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Based on analytical and numerical calculations we study the dynamics of an overdamped colloidal
particle moving in two dimensions under time-delayed, non-linear feedback control. Specifically, the
particle is subject to a force derived from a repulsive Gaussian potential depending on the difference
between its instantaneous position, r(t), and its earlier position r(t − τ), where τ is the delay
time. Considering first the deterministic case, we provide analytical results for both, the case
of small displacements and the dynamics at long times. In particular, at appropriate values of the
feedback parameters, the particle approaches a steady state with a constant, non-zero velocity whose
direction is constant as well. In the presence of noise, the direction of motion becomes randomized
at long times, but the (numerically obtained) velocity autocorrelation still reveals some persistence
of motion. Moreover, the mean-squared displacement (MSD) reveals a mixed regime at intermediate
times with contributions of both, ballistic motion and diffusive translational motion, allowing us to
extract an estimate for the effective propulsion velocity in presence of noise. We then analyze the
data in terms of exact, known results for the MSD of active Brownian particles. The comparison
indeed indicates a strong similarity between the dynamics of the particle under repulsive delayed
feedback and active motion. This relation carries over to the behavior of the long-time diffusion
coefficient Deff which, similarly to active motion, is strongly enhanced compared to the free case.
Finally we show that, for small delays, Deff can be estimated analytically.

I. INTRODUCTION

Within the last years, feedback (closed-loop) control
of colloidal systems, that is, nano- to micron-sized parti-
cles in a thermally fluctuating bath of solvent particles,
has become a focus of growing interest. Conceptually,
feedback control implies that the dynamics of a system
is subject to a protocol depending on an internal vari-
able, i.e., internal information from the system. This
concept is already widely used in other fields of physics
(and related sciences) and on many different length- and
time scales [1, 2], examples ranging from the stabiliza-
tion of exotic quantum states and quantum computation
over control of transport of (passive) colloids to switching
processes in neurosystems, applications in robotics and
cars, and chaos control of satellites. In contrast, the use
and design of feedback control in colloidal or, more gen-
erally, soft matter systems is a rather new development.
Recent experimental applications include control of DNA
molecules by feedback-driven temperature fields [3, 4] or
optical traps [5], magnetic feedback control of cells [6],
electrophoretic feedback control of nanoparticles [7], col-
loids in a electrokinetic feedback trap [8], in optical line
traps [9], and feedback cooling of nanoparticles [10].

A new, exciting field of application is feedback con-
trol of active (self-propelled) colloids which move au-
tonomously due to an intrinsic source of energy. Con-
trol of the translational or rotational motion of active
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colloids can be realized, e.g., by photon nudging and by
adaptive light fields [11–20]. Interest in this topic is trig-
gered by the immense body of work on active particles
showing intriguing collective behaviors such as swarming
and clustering. Feedback control of such systems offers
a way of modelling living matter involving not only au-
tonomous motion, but also communication, sensing and
thereby new types of self-organization. In addition to
these efforts, feedback control of colloids is interesting, on
a fundamental level, to study its interplay with thermo-
dynamics and information exchange in small stochastic
systems [8, 21–25] on the basis of stochastic thermody-
namics [26].

In any realistic setup of feedback control (and simi-
larly in biological systems), there is some time lag (or
time delay) between the reception of information (e.g.,
via a camera) and the actual control. Similarly, biological
living systems with feedback mechanisms often exhibit
some degree of sensorial delay [17], communication delay
[27], or, more generally, memory effects due to viscoelas-
tic environments [28]. Thus, the idea of instantaneous
feedback is often an idealization. Moreover, there is now
increasing awareness that this time delay is not per se an
annoyance, but can rather be an important ingredient to
observe and stabilize certain dynamical behavior. The
constructive role of time delay has already been shown in
other contexts [1, 2, 29] including chaos control [30, 31],
[32], laser systems [33, 34], chemical oscillatory systems
[35] and reaction networks [36]. Recently is has been
shown that time delay has also important consequences
for the thermodynamics of feedback-controlled systems
[24, 37, 38].

In colloidal systems, time-delayed feedback has already
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been shown to create intriguing effects. Examples in the
field of transport of (one-dimensional) passive colloidal
systems include current reversals [39] and enhancements
[9, 40, 41] in ratchet and tilted washboard systems, but
also band formation in two-dimensional interacting col-
loidal systems with collective time-delayed feedback [42].
Moreover, recent studies of (time-delayed) feedback con-
trol in active systems [13–15] have revealed new effects
such as delay-induced clustering and swarming [17, 43–
45]. Despite the increasing awareness of the relevance of
delay and feedback effects in colloidal systems, theoreti-
cal studies of specific model systems are still rare. This
is mainly due to the non-Markovianity of the underlying
stochastic equations of motion, making explicit calcula-
tions challenging. Indeed, exact results only exist for lin-
ear models [46–49]. However, in real colloidal systems,
the interactions and forces involved are typically nonlin-
ear. Motivated by these developments, we here present
a theoretical study of a particular nonlinear model of a
colloidal particle under time-delayed feedback. Specifi-
cally, we consider the two-dimensional translational mo-
tion of a single, spherical colloid subject to a repulsive
force generated by a Gaussian potential centered around
the particle position at an earlier time t − τ . Thus, the
position acts as a stochastic variable on which the control
is performed. Our model differs in several aspects from
earlier ones (see, e.g. [40, 41]). We here consider repul-
sive feedback, rather than the often studied case of trap-
ping a particle by an attractive potential (stemming, e.g.,
from an optical tweezer). We note that similar nudging
mechanisms have already been used in the context of the
”photo-nudging” method for Janus particles [11–15, 50].
A second difference is that the force is nonlinear in the
particle position and finite in range. Thus, although our
model is not directly designed to describe a specific ex-
periment and is, in this sense, hypothetical, it allows us
to focus exclusively on several important features of a
control scheme for Brownian particles: time-delay, repul-
sion, and nonlinearity.

Explicit results are obtained based on analytical con-
siderations in some limiting cases, as well as on numer-
ical solution of the corresponding (overdamped) non-
Markovian Langevin equation. The first main result of
our study is that for appropriate values of delay time and
strength of repulsion, and in the absence of noise, the par-
ticle develops a stationary state characterized by a con-
stant velocity vector. Second, thermal fluctuations lead
to a randomization of the direction of motion, but the
particle still possesses a persistence of motion and a con-
stant magnitude of speed (after noise-averaging). This
is reminiscent of the stochastic behavior of self-propelled
particles, and indeed we identify close similarities. In
particular, we discuss relations to the prominent model
of active Brownian particles (ABP) [51]. For this model,
which is widely used also to explain experimental data
(see, e.g. [52, 53]), there exists a closed analytical expres-
sion for the mean-squared displacement which we utilize
to fit and interpret our numerical data. Further, the ABP

model is one of the best studied systems concerning the
collective behavior induced by activity [53, 54]. Thus, es-
tablishing a link to the ABP model will provide us with
a basis for future investigation of the collective behavior
of our model. By investigating, in the present study, the
single-particle relations between the different models we
make a first step to establishing a link between feed-back
controlled and active matter.

The rest of the paper is organized as follows: In the
following section II we introduce our model and the cor-
responding overdamped Langevin equation governing the
dynamics of the system. Subsequently we study, first, the
deterministic limit in Sec. III, using a combination of
analytical and numerical methods. We then present our
results for the full, nonlinear stochastic system, based on
Brownian dynamics simulations, in Sec. IV. Our conclu-
sions are summarized in Sec. V.

II. MODEL

We consider the two-dimensional motion of a Brow-
nian particle in the x-y plane. In addition to thermal
fluctuations due to a coupled heat bath at temperature
T , the particle is subject to a time-delayed feedback
force F depending on both, its instantaneous position
r(t) = (x(t), y(t))T and its position at an earlier time,
r(t− τ), where τ is the (discrete) delay time. The parti-
cle’s motion at times t > 0 is governed by the overdamped
Langevin equation

γ
dr

dt
= F (r(t), r(t− τ)) + ξ(t), (1)

where γ is the friction coefficient, and the position at ear-
lier times t ∈ [−τ, 0] is determined by the history func-
tion Φ(t). Furthermore, ξ represents a two-dimensional,
Gaussian white noise with zero mean and correlation
function 〈ξα(t)ξβ(t′)〉 = 2γkBTδαβδ(t − t′) where α, β
are the cartesian components of the noise vector ξ, and
kBT (with kB being the Boltzmann constant) is the ther-
mal energy. The diffusion constant of the free particle
motion (F = 0) follows from the Stokes-Einstein relation
D = kBT/γ.

Within our model, the feedback force F is derived from
a Gaussian feedback potential involving the displacement
r(t)− r(t− τ), that is,

V (r(t), r(t− τ)) = A exp

(
− (r(t)− r(t− τ))

2

2b2

)
, (2)

yielding

F = −∇rV (r(t), r(t− τ))

=
A

b2
(r(t)− r(t− τ)) exp

(
− (r(t)− r(t− τ))

2

2b2

)
.(3)

We choose the feedback strength A > 0, representing re-
pulsive feedback whose range is determined by the width
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F

r(t− τ)

r(t)

V (r(t), r(t− τ))

FIG. 1. Schematic of the repulsive Gaussian delayed feedback
potential V . At each time t, the Gaussian is centered around
the earlier position r(t−τ), resulting in a ”pushing” force (red
arrow) directed along the difference vector r(t)− r(t− τ).

of the Gaussian, b (b > 0). The width of the feed-
back potential serves as the length scale in our system.
An illustration of the ”bump”-like potential is given in
Fig. 1. Physically, the potential (2) can be interpreted
as a source of a ”nudge” following the particle with some
delay. Such a potential could, in principle, be created
by optical forces [15, 19, 50, 55–57]. We note that, dif-
ferent to the often used harmonic potentials leading to
linear feedback forces [58], the potential (2) and the force
(3) decay to zero when the displacement within one de-
lay time, r(t) − r(t − τ), increases to large values. The
finite range is indeed advantageous when using Eq. (2)
in a many-particle system with periodic boundary con-
ditions. We also note, from the perspective of control
theory, the feedback force has ”Pyragas” form [30, 31]
since it only depends on the difference between r(t) and
r(t − τ). Thus, the force vanishes trivially if τ = 0; in
this case, our model reduces to that of a free Brownian
particle. Note, however, that the feedback force also van-
ishes when the particle is at rest, that is, r(t− τ) = r(t),
or when it moves in a cyclic fashion with period τ .

Inserting the expression for the force (3) into Eq. (1),
the complete equation of motion reads

γ
dr

dt
=
A

b2
(r(t)− r(t− τ)) exp

(
− (r(t)− r(t− τ))

2

2b2

)
+ξ(t). (4)

Due to the presence of time delay, the particle’s dynam-
ics defined by Eq. (4) is strongly non-Markovian (where
”strongly” refers to the fact that the kernel emerging
when we write the right side as a convolution over past

times is a delta peak located at a finite time τ [59]). As a
consequence, several tools well established for Markovian
Brownian systems (such as the link between Langevin
and Fokker Planck descriptions) do not straightforwardly
apply. More mathematically spoken, Eq. (4) represents
a stochastic delay differential equation (SDDE) which is,
furthermore, non-linear due to the Gaussian shape of the
underlying potential. Even in the absence of noise, the
resulting differential equation (DDE) formally becomes
infinite-dimensional due to the presence of the continuous
history function Φ(t). In recent years, a number of re-
sults have been obtained for deterministic DDEs [60–62],
as well as for linear SDDEs see, e.g., [46–49]. However,
here we are dealing with a nonlinear SDDE for which, to
our knowledge, no full analytical solution exists. Still, we
can analytically consider some limiting cases, which we
will discuss in the subsequent Sections III and IV. In ad-
dition, we study the particle dynamics given by Eq. (4)
and its deterministic limit numerically using Brownian
Dynamics (BD) simulations. Some technical details of
the numerical calculations are given in Appendix A.

III. DETERMINISTIC LIMIT

We start by considering the deterministic limit of
Eq. (4) defined by ξ = 0, which may be realized by
setting the temperature T to zero. In this way we can
explore the role of delay alone, thereby providing a use-
ful starting point for the later investigation of the noisy
case.

A. Linear behavior

Some first insights can already be obtained by investi-
gating the behavior at small displacements |r(t) − r(t −
τ)| �

√
2b. In this case, we can expand the force (3)

up to first order in the displacement, yielding the linear
equation

γṙ =
A

b2
(r(t)− r(t− τ)) . (5)

In deriving Eq. (5) we have used that the Hessian ma-
trix H(r) with elements Hαβ(r) = ∂2V/∂xα∂xβ (with
V (r) being the feedback potential) is diagonal at r = 0,
and Hαα(0) = −A/b2. As a consequence of the diago-
nality, each component xα of r can be considered sepa-
rately. The resulting scalar, linear DDEs are indeed well
studied. For example, it is well known [63–65] that the
(fixed) point r = r0 with xα = const is marginally stable
in the sense that a perturbation ∝ exp[µt] (with µ be-
ing a complex number) remains constant, that is, µ = 0.
Physically, this expresses the metastability of a particle
on a ”parabolic mountain” [58]. Moreover, explicit solu-
tions of the linear equation (5) can be constructed in a
piecewise manner by using the method of steps [60, 61].
For a given history function Φ(t) with components Φα(t)
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(defined in the interval t ∈ [−τ, 0]), the solution in the
first interval t ∈ [0, τ ] follows as

ẋα = exp

(
At

γb2

)
(Φα(0)

− A

γb2

∫ t

0

dt′ exp

(
A (t− t′)
γb2

)
Φα(t′ − τ)

)
(6)

which shows directly the dependency on the history. In
particular, if the particle was at rest at some fixed po-
sition (Φ = r0), it stays where it is (as expected from
the marginal stability) for all values of the prefactor
A/b2. This then also holds for the later time intervals
[nτ, (n + 1)τ ] (with n = 1, 2, . . .). A more interesting
situation for the present study occurs if the particle had
moved with a constant velocity v0, that is, Φ = v0t,
t ∈ [−τ, 0]. The corresponding explicit solution for t > 0
up to time 2τ is given in the Appendix B. It turns out
that the behavior of xα(t) (and the corresponding veloc-
ity) crucially depends on the value of the dimensionless
parameter Aτ/γb2. If this parameter is smaller than one,
the particle just approaches a constant position and the
velocity dies off to zero. In contrast, if Aτ/γb2 > 1,
the position and the corresponding velocity continue to
increase unboundly. Finally, at the ”threshold” value
Aτ/γb2 = 1, the behavior just remains identical to that
given by the history, that is, the particle continues to
move with the velocity v0. An illustration of these be-
haviors is given in Fig. 2 (dashed lines), where the history
is characterized by a one-dimensional velocity (generat-
ing one-dimensional motion), v0 = v0x̂, t ∈ [−τ, 0].

B. Nonlinear behavior and steady state

We now consider the full, nonlinear (deterministic) sys-
tem. The corresponding DDE (4) with ξ = 0 cannot
be solved any more by the method of steps, such that
we utilize a numerical solution to obtain the full trajec-
tory r(t) in dependence of the history Φ(t). Examples
are shown in Fig. 2 (solid lines) where we focus (again)
on an initial velocity along the x-axis. At small times
t/τ > 0, the solution agrees with that obtained for the
(linear) case describing small displacements, as it should
do. The further time dependence of the nonlinear system
again crucially depends on the dimensionless parameter
Aτ/γb2. In particular, for Aτ/γb2 ≤ 1 the nonlinear sys-
tem comes to rest in the sense that the position settles
and the velocity vanishes. Note that this is consistent
with the linear case for Aτ/γb2 < 1, but not for the
”threshold” value Aτ/γb2 = 1, where the linear system
is fully governed by the history. Moreover, a crucial dif-
ference between the systems emerges when Aτ/γb2 > 1.
Here, the nonlinear system governed by the full, Gaussian
feedback develops a stationary state characterized by a
constant velocity v∞. This velocity can be determined
analytically as follows.

Let us assume that such a state develops. We then
have ṙ = v∞ and r(t) − r(t − τ) = v∞τ . Inserting this

−1 0 1 2

t/τ
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3.0

3.5

x
(t
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b

(a)

nonlinear linear
Aτ/γb2 = 0.25

Aτ/γb2 = 1.0

Aτ/γb2 = 1.75

Aτ/γb2 = 4.0

Aτ/γb2 = 0.25

Aτ/γb2 = 1.0

Aτ/γb2 = 1.75

Aτ/γb2 = 4.0

0 2 4 6 8

t/τ

0

1

2

3

4

ẋ
(t

)τ
/b

v∞τ/b

v∞τ/b
(b)

nonlinear linear
Aτ/γb2 = 0.25

Aτ/γb2 = 1.0

Aτ/γb2 = 1.75

Aτ/γb2 = 4.0

Aτ/γb2 = 0.25

Aτ/γb2 = 1.0

Aτ/γb2 = 1.75

Aτ/γb2 = 4.0

FIG. 2. Numerical results for the time dependence of the
position (a) and velocity (b) of the particle subject to nonlin-
ear, Gaussian feedback in the deterministic limit (for a his-
tory with constant (one-dimensional) velocity v0 = v0x̂, i.e.,
Φ = v0t). Included are the analytical results for the linearized
case (small displacements [see Eq. (5)]). The curves are la-
belled according to the value of the dimensionless parameter
Aτ/γb2.

into the deterministic version of Eq. (4) we obtain an
implicit equation for the long-time velocity,

v∞ =
Aτ

γb2
v∞ exp

(
− (v∞τ)

2

2b2

)
, (7)

yielding

|v∞| = ±
√

2b

τ

√
− ln

(
γb2

Aτ

)
. (8)
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Equation (8) provides an explicit expression for the mag-
nitude of the long-time velocity in terms of the param-
eters of the feedback potential. Clearly, a real (and,
thus, physically meaningful) value of |v∞| can only occur
for Aτ/γb2 > 1, providing a restriction for the minimal
strength of the feedback potential, A, and/or the min-
imal delay time, τ (for given b and γ). This result for
the ”threshold” value Aτ/γb2 = 1 is consistent with our
numerical data shown in Fig. 2. From Fig. 2 we also ob-
serve that for large values of the parameter (such as the
case Aτ/γb2 = 4.0), the velocity approaches its station-
ary value only after a transient regime characterized by
oscillations.

These oscillations can be understood as follows. Af-
ter the onset of (strong) feedback, the resulting velocity
v(t) is initially so large that the magnitude of the dis-
placement within one delay time, |r(t) − r(t − τ)|, first
increases with t. This increase yields, in turn, an in-
crease of the feedback force F. Note that the latter is
directly visible from Fig. 2(b) when we recall that, in
the deterministic case, force and velocity are just pro-
portional to one another. Notably, the increase of the
force with t comes to an end as soon as the displacement
has reached the value corresponding to the maximum of
the feedback force (related to the strongest descent of the
feedback potential). This occurs when |r(t)−r(t−τ)| = b,
with the corresponding maximal force being given by
|F |max = (A/b) exp(−1/2). The corresponding maxi-
mal value of the velocity then follows (in dimensionless
form) as vmaxτ/b = (Aτ/γb2) exp(−1/2) ≈ 0.6(Aτ/γb2),
consistent with the data (for, e.g., Aτ/γb2 = 4.0) in
Fig. 2(b). Subsequently, the force and thus, the velocity
decreases, yielding a slower increase of the actual posi-
tion relative to the delayed one, and thereby, a decrease
of the displacement |r(t) − r(t − τ)|. However, at some
point the situation reverses. This happens when the his-
tory ”kicks in”, that is, the before-mentioned decrease
of the force (or velocity) becomes reflected by a slower
change of the quantity r(t − τ). Then the relative dis-
placement |r(t) − r(t − τ)| increases again, yielding the
second rise of the force (or velocity) with t and so on. To
summarize, the oscillations are essentially a consequence
of the fact that the feedback force has a maximum at
finite displacements (reflecting the nonlinearity) and is
history-dependent. Clearly, oscillations becomes visible
only when the maximum velocity (related to the max-
imum force) is sufficiently different from the long-time
velocity, i.e., vmaxτ/b 6= v∞τ/b.

Importantly, the magnitude of the long-time veloc-
ity, |v∞|, is essentially independent of the history Φ(t)
(t ∈ [−τ, 0]). This is shown in Fig. 3 where we present nu-
merical data for the velocity of the deterministic system
for different choices of the constant velocity governing the
history function Φ = v0t. Further, as indicated by ex-
tensive test calculations, this independence persists for
history functions with more involved time dependence.
An exception is the case Φ(t) = const (particle stays
at rest) which leads to |v∞| = 0. In contrast to the

0 5 10

t/τ

0

1

2

3

4

5

6

|v
|τ
/
b

Φ(t)/b = (0.25, 0.0)T t

Φ(t)/b = (0.25, 0.25)T t

Φ(t)/b = (2.0, 2.0)T t

0 10

0.0

0.2

|φ
x
[π

]|

FIG. 3. Numerical results for the time dependence of the
particle velocity in the deterministic limit for three different
choices of the constant vector v0 governing the history (Φ =
v0t). Main part: magnitude of the velocity, inset: polar angle
(in units of π) between the velocity vector and the x-axis.

magnitude, the direction of v∞ is determined by history.
This is illustrated by the inset of Fig. 3 where we present
data for the polar angle φx(t) enclosed by the instanta-
neous velocity and the x-axis. Besides the impact of the
history value of the angle, the data also imply that the
predescribed direction survives in the long-time limit.

Given the rather robust appearance of a steady state
with non-zero, constant velocity, it is interesting to inves-
tigate the stability of this state using the toolbox of linear
stability analysis. To this end we consider the behavior
of a small deviation s(t) := r(t)−v∞t, with ṡ = ṙ−v∞.
The displacement occurring in the feedback force then
becomes r(t)− r(t− τ) = s(t)− s(t− τ) + v∞τ . We now
expand the nonlinear force around the constant-velocity
state assuming that both, s(t) and s(t − τ) are small.
Keeping only terms linear in s we obtain

γ (ṡ + v∞) = γv∞
−H(v∞τ) (s(t)− s(t− τ)) . (9)

In the first term on the right side of Eq. (9), we have used
Eq. (7) to replace the force at zero perturbation. Clearly,
this term cancels with the left side, yielding

γṡ = −H(v∞τ) (s(t)− s(t− τ)) , (10)

where the Hessian H contains the second-order deriva-
tives of the feedback potential [see text below Eq. (5)],
evaluated in the stationary state. The elements of the
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matrix H(v∞τ) thus read:

Hxx(v∞τ) = −A
b2

exp

(
− (v∞τ)

2

2b2

)(
1− (vx,∞τ)

2

b2

)
,(11)

Hyy(v∞τ) = −A
b2

exp

(
− (v∞τ)

2

2b2

)(
1− (vy,∞τ)

2

b2

)
,

Hxy(v∞τ) = Hyx(v∞τ)

=
A

b2
exp

(
− (v∞τ)

2

2b2

)(
(vx,∞τ)

(vy,∞τ)

b2

)
.

Clearly, this matrix is not diagonal; however, the x- and
y components decouple if v∞ points along one of the axes
of the coordinate system. Without loss of generality, we
assume that v∞ = vx,∞x̂. We then obtain

ṡx(t) = K (sx(t)− sx(t− τ)) (12)

where

K = −γ−1Hxx(v∞τ)

=
A

γb2
exp

(
− (vx,∞τ)

2

2b2

)(
1− (vx,∞τ)

2

b2

)
. (13)

The expression in brackets can be simplified using
Eq. (8), yielding

K =
A

γb2
exp

(
− (vx,∞τ)

2

2b2

)(
1 + 2 ln

γb2

Aτ

)
. (14)

We note that the value of the logarithm must be negative
(to ensure a real, non-zero value of the velocity v∞ in
the long-time limit [see Eq. (8)]). To perform the linear
stability analysis, following [64, 65], we use the ansatz
s(t) = C exp(λt), where in general λ ∈ C. This leads to
the characteristic equation

λ = K(1− exp(−λτ)). (15)

The solution of this transcendental equation, i.e. the
eigenvalues λ of the characteristic function, can be ex-
pressed via the Lambert function W [65]

λ =
1

τ
W (−Kτ exp(−Kτ)) +K. (16)

By applying an identity of the Lambert function W,
namely W (x exp(x)) = x for x ∈ R, we find that in
our case the largest eigenvalue is always zero. Therefore,
the linear stability analysis predicts the long-time state
to be marginally stable. In Appendix C we present some
numerical data illustrating the impact of a perturbation
within the steady state. For all cases considered, it turns
out that the perturbations do not destroy the magnitude
of the long-time velocity v∞, but can change its direc-
tion.

IV. STOCHASTIC MOTION

So far we have focused on the deterministic limit of
Eq. (4). We now turn to the major target of this pa-
per, that is, the behavior of a Brownian particle subject
to the repulsive, non-linear, time-delayed feedback force
plus noise in two dimensions. Clearly, this situation calls
for numerical investigation (for technical details, see Ap-
pendix A). Henceforth, we always consider history func-
tions defined by the trajectory of a free Brownian parti-
cle. The dimensionless diffusion constant (noise strength)
is set to DτB/b

2 = 1, where the ”Brownian” time τB ,
which we here define as the time a Brownian particle
needs to diffuse over the length b, reads τB = b2/D.

A. Trajectories and velocity correlations

In Fig. 4, we present exemplary trajectories of the par-
ticle for two values of the delay time τ and various values
of the dimensionless repulsion parameter A/kBT measur-
ing the feedback strength relative to the thermal energy.
Also shown is the corresponding ”free” Brownian particle
(A = 0). As seen for both values of τ , a main effect of in-
creasing A/kBT from zero is that the particle ”spreads”
out more and more. Moreover, in the case τ = 0.35τB one
observes long stretches where the particle travels along
a preferred direction (see Fig. 4 (b)). In other words,
the motion displays some persistence in it’s direction of
motion over a certain period of time.

To better understand the impact of τ we recall that,
in the deterministic case, the particle can develop a sta-
tionary state characterized by a non-vanishing magni-
tude and a constant (polar) angle of the velocity v∞
provided that the dimensionless parameter Aτ/γb2 ex-
ceeds the value of 1 (see Sec. III). For the smaller de-
lay time τ = 0.05τB , the maximal value of A/kBT =
12 considered in Fig. 4 (a) corresponds to Aτ/γb2 =
(A/kBT )(τ/τB)(DτB/b

2) = 0.6. Thus, the correspond-
ing deterministic system would not develop any long-time
velocity vector. In contrast, for τ = 0.35τB , the parame-
ter Aτ/γb2 varies between 1.4 and 4.2, leading to a deter-
ministic long-time motion with given velocity magnitude
and direction. Clearly, in the presence of noise, one would
expect any preferred direction of motion to vanish at long
times. This is exactly what we see from the trajectories
in Fig. 4 (b).

To further illustrate the above-mentioned persistence,
we now consider the noise-averaged correlations of the
particle’s velocity v at different times (note that the value
at equal times is not accessible due to the divergence of
the noise correlation function at zero time difference).
For details of the averaging procedure, see Appendix A 2.
Some results for the correlation function 〈v(t0) · v(t)〉 at
τ = 0.35τB are shown in Fig. 5. For very small values of
A/kBT , i.e. vanishing delay force, the correlation func-
tion is essentially zero at all times. This is expected since
we hereby approach the limit of a free Brownian particle.
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FIG. 4. Exemplary trajectories of Brownian particles subject
to time-delayed feedback at different values of A/kBT in the
time interval [0, 10τB ]. The case A/kBT = 0 corresponds to
a free Brownian particle. The delay times are τ = 0.05τB (a)
and τ = 0.35τB (b) respectively. In each case, the history
Φ(t), t ∈ [−τ, 0], is given by a (randomly selected) trajectory
of a free Brownian particle.

Increasing A/kBT , however, the correlation function as-
sumes large positive values and decays to zero the later
the larger A/kBT is. We also observe in the regime of
short time differences t − t0 the emergence of peaks at
multiples of the delay time. To quantify the decay at
large time differences (i.e., after the initial peaks) we have
fitted the functions 〈v(t0) ·v(t)〉 according to the expres-
sion f(t− t0) = C1 exp(−(t− t0)/τr) + C2 where τr is a
decay time, and C1 and C2 are constants (note that non-

0 1 2 3

(t− t0)/τB

0

10

20

30

40

〈v
(t

0
)
·v

(t
)〉
τ

2 B
/b

2

A/kBT = 0

A/kBT = 10

A/kBT = 20

A/kBT = 30

FIG. 5. Velocity autocorrelation as a function of time differ-
ence (t−t0)/τB for different values of A/kBT and τ = 0.35τB .
The initial time t0 has been chosen substantially larger than
the time related to the onset of delayed feedback. Black
dashed lines: exponential fits [see Sec. IV A].

A/kBT 5 10 15 20 25 30 35 40

τr/τB 0.25 0.56 0.81 1.00 1.08 1.19 1.35 1.34

TABLE I. Persistence time τr obtained by fitting the veloc-
ity autocorrelation function by an exponential expression for
different values of A/kBT and τ = 0.35τB .

zero values of C2 occur due to the finite time differences
considered in Fig. 5. For even larger t − t0 one would
expect all functions to approach zero). To obtain the ex-
ponential fit of the velocity autocorrelation function (see
Fig. 5) we discarded all data points that correspond to
times smaller than t − t0 = τ − 0.1τB i.e., times before
the first visible peak. Physically, it is the history depen-
dence of the feedback which causes short-time oscillations
at multiples of the delay time. Only after the first visible
peak we see an exponential decrease in the correlation
function that justifies the exponential fit. It is seen from
Fig. 5 that this exponential fit describes the data indeed
quite well. This means that we can extract (approxi-
mate) values for the persistence times of the Brownian
particle under time-delayed feedback. Numerical results
from this procedure are given in Table I. As an overall
trend, we observe an increase of the persistence time with
the strength of repulsion. Further, at very large values
of A/kBT , τr seems to saturate. We also see that in
most cases (apart from A/kBT = 5) the persistence time
is larger than the delay time. Similar trends are seen
when using a different fitting scheme that we introduce
in Sec. IV B.
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FIG. 6. Double-logarithmic plot of the mean-squared dis-
placement (MSD) as a function of time difference t − t0 for
different values of A/kBT and, thus, Aτ/γb2 with τ = 0.35τB .
Dash-dotted line: Serves as a guide for the eye to indicate dif-
fusive behavior (∝ t) in the long time limit. Dashed grey line
serves as a guide for the eye and represents ballistic behavior,
where the MSD is proportional to t2. Dashed black lines rep-
resent the fit according to the analytical result for the MSD
of an active Brownian particle [see Eq. (18)].

B. Diffusion and effective propulsion

To further characterize the stochastic motion we
now consider the mean-squared displacement (MSD),〈

(r(t)− r(t0))
2
〉

. Numerical results for the MSD at var-

ious values of feedback strength and fixed delay time
τ = 0.35τB are plotted in Fig. 6. One can identify
different regimes. After an initial transient period, all
curves exhibit a range of time differences where the MSD
exhibits features of both, ballistic motion, i.e., with a
quadratic dependence on t − t0, and diffusive motion
(with a linear dependence on t − t0). Given that the
stochastic system is overdamped, we take the mixed be-
havior seen in the MSD as an indication of an effec-
tive propulsion mechanism driving the particle. We note
in passing that for all parameter combinations consid-
ered in Fig. 6, the particle would indeed approach a fi-
nite long-time velocity in the deterministic case (since
Aτ/γb2 > 1). Turning back to the stochastic case we
find that, at larger time differences, the MSD crosses
over towards diffusive behavior, i.e. linear dependency
on t. This is expected from the finite range of the veloc-
ity autocorrelation function (Fig. 5), that is, the random-
ization of the direction of motion at long times. Assum-
ing that, in the mixed regime, the MSD is proportional
to 4Dt + v2

efft
2, with veff being the effective velocity of

propulsion, we can extract this parameter directly from
the MSD (see Appendix A 3 for details). Results from
this procedure are shown in Fig. 7 a) (triangles). As ex-
pected, the effective propulsion velocity increases with
the strength of delayed feedback. We also note that the
extracted values are somewhat smaller, but still quite
close to the long-time velocity in the noise-free case.

The other data (circles) for veff shown in Fig. 7 a) have
been extracted in a different way. The underlying idea
is that the behavior of the MSD of the particle under
repulsive feedback, particularly the intermediate ballis-
tic regime and the subsequent crossover to diffusive mo-
tion, is indeed reminiscent of MSD data for active (self-
propelled) particles. A prominent theoretical model is
the so-called active Brownian particle (ABP). Here we
aim to establish a link to this particular model, since its
MSD is known analytically [66, 67] and its overall physi-
cal behavior has been studied extensively [51]. The ABP
equations of motion are given by [51, 54]

γ
dr

dt
= γv0n(t) + ξ(t),

θ̇(t) = ξr(t). (17)

Here, v0 is the speed of self propulsion and n(t) =
(cos θ, sin θ) is the (unit) heading vector, whose orien-
tational dynamics described by the polar angle θ is gov-
erned by the second member of Eq. (17). The trans-
lational noise ξ(t) is defined as in Eq. (1), and the ro-
tational noise (with zero average) fulfills 〈ξr(t)ξr(t′)〉 =
2Drδ(t− t′), with Dr being the rotational diffusion con-
stant. The latter defines the persistence time of the ABP,
τr = 1/Dr. The MSD of the ABP can be calculated an-
alytically [66, 67]. The result can be written as [54]

〈(r(t)− r(t0))
2〉 = 4D(t− t0) + 2v2

0τ
2
r

(
(t− t0)

τr

+ exp

(
− (t− t0)

τr

)
− 1

)
. (18)

At short times t− t0 � τr the right hand side of Eq. (18)

reduces to 4D (t− t0) + v2
0 (t− t0)

2
, reflecting the bal-

listic contribution ∝ v2
0 . In contrast, for t − t0 � τr,

the MSD of the ABP becomes purely diffusive, that is,
〈(r(t)− r(t0))

2〉 = 4Deff (t− t0), with Deff = D+ v2
0τr/2

being the effective diffusion coefficient.
The idea is now to use Eq. (18) as a fit formula for

the MSD of the particle under delayed feedback at hand,
with v0 = veff and τr being the fit parameters. To fit
the MSD, we discarded data points corresponding to
t − t0 < 0.07τB , and afterwards use all data points up
to t − t0 = 0.35τB . Subsequently, every 50th data point
up to t = 8τB is used. Generally, we find that the agree-
ment between our MSD and the ABP expression is satis-
factory at intermediate and large time differences t− t0,
while at small time differences visible deviations appear.
The resulting values for the propulsion velocity are shown
in Fig. 7 a) (circles). They follow the same trend (i.e.,
increase with the feedback strength) as the previously
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FIG. 7. a) Effective velocity as a function of the feedback
strength A/kBT for different values of the delay time (blue:
τ = 0.15τB , red: τ = 0.35τB , black: τ = 0.55τB). Circles:
Data points obtained from a fit of the mean-squared displace-
ment (MSD) according to the analytical expression for the
active Brownian particle (ABP) model [see Eq. (18)]. Tri-
angles: Data points obtained from the mixed regime of the
MSD. Solid lines: Long-time velocity of the corresponding de-
terministic model [see Eq. (8)]. b) Circles: Persistence time
τr, obtained from a fit of the MSD according to the ABP
model (color code as in a)). Squares: Persistence time τr, ob-
tained from an exponential fit of the velocity autocorrelation
function [see Sec. IV A] for τ = 0.35τB .

discussed velocities extracted directly from the ballis-
tic regime of the MSD. In fact, the two procedures give
quite similar values, with the exact long-time velocities of
the deterministic case lying in between. The persistence
times τr resulting from the ABP fit are shown in Fig. 7
b) (circles), together with the data extracted from the
velocity autocorrelation function (squares), see Table I.
The general behavior seen from the two sets of data is
consistent: τr increases with the A/kBT and tends to sat-
urate for large values of the repulsion strengths. Quan-
titatively, the values obtained at fixed A/kBT somewhat
differ. One should note, however that the precise values
of τr do depend on details of the averaging and fitting
procedure (e.g., the start of the fit). Disregarding these
technical details, we note that the overall trends observed
so far for veff and τr persist for other delay times. Ex-
emplary data are shown in Fig. 7. An exception is the
case A/kBT = 5 for τ = 0.15τB , where the deterministic
system would not display a long time velocity at all.

5 10 15

A/kBT

0

5

10

15

20

25

30

D
S
D
/
D

data, τ = 0.025τB

data, τ = 0.25τB

SDA, τ = 0.025τB

SDA, τ = 0.25τB

ABP, τ = 0.25τB

FIG. 8. Renormalized diffusion coefficient Deff/D extracted
from the long-time mean-squared displacement as function of
A/kBT for τ = 0.25τB (triangles) and τ = 0.025τB (circles).
Included are the predictions from the long time limit of the
active Brownian particle relation [see Eq. (18)] for τ = 0.25τB
(crosses), and the results from the small delay approximation
(solid lines) [see Eq. (22)].

To complete the picture, we finally consider the long-
time diffusion coefficient governing the motion of the par-
ticle under delayed feedback. We extract this coefficient
from the MSD data by fitting the linear behavior ob-
served at large time differences t−t0. Numerical data for
the renormalized diffusion coefficient Deff/D (where D
pertains to free Brownian motion) for different strengths
of feedback and two values of the delay time are shown
in Fig. 8. As expected, the diffusion coefficient is en-
hanced relative to the free case for all parameter combi-
nations considered. Furthermore, we observe an increase
of Deff/D with both, A/kBT and τ . This is expected in
view of the corresponding behavior of veff , see Fig. 7 a).
In fact, given the connection to the ABP model utilized
earlier, it is interesting to directly compare the present
numerical data with the exact prediction for ABPs [66],
DABP = D + v2

0τr/4. Replacing v0 and τr by the values
extracted for veff and τr (by fitting the MSD according
to the ABP model) thus gives us another estimate for the
long-time diffusion coefficient. Results for the delay time
τ = 0.25τB and different values of A/kBT are indicated
by crosses in Fig. 8. The values are indeed quite close to
those obtained by a direct fit of the long-time MSD.

Finally, given all the numerical results Deff/D ob-
tained either directly or by fitting procedures, one may
ask about an analytical estimate, at least for small delay
times τ . To this end we employ the so-called small-delay
approximation [46–48]). Specifically, to investigate the
dynamics up to linear order in τ , we expand the deter-
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ministic force given in Eq. (3) up to first order in τ .
Noting that the zero-th order term vanishes, we obtain

γṙ(t) ≈ −τH(0)ṙ(t) + ξ(t), (19)

where H(0) is again the (diagonal) Hessian matrix evalu-
ated at zero displacement (withHαα(0) = −A/b2). Upon
reinserting the approximate expression for ṙ and lineariz-
ing in τ we find

γṙ(t) ≈
(

1 +
A

γb2
τ

)
ξ(t). (20)

The right hand side of Eq. (20) has the same structure
as the equation of motion for a free Brownian particle,
yet with an renormalized diffusion coefficient DSD. To
see this more explicitly, we replace the white noise ξ(t)

by a noise with unit variance, i.e. η(t) =
√

2γkBT
−1
ξ(t)

(with 〈ηα(t)ηβ(t′)〉 = δ(t− t′)δαβ), yielding

ṙ(t) ≈ γ−1

(
1 +

A

γb2
τ

)
η(t)

!
=
√

2DSDη(t). (21)

Recalling the definition of the diffusion coefficient of free
motion, D = kBT/γ, we obtain for the renormalized dif-
fusion coefficient (within the small delay approximation)

DSD

D
=

[
1 +

A

γb2
τ

]2

. (22)

In Fig. 8, the prediction given in Eq. (22) is shown by
solid lines. It is seen that the small-delay approximation
gives indeed a very good, quantitative description of the
real data if the delay time is substantially smaller than
the Brownian time (τ = 0.025τB). It also provides the
correct trend regarding the role of the delay time, that
is, for fixed A/kBT , DSD increases with τ . For the larger
delay time τ = 0.25τB , however, one observes profound
quantitative differences, specifically, an overestimation of
the long-time diffusion coefficient. Expectedly, these de-
viations worsen when τ increases further. Still, one may
conclude that the small-delay approximation preserves
the overall trends seen in the numerical data.

V. CONCLUSIONS

In this paper we have investigated the dynamical be-
havior of a Brownian particle moving in two dimensions
under feedback control with time delay. Specifically, we
have chosen a nonlinear, repulsive feedback force with
Pyragas-like dependence on the delay time, τ , such that
the feedback control vanishes at τ = 0. As a conse-
quence, all differences observed relative to the free Brow-
nian case are induced by the delay itself, combined with
the strength (and range) of repulsion.

We have seen that the resulting behavior can be in-
deed quite intriguing and different from the frequently

considered case of a linear feedback force. Already in
the deterministic limit, the particle can develop a sta-
tionary state characterized by a constant velocity vector
with non-zero magnitude and direction. Using a stability
analysis we have shown that this state, which is absent
in the linear case, is marginally stable. Upon introducing
noise, the direction of motion randomizes at long times.
However, in marked contrast to a free Brownian particle,
the feedback-controlled particle shows persistent motion
over a finite range of time. Altogether, the resulting be-
havior in the noisy case (and at appropriate values of
delay time and repulsion strength) resembles that of a
self-propelled particle. Here we specifically compared our
numerically obtained MSD with that of an active, self-
propelled Brownian particle (ABP), which is widely used
in theoretical calculations [68] but also in experiments
[52, 53]. However, in principle, one could have also com-
pared with other models of active particles, such as run-
and-tumble [68, 69] or active Ornstein-Uhlenbeck [70],
which show a similar behavior of the MSD. The compar-
ison with the analytical expression for the MSD of the
ABP model allowed us to extract values for the persis-
tence time τr and the propulsion velocity veff as functions
of delay time and repulsion strength. It turns out that
veff is close to the analytical result of the deterministic
model.

To conclude, the present model for time-delayed re-
pulsive feedback can be interpreted as a mechanism of
propulsion with feedback-dependent persistence. In this
sense, our work contributes to establishing a link be-
tween systems under time-delayed feedback and active
matter. Such connections are indeed expected due to
fundamental reasons since both types of systems involve
non-reciprocal couplings [24] (in the ABP, the position
is affected by the direction and not vice versa. In the
feedback-controlled case, the non-reciprocal coupling oc-
curs between the hidden variables describing the delayed
feedback) and are typically out of equilibrium [24]. For
that reason an analysis of the thermodynamic properties
of the present model would be very interesting [24, 38].

Our work can also be seen as an example of a soft
matter system where the delay is not an annoyance,
but rather works in a constructive manner: indeed,
the persistent motion only occurs for finite time de-
lay. Similar constructive effects of time delayed feedback
[33, 38, 42, 43] have recently been identified in studies of
active Janus particles [71, 72].

Clearly, it would be very interesting to compare our
predictions to experiments. As stated in the introduc-
tion, the present model is not directly aimed at a specific
experimental set-up. Still, we expect that the proposed
nudging effects could be realized, e.g., with optical forces.

We also note of a seemingly different system where
such an effect occurs: in a recent study of cell migration
on viscoelastic substrates [28], the retarded creation of
bump-like perturbations was identified as a source of di-
rected motion that can be described with a model quite
similar to ours.
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Finally, given the similarities of our model to active
motion on the single-particle level, it seems very promis-
ing to use the model in a many-particle set-up. Indeed, in
view of the wealth of studies on the collective behavior of
ABPs revealing, e.g., motiliy-induced clustering [73, 74]
and local alignment of motion [75], it would be exciting
to see whether the present model shows similar behav-
ior. Work in this direction is under way. Another route
would be to apply the present control scheme to an ac-
tive (rather than a passive) Brownian particle. In fact,
the study of active particles with retardation effects due
to feedback, inertia or other mechanisms is an emerging
field, where first steps have already been done [17, 43–
45, 72].
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Appendix A: Numerical details

Simulations were done using the C++ programming
language. Data analysis was done using the python pro-
gramming language and the python package matplotlib
[76] for visualization.

1. Brownian Dynamics simulations

To solve the stochastic SDDE (4) numerically we per-
formed BD simulations based on the Euler-Maruyama
integration scheme [77, 78]. The discretized equation of
motion reads

rn+1 = rn + γ−1F(rn, rn−Nτ )∆t+ γ−1
√

2kBTγ∆t ηn+1 (A1)

= rn + γ−1 A

b2
(rn − rn−Nτ ) exp

(−(rn − rn−Nτ )2

2b2

)
∆t+ γ−1

√
2kBTγ∆t ηn+1, (A2)

where Nτ is the number of time steps within one delay
time τ , ∆t is the size of the time step, and η is a vec-
tor of random numbers drawn from uncorrelated stan-
dard normal distributions. Note that an initial history
has to be imposed for the time interval [−τ, 0] via the
discretized history function Φ(tn) = Φtn , i.e. the tra-
jectory on the discretized time interval [−τ, 0] has to be
known. For all stochastic simulations in this study we
used trajectories of free Brownian particles. Further, we
used ∆t = 10−5τB , which is sufficiently small to yield rea-
sonable numerical precision in all cases considered. We
note, however, that this choice requires significant stor-
age. To give an example, for the delay time τ = 0.35τB ,
positional data of 35000 time steps have to be stored in
the memory.

2. Averaging

Here we describe the averaging procedures used to
compute the MSD and the velocity autocorrelation func-
tion discussed in Secs. IV B and IV A, respectively. To
start with, the MSD was computed according to the
equation

〈(r(t)− r(t0))
2〉 =

1

N

N∑
k=1

(r(t)− r(t0))
2
, (A3)

where N is the number of noise realizations. For the
MSD, N = 8000 has proven to be sufficient. Further, t0 is
the (discrete) starting time. This time is chosen such that
the system has already evolved under time delayed feed-
back for a rather long time (specifically, t = 10τB − 2τ)
such that transient behavior has essentially disappeared.
For the velocity autocorrelation the averaging problem
is slightly more involved due to the noisy character of
the underlying velocity vectors (obtained by numerical
differentiation of the positional data). Here we used a
two-step procedure. The first step involves a moving av-
erage after computing the velocity by numerical differen-
tiation. Specifically, for every realization and every time
step we average over the current and the three following
time steps, i.e.,

vav(t) =
1

4

nmax∑
n=0

v(t+ n∆t). (A4)

We set nmax = 3. We have tested that the actual value
of nmax used in the moving average does not crucially in-
fluence the results. As a second step, we perform a noise
average (with N = 80000, i.e., a factor of ten larger than
for the MSD) to obtain the velocity correlation function

〈v(t0) · v(t)〉 =
1

N

N∑
k=1

vav,k(t0) · vav,k(t), (A5)
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where t > t0. The calculations are started after the sys-
tem has evolved under time delayed feedback for a rather
long time (specifically, t = 20τB − 2τ), even longer than
for the computation of the MSD, to be confident that
transient behavior has essentially disappeared.

3. Extraction of effective velocity from MSD

The average velocity magnitude is obtained from the
MSD by considering its mixed regime. We assume that

MSD(t2)−MSD(t1) = v2
eff(t2− t1)2−4D(t2− t1), (A6)

where MSD(t1) = 〈(r(t1)− r(t0))
2〉, MSD(t2) =

〈(r(t2)− r(t0))
2〉 and D is the diffusion coefficient of a

free Brownian particle. We then solve this equation for

the effective velocity magnitude veff and obtain

veff =

√
〈(r(t2)− r(t0))

2〉 − 〈(r(t1)− r(t0))
2〉 − 4D(t2 − t1)

(t2 − t1)2
,

(A7)
where t2 > t1, and both t1 and t2 are within the mixed
regime of the MSD.

Appendix B: Explicit solution of the linear,
deterministic case

As mentioned in Sec. III A, the linear delay equation
(5) can be solved by the method of steps (e.g. [60, 61]),
with the general solution for the particle’s position in
first time interval t ∈ [0, τ ] given in Eq. (6). Here we
provide the explicit solution for a history function Φ(t),
t ∈ [−τ, 0] with linear time dependence. Specifically, the
components are given by Φα = v0t with v0 = const,
v0 > 0. Note that as argued before in Sec. III A we
can safely work in one dimension in the linear case. The
position as function of time up to t = 2τ then reads

x(t) =


v0t, −τ < t ≤ 0

v0

[
γb2

A + (t− τ) +
(
τ − γb2

A

)
exp

(
tA
γb2

)]
, 0 < t ≤ τ

v0

[
2γb2

A + (t− 2τ) +
(
τ − γb2

A

)
exp

(
tA
γb2

)
+
(
t+ τ2A

γb2 − tτA
γb2 −

γb2

A

)
exp

(
(t−τ)A
γb2

)]
, τ < t ≤ 2τ

(B1)

Appendix C: Impact of perturbations in the
deterministic, nonlinear case

As shown by the (linear) stability analysis in Sec. III B,
the steady state characterized by a non-zero velocity is
marginally stable. To better understand this issue we
present in Fig. 9 numerical data illustrating the impact
of a time-dependent perturbation. The perturbation acts
in a finite time interval starting when the system is al-
ready in the stationary state. Specifically, we consider a
situation where the vector v∞ is characterized by mag-

nitude |v∞| =
√

2b
τ

√
− ln(γb

2

Aτ ) (where Aτ/γb2 = 2.75),

and an angle of π/4 with respect to the positive x-axis.
To perturb the system we use a force Fper(t) with rect-
angular time dependence. Specifically,

Fper(t) =

{
(0.25, 0)T τ

bγ if 9.5τ < t < 9.5τ + Tper,

(0, 0)T else,

(C1)
where Tper is the duration of perturbation. Here we set
Tper = 0.5τ or 1τ . The equation of motion then reads

γ
dr

dt
= F(r(t), r(t− τ)) + Fper(t). (C2)

As seen from Fig. 9 (a), the velocity magnitude is only
shortly affected by the perturbation: after some oscilla-
tions, it quickly returns to its stationary value. The same
behavior is seen for larger magnitudes of the perturbing
force. This occurs for both durations of the perturbation.
Similar behavior is seen for other shapes of the pertur-
bation. In contrast, the direction of motion (Fig. 9 (b))
is permanently changed, and the degree of this change
depends on the duration of the perturbation. To sum-
marize, the perturbation changes the characteristics of
the long-time state (that is, the angle), but not the fact
that a stationary state is reached at all.

Appendix D: Dependence of effective velocity on the
delay time

When studying the effective velocity veff as function
of the feedback strength, the time scale used to non-
dimensionalize this quantity is of crucial importance.
Specifically, in Fig. 7 we have shown that when plotting
veff normalized as veffτ/b, an increase of τ leads to an
increase of veffτ/b for all values of A/kBT . In contrast,
as shown in Fig. 10, the dimensionless velocity veffτB/b
shows the opposite trend, that is, it is largest for the
smallest delay time at all values of A/kBT .
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the velocity vector and the x-axis (b) for two perturbations
(see inset) Fx,per with different duration Tper along the x-axis
(Aτ/γb2 = 2.75).
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FIG. 10. Effective velocity as a function of the feedback
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τ = 0.15τB , red: τ = 0.35τB , black: τ = 0.55τB) in units of
b/τB . Circles: Data points obtained from a fit of the mean-
squared displacement (MSD) according to the active Brow-
nian particle model [see Eq. 18]. Triangles: Data points ob-
tained from the mixed regime of the MSD [see Sec. IV B]. Solid
lines: Long time velocity of the corresponding deterministic
model [see Eq. (8)].
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