At this 

level, the mass distribution is dominated by walls and voids, defining 

a landscape that is indented by void cavities. The void population 

is evolving hierarchically from one of a large number of smallish 

underdense regions to one of a considerably lower number of much 

larger void regions (Sheth & van de Weygaert 2004 ). 

Fig. 11 shows a variation on the topological segmentation of 

the mass distribution. It combines the information of the three 

Betti curves in one image, in which the shade is determined by 
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Figure 12. Evolution of � CDM homology, persistence histograms. The rows from top to bottom depict the logarithmic persistence point density of dimension 

zero, one, and two (in red, orange, and blue). From left to right, the panels have redshift z = 3.8, 1, 0. The axis limits and scale are the same for all diagrams, to 

allo w easier comparison, e ven though (particularly for the diagram of dimension two) large parts of the plotting areas do not contain information. We refer to 

the text concerning what information on the hierarchical formation can be deduced from these diagrams. 

the dominant Betti number/topological component. It produces a 

natural segmentation, in which connected high-density regions are 

represented by black shades, intermediate-density regions with the 

filamentary structure are shaded dark grey, and low-density regions 

corresponding to walls light grey, while the lowest density regions –

the voids – are shown in white. 

4.4 Evolution of persistence of the � CDM cosmic web 

Persistence diagrams provide detailed information on the evolving 

multiscale structure of the mass distribution. As such the evolving 

persistence diagrams form a direct reflection of the intricate hierar- 

chical buildup of structure. 

The typical evolution of the persistence diagrams of the 

� CDM mass distribution is shown in Fig. 12 . It shows the zero-, 

one-, and two-dimensional persistence diagrams for three redshifts, 

the high redshift of z = 3.8, the medium redshift z = 1.0, and the 

present epoch z = 0.0. A quick first glance at Fig. 12 reveals that: 

(i) To first order, the persistence diagrams – for dimensions zero, 

one, and two – retain their triangular shape as the cosmic mass 

distrib ution ev olves. The principal ev olutionary trend is a gradual 

uniform expansion of the triangular core region. This ‘expansion’ 
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of the persistence diagrams is a reflection of the gravitationally 

evolving density field. It leads to the emergence of a growing 

population of topological features, whose characteristic density spans 

a continuously increasing range of values. 

(ii) The uniform expansion of the persistence diagram translates 

itself in a stretching of the range of birth and death densities 

of features in the cosmic matter distribution, as well as in their 

persistence values. 

(iii) In addition to their widening, we see a shift of the centre of 

the persistence diagrams’ triangular core region. This shift is a clear 

hallmark of the non-linear hierarchical evolution of the cosmic mass 

distribution. 

(iv) In terms of the expansion and shift of the triangular core region 

of the persistence diagram, there is a marked difference between the 

zero-, one-, and two-dimensional persistence diagrams. 

(v) The triangular core of the zero-dimensional persistence di- 

agram of islands and matter clumps shows a strong size evolution 

along with a marked shift. It expands by at least an order of magnitude 

from z = 3.8 to z = 0.0, representing the emergence of islands and 

clumps whose density contrast δ is at least 10 to 100 higher than 

at z = 3.8. We also observe an increasingly skewed morphology 

with a centre that shows a strong and systematic shift away from the 

mean density ( δb , δd ) = (0.0, 0.0) to higher birth and death densities. 

Ov erall, it rev eals that to wards lo wer redshifts we see the formation of 

mass islands and clumps o v er an increasing range of density values. 

These features also e xist o v er an order of magnitude higher density 

range, implied by the increased persistence range. They also merge 

with surrounding structures at a higher and wider range of positive 

density values. The development of a wider and richer population of 

mass clumps is a direct manifestation of the hierarchical nature in 

which they build up. 

(vi) The triangular core region in the one-dimensional persistence 

diagrams show a moderate expansion from z = 3.8 to z = 0.0. It is 

widening to both lower and higher densities, including a mild increase 

of the persistence values. The triangular region is and remains quite 

symmetric, while its location hardly shifts. Its evolution is mainly 

one in which the left- and right-hand concave wings – seen along the 

birth–death line – gradually mo v e up and outward. Having noted that 

the prominent features in the one-dimensional persistence diagram 

represent the phase in which filaments and tunnels connect the 

o v erdense re gions in the cosmic mass distribution into the perv asi ve 

structure of the cosmic web, its moderate development shows that 

this transition retains a largely universal character with only a mild 

change of the densities of the filamentary connections. 

(vii) Interestingly, the evolution of the two-dimensional void 

persistence diagrams appears to be dominated by a shift in density 

values, and considerably less by a widening of the density values 

of the voids. The increase in the density and persistence range of 

voids is quite limited. Instead, we see a continuous shift from z = 

3.8 to z = 0.0 of the persistence points to lower density values. It 

is a direct reflection of the outflow of mass from the void interior 

and the continuously deepening of the void interior (see e.g. van de 

Weygaert & van Kampen 1993 ; Sheth & van de Weygaert 2004 ), in 

combination with the restricted density range of voids to −1.0 < δ

< 0.0. 

In addition to these general observations concerning the evolution 

of the persistence diagrams, we wish to address two characteristics 

and/or signatures that in the earlier discussion on the present epoch 

( z = 0.0) persistence diagram were identified as providing specific 

information on the formation of the cosmic web and its connections. 

The first aspect is the presence of an apex in the persistence 

diagrams, the second aspect the distribution of the persistence values 

of topological features. 

4.4.1 Evolving persistence and connectivity: the apex transition 

The multiscale nature of the gravitationally evolved mass distribution 

at z = 0.0 is marked by the presence of a distinct apex in the 

persistence diagram (Section 4.4 ). The sharp ape x es in the zero-, 

one-, and two-dimensional diagrams turn out to be manifestations of 

a characteristic transition in the dynamical structure and development 

of the cosmic mass distribution. The apex in the zero-dimensional 

diagram marks the o v erdense features that are connecting up into 

the perv asi ve network of the cosmic web. The connection typically 

occurs at the density level at which these features turn around 

their initial expansion into gravitational contraction. This important 

connectivity transition is also recognized as an apex in the one- 

dimensional diagram marking the birth of the filaments and tunnels 

that form the bridges of the cosmic web. The apex in the two- 

dimensional persistence diagram for voids signifies the hierarchical 

evolution of the void population, marking the density at which they 

emerge as enclosed cavities and also the characteristic density δ ≈
−0.8 of fully evolved voids. 

Given the significance of the apexes for our understanding of how 

the various topological features connect up in the cosmic web and 

of their role in establishing these connections, we have assessed how 

their locations in the persistence diagrams evolve in time. To this 

end we determine the tip of the ape x es in the zero-, one-, and two- 

dimensional persistence diagrams in terms of the birth and death 

density values, and take this location as defining parameter for 

the apex. Concretely, we computed this by taking the mean of all 

birth–death pairs with a persistence higher than 99.9 per cent of the 

highest occurring persistence (for this dimension). The evolution of 

the ape x es in the three persistence diagrams is shown in Fig. 13 . The 

top row of the figure shows the evolution of the apex’s location in 

terms of birth density δb and death density δd . The uncertainties are 

calculated from the five independent simulation runs. 

The trends in terms of the regular (birth, death) values are as 

e xpected. First, we observ e a generic cosmological aspect in all 

persistence diagrams. In all panels, we see that the ape x es e xperience 

clear and uniform evolutionary trends. Also, we see that the increase 

or decrease of the apex locations appears to slow down after z = 1.0. 

The changes in apex location from z = 1.0 to z = 0.0 are hardly 

significant. This is a direct reflection of the slo wdo wn in structure 

growth in � CDM cosmologies due to the increasing dominance 

of the cosmological constant. In the second publication of this 

study (Wilding et al., in preparation), we address the aspect of the 

global cosmological and dark energy influence on the topology of 

the cosmic web in considerably more detail. 

A second global observation is that all ape x es in the zero-, one-, and 

two-dimensional persistence diagrams experience a strong, uniform 

shift through the persistence diagrams. The development in each 

dimension exhibits some notable differences. The apex in the zero- 

dimensional diagram for mass concentrations shows a steady and 

uniform increase. On the other hand, the apex in the one-dimensional 

diagram for filamentary loops mo v es towards higher birth densities, 

while the density at which they merge into walls surrounding voids 

decreases with time. Finally, the two-dimensional apex, marking the 

appearance of voids and their disappearance into the o v erall mass 

distribution, shows a uniform decrease to ever lower density values 

as time proceeds. 
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Figure 13. Evolution of � CDM homology, the apex. We show the evolution of the high-persistence apex for the usual density field and for a field scaled so that 

σ log( δ+ 1) = 1 at all redshifts, thus reducing the influence of evolved structures. The error bars show the SD of the location’s birth and death value as calculated 

from the five independent simulation runs. 

The apex in the zero-dimensional persistence diagram (Fig. 13 , 

left-hand top row) shows a uniform increase towards decreasing 

redshift. As time proceeds, this reflects the growing density contrast 

of the matter concentrations. Topologically speaking, this results 

in the appearance of o v erdense islands at higher birth densities, as 

well as their merging with nearby features and the cosmic web at 

correspondingly higher densities. This time evolution proceeds by the 

hierarchical buildup of the mass concentrations: the peaks and islands 

at higher redshift were of a smaller spatial scale, and gradually merge 

into more massive and larger objects. The smaller density clumps at 

higher redshifts correspond to lower densities (at the ef fecti ve grid 

cell filter scale). 

The most interesting issue with respect to the formation of the 

cosmic web is how the apex in the one-dimensional persistence 

diagram of filaments and tunnels develops as mass concentrations 

condense out of the primordial density field. From the top centre 

panel of Fig. 13 , we learn that the birth density at which filaments 

and tunnels appear in the density field grows in time. As with the 

mass clumps, this is a direct reflection of the hierarchical buildup of 

all aspects of the cosmic web. At higher redshifts, the filamentary 

bridges have a smaller scale. Even when compensating for the o v erall 

growth of structure in terms of the normalized density (Fig. 13 , 

bottom centre panel), we find a continuous increase of the birth 

density of filaments and tunnels as time proceeds. This is the result 

of the buildup of filaments through a process of continuous merging 

of smaller filamentary bridges into larger scale filaments. Visually, 

we see this process in computer simulations, such as in Fig. 1 . 

Descending to even lower density thresholds we see how filaments 

disappear as they blend into the w all-lik e boundaries surrounding 

v oid ca vities. As time proceeds, we see this happening at ever 

lower density thresholds (Fig. 13 , top centre panel). It reflects the 

fact that voids e v acuate their interior as they mature, resulting in a 

mass distribution marked by ever larger and emptier voids. The void 

population builds up in a hierarchical fashion, in which large voids are 

the product of the merging of smaller voids that dominated the mass 

distribution at earlier epochs (Sheth & van de Weygaert 2004 ). The 

self-similar development seen in the two-dimensional persistence 

diagram of normalized densities (Fig. 13 , bottom right-hand panel) 

is a direct reflection of this. 

4.4.2 Evolving persistence and connectivity: self-similarity? 

We assess the location of the ape x es with respect to the o v erall 

evolving mass distribution. Given the non-linear nature of the evolved 

mass distribution at the redshifts analysed, we do this in terms of the 

normalized (logarithmic) density f n , 

f̄ n = 
f l − μl 

σl 
, (8) 

in which f l is the logarithmic value of the density field, 

f l = log ( δ + 1) , (9) 

and μl and σ l its mean and dispersion. In a hierarchically evolving 

mass distribution, the structure on small scales at earlier times 
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Figure 14. Evolution of � CDM homology, persistence curv es. Persistence curv es of dimensions zero, one, and two (left to right), with the curves for all 

eight different redshifts together. To illustrate the time evolution, the curve corresponding to the earliest snapshot (redshift z = 3.8) is the darkest (black) and 

brightness increases when progressing towards lower redshift, until the curve for redshift z = 0 is red, yellow, or blue, according to the respective dimension of 

zero, one, and two. We see a clear decrease in the number of features at the lower persistence side, and a consistent increase at values of higher persistence. 

resembles that of the structure on large scales at later times. Ideally, 

in scenarios in which the primordial mass distribution would be 

described by a power-law power spectrum, the resemblance would 

be one of perfect self-similarity: the mass distribution at early times 

would be a small-scale version (statistically) exactly similar to the 

large-scale distribution at later times. The Megaparsec cosmic web at 

z = 0.0 is similar to the cosmic web that existed on smaller scales at 

higher redshifts. While a � CDM power spectrum does not result in 

a perfect self-similar evolution, o v er the spatial scales co v ered by the 

simulation box we should to good approximation expect self-similar 

behaviour. 

As we discussed in Section 4.4.1 , the ape x es are topological 

signatures of dynamical transitions in the buildup of the cosmic web. 

In a perfectly self-similar cosmology, at each scale these transitions 

would occur under the same conditions, at correspondingly different 

epochs. At earlier epochs the ape x es, and the transitions the y entail, 

should also occur at similar densities on smaller scales. To this end, 

we compare the density values of the ape x es in normalized units, i.e. 

in terms of f̄ n (equation 8 ). 

By scaling the mass distribution at each epoch in terms of the 

o v erall amplitude of the density inhomogeneities, we test whether, 

in essence, its evolution is a self-similar mapping from epoch to 

epoch. The panels in the bottom row of Fig. 13 plot the location of the 

ape x es for the zero-, one-, and two-dimensional persistence diagrams 

in terms of the scaled mass distribution. It reveals that at redshifts 

from z ≈ 1.0 to z = 0.0, the apex is found at approximately the same 

birth and death value (within error bars). All three dimensions also 

show a uniform increase of the apex (birth, death) values from high 

redshift to low redshift, which is as expected given the considerably 

smaller characteristic scales of the cosmic web at higher redshift 

given the effective filtering on a grid scale. 

The normalized persistence diagrams show a different behaviour 

with respect to their ape x es: for all three diagrams we find a 

systematic and uniform increase of the ape x es’ normalized density 

from high to low redshift. It is strong evidence for the persistence 

diagrams topologically expressing the notion of the self-similar 

evolution of the mass distribution. 

4.4.3 Evolution of persistence values 

An additional informative aspect are the persistence values for the 

topological features in the mass distribution. Fig. 14 shows the 

ev olving distrib ution of persistence values for the zero-, one-, and 

two-dimensional features in the mass distribution. The panels plot 

the number density of features as a function of persistence value π i . 

The time evolution is represented in terms of the changing colour 

of the curves, turning from dark at z = 3.8 to red, yellow, or blue 

at z = 0.0. The persistence values have a range spanning several 

magnitudes, hence the logarithmic scale for the persistence values. 

For all three dimensions, the persistence distribution is a distribu- 

tion that peaks at a characteristics persistence, with a value between 

π ≈ 0.05 and π ≈ 0.1. On the left-hand side this is preceded, in all 

cases, by a long wing of lo w-persistence v alues, in essence the noisy 

features in the mass distribution. The right-hand wings represent the 

stable and prominent features that exist over a large density range. 

The evolution of the persistence curv es involv es two aspects. The 

first one is the uniform decrease of the curves on the low-persistence 

side from z = 3.8 to z = 0.0. It reflects the gradual disappearance of 

noisy feature. We observe this in the case of the mass clumps, of the 

filaments and tunnels an in the case of the voids. 

The second aspect of the persistence evolution reveals a difference 

between the three classes of features. There is a strong increase of 

high-persistence mass clumps (zero-dimensional features). This is 

immediately attested by the systematic and sizeable shift of the high- 

persistence wing from z = 3.8 to z = 0.0. It even involves a shift 

of the peak of the distribution towards higher persistence values. At 

later times, gravitational evolution has produced highly non-linear 

massive clumps that mark more prominent and stable features in the 

o v erall mass distribution than their less pronounced precursors. 

Also, the persistence values of the one-dimensional features 

(filaments and tunnels) show a trend towards higher persistence 

values. The trend is more moderate than that for the zero-dimensional 

features, and also involves only a minor shift of the peak towards 

higher persistence values. The filaments and tunnels appear to 

become a more robust element of the web-like network in which the 

mass distribution is organized. It is a reflection of the hierarchical 
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evolution of the cosmic web, in which more tenuous filaments and 

tunnels define a smaller scale version of the cosmic web at high 

redshifts, while larger, denser filamentary bridges mark the mass 

distribution at later times (see e.g. Cautun et al. 2014 , for an e xtensiv e 

description). 

The voids hardly reveal a shift towards higher density values. 

Their evolution predominantly involves an almost uniform decrease 

in number density of voids of a given persistence. The slight but still 

perceptible increase in the number of high-persistence features (albeit 

much smaller than in the lower dimensions) points to the formation 

of a small number of large, deep voids. The evolution also reflects the 

almost self-similar development of the hierarchically evolving void 

population: the late-time void population is – statistically speaking –

a large-scale equi v alent of the population of smaller voids at earlier 

epochs (Sheth & van de Weygaert 2004 ). 

5  SUMMARY  A N D  C O N C L U S I O N S  

We assess the topological structure and connectivity of the 

� CDM cosmic web in terms of the multiscale topological formalism 

of persistence and Betti numbers. TDA offers an intricate quantitative 

description of how the structural components of the cosmic web 

are assembled and organized within its complex network. The 

Betti curves specify the prominence of features as a function of 

density level, and their evolution with cosmic epoch reflects the 

changing network connections between these structural features. 

The persistence diagrams quantify the longevity and stability of 

topological features. In this study we establish, for the first time, 

the link between persistence diagrams, the features they show, 

and the gravitationally driven cosmic structure formation process. 

By following the diagrams’ development over cosmic time, the 

link between the multiscale topology of the cosmic web and the 

hierarchical buildup of cosmic structure is established. 

Persistent topology enables us to explore the cosmic web’s 

complex and intricate spatial pattern, by specifically addressing the 

aspects of patterns, connectivity and complexity that are not or hard 

to infer from the more conventional clustering measures such as 

the two-point correlation functions. In this sense, persistent homol- 

ogy provides us with necessary complementary phase correlation 

information on the large-scale distribution of mass and galaxies. It 

provides an innov ati ve path to wards opening up the cosmological 

information contained in the properties of the cosmic web. 

In this study, we describe a detailed and e xtensiv e analysis of 

the evolving hierarchical topology of the cosmic web in � CDM cos- 

mologies on the basis of the mass density field filtration. The principal 

intentions are 

(i) to assess and quantify the connectivity of the cosmic web in 

terms of the levels at which its structural components join into the 

o v erall web-like network, 

(ii) to establish the relationship between the characteristics of the 

Betti curves and persistence diagrams, and the gravitationally driven 

cosmic structure formation process, 

(iii) to explore the sensitivity of the topology of the cosmic web 

to the underlying cosmology, 

(iv) to assess the extent to which the topological measures are able 

to extract cosmological information. 

This study extends the earlier work by our group on the homology 

and persistent topology of the cosmic mass distribution (van de 

Weygaert et al. 2011 ; Nevenzeel 2013 ; Park et al. 2013 ; Pranav 

et al. 2017 , 2019a , b ; Feldbrugge et al. 2019 ) and focuses on the 

topology of the evolving non-linear cosmic mass distribution in 

� CDM cosmologies. 

5.1 Cosmic web at z = 0 – global and multiscale topology 

The first stage of our analysis is an in-depth investigation of the 

cosmic web topology at z = 0, the present epoch. We analyse the 

Betti curves for zero-, one-, and two-dimensional topological features 

along with the corresponding persistence diagrams. In the physical 

context of the cosmic web, the zero-dimensional features are the 

matter assemblies or ‘islands’, the superclusters and clusters in the 

galaxy distribution. The one-dimensional features are the filaments 

and tunnels, while the two-dimensional features are the low-density 

voids and their w all-lik e boundaries. 

(i) All three persistence diagrams have a characteristic triangular 

shaped morphology. The majority of birth–death points are located 

near the diagonal base, corresponding to low-significance short- 

lived features. The structurally significant part of the diagrams is 

the typically triangular region, bounded by the diagonal and two 

concave edges, which coalesce at a sharp peak. 

(ii) We introduce the concept of the apex of a persistence diagram. 

It refers to the tip of the sharp peaks in the diagrams and represents 

features of highest persistence. The apex marks the location in the 

diagram where a large number of features simultaneously undergoes 

a topological ‘phase transition’, either o v er a wide range of birth or 

death densities. 

(iii) The formation of the cosmic web is marked by the apex of 

the one-dimensional persistence diagram. At a birth density of δ ≈
5, it corresponds to the rather sharp transition at which individual 

mass concentrations – superclusters and clusters – get connected 

through filamentary bridges, establishing the percolating network of 

the cosmic web. 

(iv) Interestingly, the topological transition at δ ≈ 5 coincides 

with the density at which o v erdense re gions decouple from the 

Hubble expansion. It indicates an interesting concordance, within 

a very narrow density range, between the condensation of mass 

concentrations in the Universe and their assembly into a space-filling 

filamentary network. 

(v) The disappearance of the filamentary network at a narrow 

density range around δ ≈ −0.7 identifies the stage at which the 

cosmic mass distribution gets marked by the appearance of a 

population of individual voids surrounded by enclosing walls. The 

sharp transition is preceded by a stage in which tunnels get filled up 

into tenuous solid walls. This transition and the establishment of the 

prominent void population at δ ≈ −0.8, as expected by theories of 

v oid ev olution (Blumenthal et al. 1992 ; Sheth & van de Weygaert 

2004 ), is most clearly reflected in the two-dimensional persistence 

diagram in terms of a sharply outlined apex. 

5.2 Cosmic Web evolution – a dynamic topology 

In the second stage of our analysis, we follow the evolving topology 

of the cosmic web from z = 3.8 until the current epoch. 

(i) The o v erall dev elopment of the structure and topology of 

the cosmic mass distribution is reflected in the change of the 

corresponding Betti curves. Their parametrization in terms of a 

skew normal distribution allows a quantitative characterization of 

the changing properties of the various topological features. 

(ii) A typical example is seen in the evolution of the void popu- 

lation. The outflow of mass from cosmic voids into the surrounding 

walls and filaments and the corresponding decrease of void densities 
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finds its topological expression in the downward trend of the mean 

skewed normal parameter μ (Fig. 9 ) of the d = 2 Betti curve. 

(iii) The apex of the persistence diagrams displays a systematic 

shift (see Fig. 13 ) that reflects the evolution of the structural 

components of the cosmic web. In terms of the evolving amplitude 

of the density fluctuations in the cosmic density field, we find that in 

particular the one-dimensional and two-dimensional ape x es show a 

self-similar development. It demonstrates that the hierarchical nature 

of the evolution of the filamentary network and void population leaves 

a topological imprint in the persistence diagram. 

(iv) In the case of all structural components, the systematic shift 

of the apex slows down considerably after z ≈ 0.5. It corresponds to 

the slowing and halting of the cosmic structure formation process 

once dark energy assumes dominance o v er the dynamics of the 

Universe (Peebles 1980 ; Frieman, Turner & Huterer 2008 ). 

5.3 Future outlook 

We have demonstrated that it is possible to obtain a wealth of detailed 

information on the formation and evolution of large-scale cosmic 

structure, and specifically the cosmic web, through the analysis of 

the topological characteristics and connectivity. We found that it 

is possible to infer the relationship between the abstract language 

of homology and algebraic topology and a range of aspects of the 

gravitational structure formation process. 

In general, topological characteristics are not related to a single, 

unique, and identifiable structural component. They inform us about 

the connections with other structures, and hence addresses their 

global embedding and connectivity. We exploit this in a follow-up 

study (Wilding et al., preparation), in which we assess the cosmo- 

logical sensitivity of persistence based topological characteristics. In 

this study we demonstrate the way in which different dark energy 

prescriptions translate into detectable and significant differences in 

topology. 

Of key importance for the viability of the topological analysis of 

the cosmic mass and galaxy distribution is its success with respect 

to the observational reality. On the one hand, the analysis of ob- 

servational data poses a range of practical challenges. These include 

measurement uncertainties, undersampled re gions, re gions with non- 

existing or simply missing data, systematic selection effects, and the 

influence of redshift distortions in galaxy surv e y maps (see Kaiser 

1987 ; Hamilton 1998 ). Investigation of these observational influence 

is currently the focus of an e xtensiv e project, which will be the 

reported in a future publication (Wilding et al., in preparation). 

On the other hand, we need a method that does not solely rely on 

local data, but rather on the interplay between the local and the global 

structure: The Betti numbers and the detailed persistence persistence 

diagrams provide exactly that. Research on using persistence to 

investigate structural patterns in the halo distribution of the cosmic 

web and its relation to the underlying topology is reported in an 

accompanying third publication (Bermejo, Wilding, van de Weygaert 

& Jones, in preparation). 
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