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Abstract

How do humans flexibly respond to changing environmental demands on a sub-second temporal 

scale? Extensive research has highlighted the key role of the prefrontal cortex in flexible decision-

making and adaptive behavior, yet the core mechanisms that translate sensory information into 

behavior remain undefined. Utilizing direct human cortical recordings, we investigated the 

temporal and spatial evolution of neuronal activity, indexed by the broadband gamma signal, while 

sixteen participants performed a broad range of self-paced cognitive tasks. Here we describe a 

robust domain- and modality-independent pattern of persistent stimulus-to-response neural 

activation that encodes stimulus features and predicts motor output on a trial-by-trial basis with 

near-perfect accuracy. Observed across a distributed network of brain areas, this persistent neural 

activation is centered in the prefrontal cortex and is required for successful response 
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implementation, providing a functional substrate for domain-general transformation of perception 

into action, critical for flexible behavior.

The neural mechanisms supporting flexible goal-directed behavior in humans represent 

fundamental unresolved questions in neuroscience. Much research has examined how 

humans and other animals process stimulus information and execute a behavioral response. 

Yet, how the brain temporally and functionally binds stimulus processing with response 

execution across modalities and cognitive domains remains poorly understood. Extensive 

research supports a key role of the prefrontal cortex (PFC) in orchestrating complex 

behaviors. For example, profound deficits in goal maintenance and decision-making have 

been reported across species following PFC lesions1–4. Likewise, numerous neurological, 

psychiatric and developmental disorders are characterized by PFC dysfunction5–7, 

highlighting the importance of understanding the role of the PFC in human cognition. 

Human neuroimaging and animal electrophysiology studies have identified the PFC as the 

core element in a distributed network of brain regions active during tasks requiring domain-

general cognitive processing and response selection8–11. These findings highlight the 

importance of the PFC in organizing complex cognitive functions and in translating stimulus 

properties into task-appropriate behaviors. However, the mechanism by which the PFC 

bridges stimulus perception with response execution in humans remains undefined.

Single unit and local field potential studies in animals suggest that PFC neurons coordinate 

activity across functionally linked brain regions through temporally and spatially distributed 

neuronal computation12. In particular, persistent neuronal activity in the PFC has been 

observed during decision-making, working memory, and response selection tasks featuring 

pre-defined delay periods11,13–18. These studies also reveal that persistent activity within the 

PFC is functionally heterogeneous, with distinct groups of neurons tracking different task 

variables, such as task demands, stimulus characteristics, and response preference9,16. 

Temporally sustained activation has also been reported in cortical areas outside the PFC, 

most prominently in sensory regions and the lateral intraparietal area (LIP), prior to response 

selection19–21. Persistent activity in the PFC and parietal regions has been reported in human 

neuroimaging studies during delayed response tasks (e.g., delayed match-to-sample or 

working memory), where the BOLD signal scales with delay duration10,22–23. Evidence of 

persistent cortical activity during word generation and visual search has also been seen in 

human intracranial electrophysiology studies, but the behavioral relevance of this activity 

has not been defined24–26. In combination, these findings suggest that persistent activation in 

the PFC and functionally linked regions may support response selection, decision-making 

and working memory processes.

However, most studies examining the role of persistent activity in response selection and 

decision-making rely on tasks with a predefined delay period between stimulus presentation 

and the required response. Thus, it remains unexplored whether persistent activity, occurring 

between stimulus presentation and response execution is specific to working and associative 

memory processes, as seen in previous work, or whether it reflects a cognitive process 

generalizable to diverse tasks utilizing self-paced response selection. In addition, key 

limitations of existing studies, including the coarse temporal resolution of fMRI and the 
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restricted number of brain areas and tasks examined in non-human primate studies, leave 

multiple unresolved questions about the role of persistent activity within the PFC and related 

brain regions in coordinating behavior in humans.

Here we hypothesize that persistent neuronal activity indexes domain-general processes 

linking stimulus and response in humans across tasks varying in difficulty, stimulus 

properties (visual and auditory), and response modalities. We examine whether persistent 

neural activity reflects a single cognitive process, as typically reported in working memory 

studies (e.g., engram maintenance and manipulation), or whether it is, instead, common to 

multiple functionally distinct task-relevant processes co-occurring within the stimulus-to-

response window. Finally, we assess the anatomical specificity and cross-regional network 

interactions of persistent activity across a range of cognitive tasks.

To examine if persistent activity centered in the human PFC and related brain regions 

functionally bridges stimulus evaluation and response execution across tasks, we analyzed 

electrocorticography (ECoG) data recorded from multiple cortical areas (1344 surface 

macro-electrodes; Supp. Fig. 1a–b; Supp. Table 1) in 16 participants performing eight tasks, 

ranging in cognitive demand, stimulus modality, and response execution requirements 

(Supp. Fig. 2; Supp. Table 2). The examined tasks included Face Categorization across the 

gender (male vs. female) and emotion (angry vs. neutral and happy vs. sad) dimensions, 

Visual Categorization (cat vs. dog, with various degree of cross-category morphing), 

Auditory Categorization (male vs. female voice, with various degree of cross-category 

morphing), Auditory and Visual Self Referential Categorization (yes/no responses to either 

aurally or visually presented adjectives based on whether they can be used to describe the 

participant), Word Repetition (repeat aurally presented words), and Antonym Generation 

(say a word semantically opposite to the aurally presented word). For all tasks, stimulus 

presentation was temporally discrete and the task performance was self-paced, allowing us 

to examine brain activity not bound by stimulus presentation or a predefined window for 

response execution (see Methods).

We first analyze the temporal dynamics underlying processing flow from stimulus 

perception to response execution across widespread cortical regions. We then provide 

evidence that persistent neural activity functionally links stimulus perception with response 

execution across cognitive domains and stimulus modalities.

Results

Temporal dynamics of PFC engagement across tasks

Local field potential power in the broadband high gamma range (HG; 70–150 Hz) was used 

to index local cortical activation (Supp. Figs. 3 and 4a). Broadband HG is linked to increased 

local neuronal firing in the underlying cortical tissue and is correlated with the fMRI 

hemodynamic response27–30. Thus, it provides an ideal signal to assess the anatomical and 

functional specificity of persistent activity across tasks. Overall, task-related increases in HG 

activity above the baseline were observed in 37% of analyzed channels (active sites), 31.2% 

of which were located in the PFC (Supp. Fig. 1c).
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We first examined the temporal propagation of HG activity from stimulus perception to 

response execution across the cortex by defining three regions of interest (ROIs): Sensory, 

PFC, and Motor (see Methods for ROI definition; Fig. 1a). Temporal differences across 

ROIs were assessed using the timing of HG onsets (i.e., initial neuronal engagement 

measured as the first significant increase in HG signal relative to the baseline) and HG peak 

amplitude latency (i.e., the point of maximal neuronal firing and synchronization within a 

given cortical area; Supp. Fig. 5a). ROI analyses were performed across individual datasets 

(i.e., HG values averaged over active sites within a single participant and task) and across 

individual trials (i.e., HG signal averaged over trials with similar reaction times (RTs).

Temporal analyses across datasets—The PFC exhibited later HG onset and peak 

amplitude latencies across datasets than the Sensory ROI (Fig. 1b; Supp. Figs. 6a and 7a; 

Supp. Table 3; Mann-Whitney test for onset latency: U=80, p=6.9×10−8, peak latency: 

U=61, p=1.4×10−8; NSensory=26, NPFC=34). The temporal delay in HG latencies in the PFC 

relative to the sensory regions indicates that the PFC is involved in task-related processing 

subsequent to initial stimulus perception, consistent with previous reports in non-human 

primates17 and humans25. In contrast, there were no significant differences in HG onset or 

peak latencies between the PFC and Motor ROIs (Fig. 1b; Supp. Figs. 6a and 7a; Supp. 

Table 3), suggesting that task processing in the PFC temporally overlaps with response 

preparation and execution. We hypothesized that this temporal overlap between the PFC and 

Motor ROIs may be due to the functional heterogeneity of anatomically defined brain 

regions (Fig. 1c–d). This hypothesis is address later in the manuscript.

Temporal features of the HG signal were examined in relation to the response times within 

each ROI. Across tasks, both HG onset and peak amplitude latencies for the PFC and Motor 

ROIs were positively correlated with RTs (Fig. 2a; Supp. Fig. 7b–c; onset latency PFC: 

r(32)=0.42, p=0.01, Motor: r(32)=0.35, p=0.05; peak latency PFC: r(32)=0.56, p=5.7×10−4, 

Motor: r(32)=0.40, p=0.02). This relationship was absent for the Sensory ROI (onset 

latency: r(24)=−0.32, p=0.11; peak latency: r(24)=−0.16, p=0.44), indicating that the speed 

of initial sensory processing does not determine the speed of response selection and 

execution.

Temporal analyses across trials—We next analyzed HG activity across individual 

trials with matched RTs to examine temporal parameters of processing flow independent of 

between-subject differences in processing speed and within-task RT variability. Trials for all 

participants and tasks were consolidated and binned according to their respective RTs, with 

each bin comprising trials with similar RTs across tasks (within a 50 ms time window; see 

Fig. 2b for averaged HG signal within a representative RT bin; Supp. Fig. 8). RT bin 

analyses revealed similar patterns of HG propagation and RT correlations as seen in the 

dataset analyses above (see Supp. Information for a detailed discussion; Supp. Figs. 6b and 

9; Supp. Table 3).

Given the strong relationship between HG latencies and RT (Supp. Fig. 9), we conducted a 

stepwise regression across binned trials to identify which temporal features of the HG signal 

across ROIs were most predictive of RT (Supp. Information). In addition to HG onset and 

peak latencies for each ROI, the regression model also included the time points at which HG 
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activity traces within two temporally adjacent ROIs diverged for the last time before RT. 

These points of divergence represent a temporal transition in activation as HG activity 

subsides in one ROI while rising in another (Fig. 2b). HG activity across RT bins peaked 

first in the Sensory ROI, followed by the PFC, and culminated in the Motor ROI (Supp. Fig. 

6b), resulting in two points of divergence: Sensory-to-PFC (representing the point when HG 

activity in the Sensory ROI begins to subside while activity in the PFC increases) and PFC-

to-Motor (representing transition of HG activity from the PFC to the Motor ROI). The peak 

latency for the Motor ROI was excluded from the regression since it was, by definition, 

linked to response execution. The only significant predictor of RT was the point of 

divergence between the PFC and Motor ROIs (Fig. 2c; r(32)=0.93, p<1.0×10−10). These 

findings indicate that onsets and peaks of HG activity within each ROI are less predictive of 

RT than the temporal interaction among ROIs reflected in the points of divergence.

The role of Persistent activity in the temporal evolution of information processing

Having established that PFC activity temporally links stimulus processing with response 

execution, we next examined the functional role of persistent activity in stimulus evaluation 

and response selection. Different temporal patterns of HG activity were observed within 

each ROI, with some sites exhibiting transient increases time-locked to stimulus presentation 

or response execution, and other sites exhibiting HG activity temporally sustained from 

stimulus presentation to response execution (Supp. Fig. 4a). To objectively identify sites 

with different temporal patterns of HG activity across tasks, we implemented unsupervised 

clustering of activity within each dataset (Supp. Figs. 3 and 4). Each extracted cluster 

represented a set of sites with similar temporal profiles of HG activity (Supp. Fig. 4b–c). 

Four main distinct temporal patterns emerged – Early and Late Stimulus Processing, 

Persistent Stimulus-to-Response, and Response, with HG onsets and peak latencies 

reflecting the time course of processing flow during the task (Fig. 3). Here we focus on the 

temporal evolution of the Persistent Stimulus-to-Response activation pattern. The remaining 

HG activity patterns are described in detail in Supp. Information.

Persistent Stimulus-to-Response activity (Fig. 3c), time-locked to stimulus presentation 

(mean HG onset across datasets = 349.8 ms post stimulus onset, s.e.m.=39.6 ms, 

NPersist=28) and lasting until the response (mean offset = 132.3 ms post response onset, 

s.e.m.=25.0 ms), was observed in 32.7% of active sites. The onset and peak latency for the 

Persistent Stimulus-to-Response activity occurred later than for Late Stimulus activity 

(Supp. Fig. 6c; Supp. Tables 3 and 4; onset: U=107, p=0.005; peak latency: U=61, 

p=8.1×10−5; NLateStim=15), but preceded Response activity (onset: U=194, p=0.0004; peak 

latency: U=61, p=1.6×10−5; NResp=29). This temporal progression was also evident at the 

single trial level across RT bins (Supp. Fig. 6d; Supp. Table 3) and was present across 

participants and tasks (Supp. Tables 4 and 5).

While all other HG patterns featured a single peak with a well-defined rise and fall for each 

RT bin, Persistent Stimulus-to-Response activity was characterized by a well-defined peak 

during short RT trials (Supp. Fig. 10) and an increasingly shallow plateau with activity 

distributed across the trial window for long RT trials (Supp. Fig. 5b). Across RT bins, the 

first plateau peak (i.e., the point at which HG activity starts to level off) for Persistent 
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activity occurred about 300 ms post HG onset (mean=268.73 ms, s.e.m.=23.37 ms, 

NRTbin=30) and correlated with RT; r(28)=0.47, p=0.01. The offset of the plateau (i.e., the 

last peak before HG activity begins to decrease) was 220.80 ms prior to the response 

(s.e.m.=27.08 ms).

Functional heterogeneity within cortical regions

We observed substantial overlap in HG activity patterns within each ROI. In the PFC, 

Persistent activation sites (64.0% of all active PFC sites) were interleaved with Early 

Stimulus (4.9%), Late Stimulus (13.8%), and Response (17.3%) sites. A similar pattern was 

observed in the Sensory and Motor ROIs, with 63.6% of Early Stimulus sites located in the 

Sensory ROI and 61.4% of Response sites located in the Motor ROI (Fig. 1c; Supp. Fig. 1d; 

Supp. Table 6). This heterogeneity of HG activity within each ROI affected the ROI-wide 

estimations of temporal HG propagation described earlier (Fig. 1b). Specifically, while there 

were no differences between the PFC and Motor ROIs for HG onset and peak latencies 

calculated across all sites irrespective of HG activity type, a significant difference emerged 

when we repeated the analysis using only sites with the most prevalent HG activity pattern 

within each ROI (i.e., Early Stimulus for the Sensory ROI, Persistent Stimulus-to-Response 

for the PFC, and Response for the Motor ROI; Fig. 1d). Both HG onsets and peak latencies 

in the Sensory ROI preceded those in the PFC (onset: U=31, p=5.2×10−7, peak latency: 

U=39, p=1.3×10−6; NSensory=26, NPFC=34), which, in turn, preceded those in the Motor ROI 

(U=209, p=0.005, peak latency: U=109, p=6.2×10−6; NPFC=NMotor=34), revealing a clear 

chronological propagation of neuronal processing from the sensory regions to the PFC and 

then from the PFC to the motor regions17,25. This confirms that different types of HG 

activity are interleaved with the dominant HG activity pattern within each ROI, which 

influences ROI-wide analyses. For example, early HG onsets observed in the Motor ROI 

across both datasets and trials (Fig 1b; Supp. Fig. 6a–b; Supp. Table 3) were due to the 

presence of sites with other activity types (38.6%) in the Motor ROI, including a sizable 

number of Early Stimulus sites (12.9%) located in the perisylvian region of the pre-central 

and post-central gyri.

Anatomical heterogeneity of Persistent activity

Sites with Persistent Stimulus-to-Response activity type were located primarily in the PFC 

(60.0% of all Persistent sites), but were also found across the cortical mantle (Figs. 1c and 

3c; Supp. Figs. 1d and 11a; Supp. Table 6). Sites with Persistent HG activity were present in 

Sensory (7.1%) and Motor ROIs (17.5%), as well as secondary association cortices (15.4%). 

The distribution of sites with Persistent activity matched previously reported activations in 

fMRI studies of domain-general cognitive processing (Supp. Fig. 11b). Thus, although 

Persistent HG activity was centered in the PFC, there was also anatomical heterogeneity 

across the cortex.

The majority of Persistent sites (90.6%) were located in the left hemisphere (Supp. Fig. 1d; 

left vs. right hemisphere proportion difference: Z=18.39, p<1.0×10−10; all reported 

percentages are adjusted for coverage differences between hemispheres). Strong left-

hemisphere representation of Persistent HG activity was present for both linguistic and 

nonlinguistic tasks, with greater prevalence for nonlinguistic tasks (9.2% for linguistic tasks, 

Haller et al. Page 6

Nat Hum Behav. Author manuscript; available in PMC 2018 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



13.4% for nonlinguistic; proportion difference Z=2.34, p=0.003, adjusted to compensate for 

differences in electrode coverage between linguistic and nonlinguistic tasks). Since 

responses in all tasks were verbal or were based on semantic categorization of stimuli 

(regardless of stimulus modality), left hemisphere dominance for Persistent HG activity 

supports modality-independent semantic processing during response selection.

There were also important regional differences in PFC representation of Persistent activity. 

Notably, within the left hemisphere, linguistic tasks primarily recruited Persistent sites in the 

inferior frontal gyrus (IFG) and Broca’s area (28% all recorded sites in the IFG/Broca were 

classified as Persistent relative to 11% in other left PFC regions, Z=2.64, p=0.008). 

Conversely, nonlinguistic tasks engaged other PFC regions (e.g., middle frontal (MFG) and 

cingulate gyrus (ACC) and premotor regions; 27% relative to 14% in IFG/Broca; Z=4.82, 

p<1.0×10−6; Supp. Fig. 12). These results are consistent with the role of the IFG and 

Broca’s area in language production31–33 and suggest that Persistent HG activity in these 

regions reflects verbal response selection. In contrast, Persistent activity centered in the 

MFG, anterior cingulate gyrus, and pre-motor regions during nonlinguistic tasks may reflect 

task set maintenance required for successful response selection9.

Persistent HG activity indexes response selection

As detailed above, left-hemisphere lateralization and PFC distribution of Persistent HG 

activity suggests a potential role in response selection. To test this hypothesis, we examined 

whether Persistent activity is modulated depending on the success or failure of response 

selection. Relative to successfully completed trials, trials during which participants failed to 

generate a response in the Antonym Generation task (the only task that produced enough no-

response trials) exhibited delayed onset and diminished HG amplitudes for Persistent 

activity (p<.05, FDR-corrected; Fig. 4), providing evidence that sustained activity is 

essential for successful response selection. Given the temporal progression of HG activity 

(Fig. 1d; Supp. Fig. 6c–d; Supp. Table 3), we suggest that the Persistent HG plateau (Supp. 

Fig. 5b) reflects the deliberation window for response selection.

In contrast, response-linked activity was absent on no-response trials, indicating a clear 

functional dissociation between Persistent and Response activations. Since Persistent activity 

was present while Response activation was absent during these trials, we can conclude that 

the Persistent activity pattern indexes response selection and preparation, but not motor 

execution (see Supp. Information for a detailed discussion of the potential role of Response 

HG activity in response preparation).

Persistent HG activity functionally links stimulus perception and response execution

To be considered a functional link between stimulus and response, Persistent activity must 

be temporally coupled with stimulus processing and must reflect stimulus properties relevant 

for response selection. Furthermore, Persistent activity must also be functionally linked to 

response execution.

Stimulus processing reflected in Persistent HG activity—We first tested whether 

Persistent Stimulus-to-Response activity is temporally coupled with stimulus processing. We 
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used a stepwise regression across individual trial bins, with the onset of Persistent activity as 

the dependent variable and onset, peak, and offset latencies of Early Stimulus and Late 

Stimulus HG patterns as independent variables. The onset and peak latencies of Early 

Stimulus activity and onset and offset latencies of Late Stimulus activity were significant 

predictors (in that order) for the onset of Persistent Stimulus-to-Response HG activity 

(adj.R2=0.61, p=1.05×10−5; NRTbins=30). Notably, the onset of the Persistent activity 

occurred prior to the offset of both Early Stimulus and Late Stimulus activity (Fig. 3; mean 

difference=690.4 ms, s.e.m.=32.4 ms), suggesting that task-relevant persistent processing is 

triggered well before the completion of initial stimulus processing. These findings indicate 

that Persistent activity is temporally linked with Early and Late Stimulus HG activity, as 

these three types of neuronal activity reflect different aspects of stimulus processing.

Second, we evaluated whether Persistent activity encodes response-relevant stimulus 

features by examining whether HG amplitude of Persistent activity differentiates stimulus 

categories in the Visual and Auditory Categorization tasks. Six Persistent sites (16.6%) 

exhibited significant HG modulation as a function of stimulus category (dog vs. cat or male 

vs. female, mean cluster-wise p=0.011, s.d.=0.005 across sites demonstrating the category 

effect; Fig. 5a–b). However, since there was a direct correspondence between the stimulus 

and response in these tasks (i.e., image of a dog was always associated with the correct 

response “dog”), it is conceivable that Persistent activation simply reflects response 

preparation and not stimulus features. To examine whether Persistent activity is sensitive to 

stimulus properties independent of the response, we examined the Antonym Generation task, 

where the response was dissociated from the stimulus category. Significant HG modulation 

as a function of stimulus category (noun vs. adjective) was observed in 10.4% of Persistent 

sites (mean cluster-wise p=0.013, s.d.=0.003), highlighting the role of Persistent activity in 

processing stimulus features relevant for response selection. Across these tasks, sites with 

Persistent Stimulus-to-Response activity sensitive to the stimulus category effect were 

primarily located on the PFC (the IFG and MFG) as well as the parietal cortex, precentral 

gyrus, and sensory association cortices (Fig. 5a), reinforcing the role of the PFC and related 

areas in linking stimulus integration with response selection.

Modulation of Persistent HG activity as a function of reaction time—We next 

examined the link between Persistent activity and response execution. First, we assessed the 

relationship between RT and the temporal features of the HG signal (Fig. 6a–b). Across 

datasets and individual trial bins, significant correlations with RT were observed for both 

Persistent HG onsets (across datasets: r(25)=0.69, p=4.4×10−5; across trials: r(28)=0.86, 

p=1.6×10−9) and HG peak latencies (across datasets: r(25)=0.79, p=6.3×10−7; across trials: 

r(28)=0.51, p=0.004), with slower RTs associated with later onset and peak of Persistent 

activity. Similar correlations were observed for Response activity (Supp. Fig. 13), which was 

expected given that the temporal proximity of HG onset and peak latency to response onset 

was the defining feature for this activation pattern (which was not the case for the Persistent 

HG pattern). In contrast, there was no correlation between RT and HG onset or peak latency 

for Early Stimulus and Late Stimulus sites, indicating that the link between timing of the 

Persistent Stimulus-to-Response activity and RT cannot be attributed to differences in speed 

of sensory processing across participants, tasks, stimulus parameters or response modalities. 
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Similar results were obtained when sources of variance were minimized by averaging across 

participants within each task (Supp. Fig. 14a) or by examining data from one participant 

who completed six tasks (Supp. Fig. 14b).

Since previously explored stimulus properties were reflected in modulation of Persistent HG 

amplitudes across stimulus categories, we next examined whether HG amplitudes also 

varied as a function of response. The mean magnitude of the Persistent HG signal across the 

plateau time period was inversely correlated with RT (Fig. 6c; r(28)=−0.89, p=2.6×10−11), 

indicating that Persistent activity was diminished in amplitude and more distributed in time 

for trials on which participants were slower to respond. In contrast, fast reaction times were 

associated with higher amplitudes and shorter duration of the HG signal (Supp. Fig. 10). 

Amplitude of HG activity for Early Stimulus and Late Stimulus activity patterns did not 

correlate with RT, and only peak amplitude of Response activity increased as RTs 

lengthened (r(28)=0.77, p=5.4×10−7; Fig. 6d), potentially indicating greater response 

execution effort for trials where a response was not readily available and took longer to 

generate.

In summary, Persistent Stimulus-to-Response activity predicted behavioral responses and 

was functionally and temporally linked to stimulus processing, supporting a role in bridging 

stimulus perception and response execution.

Functional heterogeneity of persistent activation

Utilizing the well-established link between brain anatomy and function, we next tested 

whether Persistent activation encompasses multiple functionally heterogeneous task-specific 

sub-processes by examining changes in anatomical distribution of Persistent HG activity 

with increased task difficulty and additional cognitive operations. For this analysis, we 

focused on data from the Word Repetition and Antonym Generation tasks, both of which 

were recorded in three participants. Both tasks employed identical stimuli, yet required 

different levels of cognitive processing: Antonym Generation relied on semantic evaluation 

and search, absent during Word Repetition, resulting in longer Antonym Generation RTs 

(S15: t(259)=15.08, p=2.6×10−37; S18: t(173)=8.77, p=1.6×10−15; S3: t(144)=14.74, 

p=1.5×10−30) and greater RT variability (Supp. Fig. 2; Supp. Table 2).

There were more sites with Persistent HG activity during Antonym Generation than Word 

Repetition (Fig. 5c). Sites common to both tasks (overlap sites) were predominantly located 

on the IFG and pre-central gyrus (i.e., Broca’s area), reflecting a common substrate for word 

production31. Sites unique to Antonym Generation were also present in the Broca’s area but 

were more broadly distributed throughout the left lateral PFC, including the middle and 

superior frontal gyri. Activity at these sites likely supports semantic search – the dominant 

cognitive operation unique to Antonym Generation relative to Word Repetition. Notably, 

there were no differences between the two tasks in HG onset for the overlap sites. In 

contrast, Persistent sites unique to Antonym Generation had later onsets than overlap sites 

(Fig. 5d; Mann-Whitney test, S18: U=15.0, p=0.03; S3: U=3.0, p=1.5×10−3; S15: U=19.0, 

p=0.09). HG activation for unique Antonym Generation sites was comparable in amplitude 

across both short and long RT trials, which excluded the possibility that engagement of 

unique Persistent activation sites was due to task difficulty alone. Instead, these results 

Haller et al. Page 9

Nat Hum Behav. Author manuscript; available in PMC 2018 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



indicate that task demands and the engagement of additional cognitive operations (e.g., 

semantic search in the Antonym Generation task) alter the spatial topography and elicit 

functionally and temporally distinct subtypes of Persistent activity.

Successful task performance depends on activity across distributed networks

To assess the relationship between Persistent HG activity and other activity types on a trial-

by-trial basis, we conducted a Principal Component Analysis on mean HG amplitudes across 

trials. The first principal component, accounting for the most variance (24.81% of variance, 

s.e.m.=1.9% across tasks), revealed a distributed network of sites with shared trial-by-trial 

HG modulation. Most cortical sites with Persistent activity (57%) were part of this primary 

functional network, which also included all other types of HG activity patterns (Supp. Fig. 

15). These results are in line with growing literature on the importance of PFC-centered 

functional networks in spatiotemporal integration of information critical for flexible 

cognitive processes and successful goal-directed behavior12,34.

Discussion

In the current study, we examined persistent activity in the PFC and related regions across 

multiple self-paced tasks ranging in difficulty, required cognitive operations, and behavioral 

responses. Capitalizing on the superb temporal resolution and spatial specificity of direct 

cortical recordings, we demonstrate that intrinsically sustained neural activity provides 

domain-general spatiotemporal integration that links perception and action. Our results 

suggest that task-relevant cognitive processes in the stimulus-to-response time window are 

reflected in persistent neural activity in the PFC and functionally linked regions. The 

observed domain-general Persistent activity shares key features with persistent activity 

previously reported in animals and humans in time-fixed tasks, such as working memory, in 

accord with our primary hypothesis of shared morphology and function across a range of 

behaviors.

Temporally, information integration and decision-making was reflected in persistent 

stimulus-to-response neuronal activity, triggered during initial stimulus processing and 

lasting until the response. Stimulus, persistent, and response processing occurred in 

sequential progression with partially overlapping stages. These findings extend previous 

research on region-specific processing timescales in nonhuman primates17,35, emphasizing 

that the chronology of information processing across brain regions is driven by temporal 

patterns of neuronal activation largely specific to each brain region. Spatially, persistent 

activation was centered in the lateral PFC, but was also observed in the medial PFC, 

temporal lobe, anterior cingulate cortex, and parietal lobe – areas that feature extensive 

anatomical connections with the lateral PFC36–37 and that have been implicated in domain 

general processing10,38–39. This extended cortical network provides an ideal anatomical and 

physiological substrate for information exchange and integration40. Functionally, persistent 

stimulus-to-response activity reflected both stimulus processing and response selection. 

Specifically, amplitude modulation of persistent activity, especially in the PFC, reflected 

stimulus features and scaled with successful task performance, while also being strongly 

linked to response speed. In addition, the presence of sites with both Stimulus- and 
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Response-linked HG activity within the single functional network dominated by sites with 

Persistent HG activity reinforces the role of persistent activity as the link between stimulus 

processing and response execution.

Critically, we demonstrate that persistent neuronal activity does not represent a single 

localized process but, instead, subserves a collection of task-specific functions. For example, 

not all sites with persistent activity performed similar functions, as only a subset was active 

in different tasks or was sensitive to stimulus properties. Likewise, while persistent activity 

in the MFG and ACC during non-linguistic tasks supports maintenance and implementation 

of task-specific instructions on a trial-by-trial basis9, persistent activity in Broca’s area 

during linguistic tasks supports semantic processing and verbal response selection31. Even 

within the linguistic tasks, persistent activity demonstrated functional and anatomical 

dissociation. Specifically, persistent activity common to Antonym Generation and Word 

Repetition was centered in Broca’s area, suggesting a common substrate for word 

production. In contrast, persistent activity unique to the Antonym Generation task, requiring 

more effortful semantic search and maintenance of task instructions, was seen in the MFG, 

ACC, and other brain areas. Thus, the high temporal resolution of intracranial EEG allowed 

us to demonstrate that the increase in brain activation associated with greater cognitive 

demand is attributable to additional recruitment of local neuronal populations within the 

PFC, distributed over time, and spatially interleaved with initial task-related activity. These 

results provide critical evidence that increased brain activation in response to greater 

processing demands is not simply due to an increase in amplitude of already-present activity, 

but rather due to a separate and temporally distinct recruitment of additional neuronal 

resources, even within the same ROI41.

The functional heterogeneity of persistent HG activity is likely based on the cumulative 

output of local neuronal networks integrated over time and cortical space27–30,42. While 

some neurons may exhibit persistent firing, other neuronal populations may become active at 

various stages of the temporal stimulus-to-response window, demonstrating specific tuning 

to particular stimulus dimensions or response contingencies9,43. Given that HG signal 

reflects local neuronal firing30,43, our findings indicate that fast behavioral responses rely on 

increased simultaneous firing across multiple neuronal ensembles, evident from both the 

temporal convergence and the high amplitudes of Stimulus, Persistent, and Response HG 

activity patterns for short RT trials. In contrast, as the response deliberation window 

lengthened (due to either response uncertainty or increased neuronal or cognitive signal-to-

noise ratio), the amplitude of persistent activity diminished, indicating decreased, yet 

temporally distributed, local neuronal firing.

In summary, we observed persistent activity across a diverse range of tasks engaging 

multiple cognitive processes and propose that intrinsically persistent neuronal activity in the 

stimulus-to-response window provides a common functional substrate for information 

integration and response selection in humans. We also demonstrate that the prefrontal cortex 

serves as the core element of a distributed cortical network that links stimulus perception 

with action execution, enabling humans to flexibly respond to ever-changing environmental 

demands.
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Methods

Participants

All procedures were approved by the Institutional Review Boards of University of California 

(UC) Berkeley, UC San Francisco, Stanford School of Medicine, California Pacific Medical 

Center (CPMC), and Johns Hopkins University School of Medicine. Eighteen individuals 

undergoing neurosurgical evaluation for refractory epilepsy were recruited. Patients willing 

to participate in research signed the informed consent document prior to testing. Subdural 

electrode arrays (2.3 mm exposed electrode diameter with 10 mm inter-electrode spacing) 

were implanted for approximately one week to determine epileptogenic focus (see Supp. 

Information for electrode localization procedures). Electrode number and placement were 

solely dictated by clinical needs. Electrode coverage for most brain areas was represented in 

multiple participants (Supp. Fig. 1c; Supp. Table 1), which limits the potential influence of 

any single pathology and enables broad generalization of results. Two participants were 

excluded: one due to a stroke-related cortical lesion and the other because of missing 

electrode localization data. The remaining sixteen participants (Supp. Table 1) had normal 

IQ and were fluent in English, except for one Spanish-speaking participant who completed a 

Spanish version of the Visual Categorization task.

Tasks and stimuli

Eight tasks, varying in difficulty and stimulus modality, were used. Task selection for each 

participant was determined by electrode location, time availability, and participant’s 

willingness and ability to perform the task. Each participant performed 1–6 tasks (Supp. 

Table 2). Visual stimuli for all tasks were presented using a laptop (15.6″ LCD screen) 

placed in front of participants at a comfortable distance (0.5–1 m). Auditory stimuli (50–60 

dB) were presented via two speakers placed on each side of the presentation laptop. Onsets 

and offsets of stimuli were detected via analog channels: photodiode for visual stimuli and 

speaker for auditory. Participants made responses either by pressing the appropriate key on 

the laptop keyboard or by speaking into a microphone, with verbal response times extracted 

from an analog microphone channel.

Visual Face Categorization tasks—Participants were asked to categorize facial stimuli 

(NimStim dataset44) either on the dimension of emotion (angry vs. neutral or sad vs. happy, 

presented in separate blocks) or gender (female vs. male, across the two blocks of emotional 

faces). Stimulus presentation and response tracking was accomplished with the E-Prime2 

software (Psychology Software Tools, Inc., Sharpsburg, PA). Stimuli were presented in a 

randomized order on a white background. Each trial started with a black fixation cross 

(1,500 ms) followed by a face stimulus (300 ms), which was replaced by a fixation cross, 

during which participants made the response using a keyboard. The trial was terminated 

after the response or after 3,000 ms, if no response was detected. Emotion and gender 

categorization blocks were presented in a counterbalanced order. Stimuli from the two 

blocks within each categorization condition were combined for analyses.

Auditory Categorization task—Participants were asked to categorize gender morphed 

utterances (the word “town”) as being spoken by a female or a male speaker. Stimuli were 
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adapted from the Carnegie Mellon University Arctic Database45. Gender morphs of the 

category prototypes were constructed in steps of 20, 40, 60, and 80% along the shortest 

trajectory between formant boundaries46. Participants were presented with a visual cue (blue 

cross) for 600 ms, followed by a stimulus (524 ms), and were given 1,500 ms to verbally 

respond, followed by jittered ~1,000 ms inter-trial interval (ITI). Stimuli were presented in a 

randomized order using E-Prime2.

Visual Categorization task—Participants were asked to categorize morphed visual 

images as a cat or a dog. Cat and dog prototype and morphed stimuli (20, 40, 60, and 80% 

morphs) were adapted from Freedman et al47. Participants were presented with a visual cue 

(blue cross) for 500 ms, followed by a visually presented morphed stimulus (600 ms), and 

were given 1,500 ms to verbally respond, followed by a jittered ~1,000 ms ITI. Stimuli were 

presented in a randomized order using E-Prime2.

Auditory Word Repetition task—Participants were asked to verbally repeat aurally 

presented words, which were selected from the Affective Norms for English Words48. 

Stimulus duration range was 295–1,013 ms (mean=645 ms, s.e.m.=4 ms). Word stimuli were 

either nouns or adjectives (equal number), and stimuli in the two part-of-speech categories 

were matched on length, word frequency, and emotional content (valence and arousal). 

Words were presented using MATLAB (The MathWorks, Inc., Natick, MA) in a pseudo-

random order (no more than two words of the same part of speech presented in a row) with a 

jittered ~4,000 ms ITI.

Auditory Antonym Generation task—Participants were asked to verbally generate an 

antonym to an aurally presented word stimulus. Word stimuli and task structure were 

identical to those used for the Auditory Word Repetition task, but stimuli were presented in a 

different pseudo-randomized order. Participants always performed the Word Repetition task 

first, with the two tasks never performed back-to-back in a recording session to avoid 

habituation effects.

Auditory and Visual Self-Referential tasks—Participants were asked to verbally 

respond whether each aurally or visually presented word could be used to describe them 

(“yes” or “no” responses). Positive and negative adjectives were selected from the ANEW 

set and were matched on arousal, valence intensity, word length, and word frequency. Audio 

stimuli (duration range 305–1,024 ms; mean=690 ms, s.e.m.=5 ms) were presented using 

MATLAB. Visual stimuli (400 ms) were presented using E-Prime2. In each task, stimuli 

were presented with a jittered ~4,000 ms ITI in a pseudo-random order with no more than 

two stimuli of the same valence presented sequentially. Task order was counterbalanced 

across participants.

Data acquisition

At UCSF and Stanford, data were acquired using a 128-channel TDT recording system 

(Tucker-Davis Technologies, Alachua, FL), filtered online at 0.5–300 Hz and sampled at 

3,052 Hz (1,526 Hz for one participant). At Johns Hopkins, data were recorded at 1,000 Hz, 

with a low-pass 300 Hz analog anti-aliasing filter using a 128-channel Stellate Harmonie 
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system (Stellate Systems, Inc., Montreal, Canada). At CMPC, data were recorded at 1,000 

Hz using a Nihon-Kohden Neurofax EEG-1200 system (Tokyo, Japan). Analog channels 

(microphone, photodiode, speaker output) were recorded synchronously with ECoG signals 

at 24.4 kHz (UCSF, Stanford) or 1000 Hz (Johns Hopkins, CPMC). ECoG data were 

recorded using a subdural electrode as reference (an electrode with minimal or stable signal 

located away from cortical areas of interest) and a scalp electrode as ground. Sampling rates, 

online filters, and amplification across all recording systems were set to allow comparability 

across recording sites for the broadband high gamma (HG, 70–150 Hz) signal.

Data preprocessing

Data were recorded from 1,365 ECoG electrodes. Line and equipment noise was removed 

using an iteratively fit zero-phase Butterworth filter (see SI Methods). Data channels with 

poor signal quality, epileptiform activity, or those located on subsequently resected tissue 

were excluded, leaving 1,344 electrodes for further analyses. Since multiple participants 

completed several tasks (each representing a single dataset), the total number of analyzed 

data channels was 3,051. Data from each channel were down-sampled to 1,000 Hz, 

whenever needed, and re-referenced to a common average reference within each dataset 

(channels with poor data quality or periods of epileptiform activity were not included in the 

common average calculation). Data were visually inspected for periods of transient 

epileptiform activity or recording artifacts, which were excluded from subsequent analyses.

Spectral decomposition

The analytic amplitude of the broadband high gamma signal (HG) was extracted from the 

raw ECoG data across the full duration of each recording session. First, a two-way, zero 

phase-lag, finite impulse response filter (eegfilt.m function, EEGlab toolbox) was applied to 

extract signal in the 70–150 Hz range. This bandwidth was selected as it excludes any 

residual line noise and captures most of the broadband HG power49–51. Analytic amplitude 

was calculated by taking the absolute value of the Hilbert transform of the filtered signal, 

which is comparable to other filtering techniques (e.g., wavelets)52. HG signals were next 

smoothed with a 10 Hz low-pass Butterworth filter. See Supp. Figs. 3 and 4a for examples of 

raw data and HG analytic amplitude traces.

Task-active channel selection

To extract stimulus-related activity, data were segmented into trials starting 500 ms before 

stimulus onset and lasting until 500 ms past the maximum RT for the dataset. To extract 

response-related activity, trials were segmented from 500 ms before RT to 500 ms post-RT. 

HG signals were z-score normalized within each trial relative to the 500 ms pre-stimulus 

baseline (for the Visual and Auditory Categorization tasks, the baseline was taken before the 

cue). Trials overlapping with artifact epochs or those on which participants did not respond, 

made an error, or responded with hesitation (producing pre-response vocalizations) were 

excluded. No-response trials in the Antonym Generation task were analyzed separately. 

Within each dataset, trials with RTs longer or shorter than three standard deviations from the 

dataset mean were considered to be outliers and were removed from analyses; 19 out of 43 

datasets had trials excluded based on the RT criterion, with an average of 1.8 trials 

(s.e.m.=0.3) or 1.3% (s.e.m.=0.1%) excluded in each dataset. All exclusions were solely 
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based on data quality assessment prior to performing any analyses to avoid selection bias. 

See Supp. Table 2 for the numbers of trials that were included in final analyzes and Supp. 

Fig. 4a for examples of HG signal across trials for all analyzed channels in one dataset.

To identify task-active channels within each dataset, z-scored HG signals were subjected to 

one-sample two-tailed t-tests performed across trials for each time point. For all t-test 

analyses, p-values were corrected for multiple comparisons using the False Discovery Rate 

correction (FDR; q=0.05)53. Channels were considered task-active if they contained at least 

one 100 ms segment of contiguous significance with a mean 10% signal increase from 

baseline.

Channel clustering based on temporal morphology of the HG signal

To identify channels with common temporal HG patterns (i.e., common morphology of the 

HG signal averaged across trials), we used data-driven classification to avoid subjective 

biases motivated by a priori hypotheses. Data clustering was performed blind to temporal 

features of the HG signal. First, we reduced the dimensionality of the clustering space by 

conducting Principal Component Analysis (PCA, using correlation matrix and varimax 

rotation) on stimulus-locked HG time series (observations) averaged across trials for each 

active channel (features). Each dataset was analyzed separately since the temporal profile of 

the HG signal depends on RT parameters (mean, range, and distribution shape), which are 

different for each dataset. The number of significant principal components (PCs) was 

determined using a variant of parallel analysis, whereby comparison data were generated for 

increasing numbers of components until the observed eigenvalues failed to show significant 

improvement54 (all PCA analyses were performed using the PCA function in R). Following 

PCA, channels were clustered based on component weights for significant PCs, which is 

equivalent to clustering channels based on their location in PC-dimensional space (Supp. 

Fig. 3). Clusters were identified using complete-linkage hierarchical clustering of a 

correlation distance matrix (see SI Methods). Thus, PCA and clustering procedures resulted 

in a number of clusters (3–5 per dataset) that comprised groups of channels exhibiting 

similar temporal patterns of HG activity (i.e., having similar morphology of the averaged 

HG signal; Supp. Fig. 4b–c).

Cluster classification based on temporal patterns of HG activity

Temporal patterns of HG activity typified by each cluster were identified by applying 

predetermined selection criteria to avoid subjectively biasing the results. First, clusters with 

low signal-to-noise ratio (<15% post-stimulus HG signal change from baseline for at least 

100 ms consecutively) were excluded from further analyses (13% of all identified clusters). 

Next, onset and offset times of stimulus- and response-locked cluster-wide HG activation 

(averaged across trials from all channels within the cluster) for the remaining clusters were 

determined using one-sample t-tests performed for each time point using the FDR correction 

for multiple comparisons. To identify clusters with Persistent Stimulus-to-Response HG 

activation, a binary 0/1 design matrix (trials × time points) was constructed, with ones 

corresponding to each time point starting from the cluster-specific HG onset and lasting to 

the RT for each trial.
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We hypothesized that Persistent HG activity may not be homogenous both temporally and 

functionally. Thus, to account for potential variability in HG offsets relative to the response, 

a dictionary of design matrices was constructed for each cluster by creating multiple 

versions of the original design matrix with offsets shifted from 300 ms pre-response to 450 

ms post-response in 25 ms steps. Each entry in the design matrix dictionary was correlated 

(using Pearson’s correlation) with the trial-by-trial HG time series for that cluster (across all 

trials for each data channel in the cluster).

Given the large number of data points and a potential influence of HG amplitude on r- and p-

values, we implemented a non-parametric significance testing to avoid spurious significant 

results. The surrogate distribution was built for each design matrix entry by randomly time-

shifting HG data series relative to the design matrix data series 10,000 times. On each 

iteration, a break point was randomly selected in the time series, and the data were circularly 

shifted around that break point. The circular shift preserves temporal data structure while 

varying the temporal relationship between the HG signal and the design matrix data series. 

Significance threshold of p<0.001 was selected to account for multiple comparisons. 

Clusters with Persistent HG activity were defined as those with a significant above-threshold 

correlation for any design matrix in the dictionary. To ensure that Persistent HG activity was 

not primarily driven by response execution, the HG peak amplitude had to occur no later 

than 50 ms pre-response in the response-locked trace. Across all clusters classified as 

Persistent, the average highest correlation across the design matrix entries was r=0.21 and 

the average best HG offset (determined by the highest correlation across the design matrix 

entries) was 106.3 ms post-response (s.d. = 162.9 ms).

Clusters that did not match Persistent HG activity criteria were classified as Early Stimulus, 

Late Stimulus, or Response based on the following set of rules. Clusters with transient HG 

increases present both post-stimulus and post-response for auditory tasks with verbal 

responses, or time-locked to stimulus onset and stimulus offset for visual tasks, were 

classified as Early Stimulus, representing HG activity sensitive to physical (acoustic or 

visual) properties of the stimulus (See Supp. Information for detailed discussion). Clusters 

exhibiting transient stimulus-locked activity (with HG offset at least 300 ms pre-response) 

without sensitivity to physical stimulus properties (i.e., no HG activity evoked by verbal 

responses or HG activity sensitive to onset/offset of visual stimuli) were classified as Late 

Stimulus (See Supp. Information for detailed discussion). Finally, clusters exhibiting 

response-locked activity peaking 50 ms pre-response or later were classified as Response.

Five clusters (10 channels) exhibited HG activity sustained throughout the trial irrespective 

of the RT, likely reflecting tonic task-maintenance activity. Since this type of HG activity 

was present only in 1% of channels, they were not included in further analyses. In addition, 

cluster classification was not possible for five datasets due to insufficient RT ranges to 

discriminate among different types of HG activity (<100 ms min-to-max spread; see Supp. 

Fig. 10 for temporal overlap between activation types at short RTs). Given that these datasets 

did not provide sufficient separation between stimulus presentation and response to examine 

HG activity during the deliberation window, they were excluded from the analyses leaving 

115 clusters and 38 usable datasets (Supp. Table 2). We took specific precautions to 
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eliminate subjective biases in selection and clustering of HG activity and do not report any 

results that could be directly attributable to our classification criteria.

Levels of analysis

All analyses were performed across either (a) anatomical regions of interest (ROI) or (b) HG 

activity patterns. Examined ROIs included Sensory (bilateral superior and middle temporal 

gyri for auditory stimuli and the occipital cortex for visual stimuli), PFC (bilateral lateral 

and medial surface of the frontal lobe, excluding the pre-central gyrus and supplementary 

motor area [SMA]), and Motor (bilateral pre- and post-central gyri and SMA). The 

relationship between HG parameters and RTs across ROIs or HG activity patterns was 

analyzed across datasets (data from a single participant/task) and within RT-based bins 

across all trials (irrespective of dataset). For the RT bin analysis, all trials across all datasets 

within each ROI or HG activation pattern were pooled together and sorted by RTs. Bins 

were constructed in steps of 50 ms from the minimum RT, and all trials within each bin were 

averaged together. Bins with low signal-to-noise ratio (<50 trials across all ROIs or HG 

activation types) were discarded. Thirty RT bins common to all HG activity patterns and 35 

RT bins common to all ROIs were included in further analyses.

Determining latency and amplitude parameters of the HG signal

HG onset, HG offset, peak amplitude, and peak amplitude latency were identified for each 

ROI and HG activity type (see Supp. Fig. 5). In the dataset analysis for all ROIs and HG 

activity types, temporal and amplitude parameters were calculated for individual channels 

and then averaged across channels within each dataset. For RT bins, temporal and amplitude 

parameters were calculated on averaged traces for each bin. To avoid using spurious 

transient increases in HG activity as markers for HG onset or offset, we instituted a 100 ms 

threshold for contiguous significance as an indicator of true task-related increases in HG 

activity. Thus, the HG onset was defined as the first significant time point that was preceded 

by at least 100 ms where no data point passed the significance threshold (one-sample t-test, 

p<0.05 FDR corrected) and was followed by at least 100 ms where every data point passed 

the significance threshold. Similarly, the HG offset was defined as the first non-significant 

data point preceded by at least 100 ms of significant activity and followed by at least 100 ms 

of non-significant activity.

Peak amplitude and latency were calculated as a maximal HG value in a window from 

stimulus onset through 500 ms past the longest RT within each dataset or across RT bins. We 

employed these static windows for all ROIs and HG activity types to avoid potentially 

biasing influences of RT variability that could be introduced by identifying peak amplitude 

and latency only in the HG onset-to-offset windows (in which case, the probability of 

finding a high latency value would be higher for tasks with longer RTs). For 13 Early 

Stimulus channels (<1%), HG amplitude was greater following response vocalization than 

post-stimulus. Since all relevant analyses of Early Stimulus activity were performed on 

stimulus-locked HG traces, we re-calculated peak latency values for these channels, 

restricting the window of analysis from stimulus onset to HG offset.
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Since HG signal at longer RT bins for the PFC ROI and Persistent activity type were 

characterized by a plateau, rather than a distinct peak (Fig. 2b; Supp. Fig. 5), additional 

parameters of the first plateau peak latency (when the rate of change of the positive slope 

begins to diminish and the activity begins to level off) and last plateau peak latency (the last 

point before the rate of change of the negative slope begins to increase) were identified. This 

window was used to calculate mean HG plateau amplitude. Finally, we identified the points 

of divergence for temporally adjacent ROIs (Sensory-PFC and PFC-Motor) or HG activity 

types (Early-to-Late Stimulus, Late Stimulus-Persistent, Persistent-Response). The 

divergence point is calculated as the last time point at which HG traces for the two ROIs or 

HG activity types diverge before the RT (i.e., the point at which activity at one ROI/HG 

activity type begins to diminish and activity at the other ROI/HG activity type begins to 

increase).

The relationship between latency and amplitude parameters of HG activity and RT (across 

datasets and RT bins for both ROI and HG activity pattern analyses) were examined using 

Pearson’s correlations. Differences in HG parameters across datasets and RT bins were 

examined using Mann-Whitney nonparametric tests. FDR corrections for multiple 

comparisons were applied whenever necessary.

HG activity during trials with no response

HG activity for trials on which participants failed to respond was examined in the Antonym 

Generation task. All no-response trials were pooled together and averaged across channels 

within each HG activation pattern within each participant. For comparison, a matching 

number of correct trials with longest RTs were selected for each participant to account for 

the duration of response selection. A two-sample two-tailed t-test with FDR correction was 

performed on each data point comparing no-response and correct trials for each HG activity 

pattern. A similar one-sample two-tailed t-test with FDR correction was performed on each 

data point for Response traces to determine whether there were significant HG increases 

during no-response trials.

Stimulus feature representation indexed by HG activity

HG amplitudes between different stimulus categories were compared for the Visual and 

Auditory Categorization (100%/80% morphs vs. 0%/20% morphs) and Antonym Generation 

tasks (nouns vs. adjectives). For each channel, HG amplitudes were subjected to a two-

sample two-tailed t-test between conditions at every time point across trials. Channels 

exhibiting significant condition differences (p<0.05 for at least 100 ms consecutively) were 

considered sensitive to stimulus features. The false alarm rate for the 100-ms windows with 

consecutive p<0.05 significance levels was calculated by examining the distribution of all 

windows with consecutive p<0.05 significance levels, regardless of size, across all classified 

sites for all datasets that were used for this analysis. 96.7% of windows in the distribution 

were shorter than100 ms in duration, indicating that the probability of obtaining a 100-ms 

(or longer) window with consecutive p<0.05 levels was p=0.033. Cluster-wise p-values were 

calculated by averaging p-values within the identified 100-ms (and longer) windows.
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Functional Network Analysis

To identify sites exhibiting common fluctuations in HG amplitudes on a trial-by-trial basis, 

PCA (using the correlation matrix) was performed on the mean HG amplitude values within 

the activation window (HG onset to HG offset) for each trial (observations) across all 

channels (features) within each dataset. PCs with eigenvalues above one were retained. To 

define functional networks based on shared trial-by-trial variability, sites with high weights 

on each remaining PC were identified using a threshold calculated as the smallest maximum 

absolute component weight for a given dataset.

Life Sciences Reporting Summary

Further information on experimental design is available in the Life Sciences Reporting 

Summary.

Data availability

The de-identified raw data that support the findings of this study are stored in the 

Collaborative Research in Computational Neuroscience (CRCNS) database at UC Berkeley 

(crcns.org). It can be accessed with a free CRCNS account at crcns.org/data-sets/pfc.

Code availability

Analyses reported herein were conducted using custom computer code utilizing tools from 

MATLAB (including Signal Processing, Cronux, and Statistics toolboxes, with versions 

updated with new releases), R (version 3.2.2), and Python 2.7 software packages (scikit-

learn, numpy, scipy, pandas, and matplotlib). EEGLab 11_0_4_3b was used for raw data 

visualization and preprocessing. Bioimage Suite 3.01 was used for electrode localization. 

Custom computer code is available from the corresponding author upon request. Examples 

of data analysis pipelines can be accessed at GitHub (https://github.com/matarhaller/

demoanalysis).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We would like to thank the patients for their cooperation, patience, and interest – without their help this research 

would not be possible. We would also like to thank JN Hoffman, A Flinker, R Ivry, K Johnson, and JD Wallis for 

providing valuable comments and suggestions during manuscript preparation, and KL Anderson, M Cano, and VN 

Rangarajan for help in data collection.

This work was supported by the following grants: National Science Foundation (NSF) Graduate Research 

Fellowship DGE1106400 (MH), the National Institute of Mental Health F32MH75317 (AS), the National Institute 

of Neurological Disorders and Stroke (NINDS) R37NS21135 and the Nielsen Corporation (RTK), NINDS 

R01NS078396 and NSF BCS1358907 (JP), NS40596 and NS088606 (NEC), NIH R01DC012379 (EFC). The 

funders had no role in study design, data collection and analysis, decision to publish, or preparation of the 

manuscript.

The MacBrain Face Stimulus Set was developed by Nim Tottenham (nlt7@columbia.edu) with support from the 

John D. and Catherine T. MacArthur Foundation Research Network on Early Experience and Brain Development. 

The dog-cat morph stimuli were provided by Dr. Earl Miller from the Picower Institute for Learning and Memory 

and Department of Brain and Cognitive Sciences at the Massachusetts Institute of Technology.

Haller et al. Page 19

Nat Hum Behav. Author manuscript; available in PMC 2018 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://crcns.org
http://crcns.org/data-sets/pfc
https://github.com/matarhaller/demoanalysis
https://github.com/matarhaller/demoanalysis


References

1. Duncan J, Burgess P, Emslie H. Fluid intelligence after frontal lobe lesions. Neuropsychologia. 

1995; 33:261–268. [PubMed: 7791994] 

2. Fuster JM, Bodner M, Kroger JK. Cross-modal and cross-temporal association in neurons of frontal 

cortex. Nature. 2000; 405:347–351. [PubMed: 10830963] 

3. Stuss, DT., Knight, RT. Principles of Frontal Lobe Function. Oxford University Press; 2012. 

4. Szczepanski SM, Knight RT. Insights into human behavior from lesions to the prefrontal cortex. 

Neuron. 2014; 83:1002–1018. [PubMed: 25175878] 

5. Callicott JH, et al. Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia 

revisited. Cerebral cortex. 2000; 10:1078–1092. [PubMed: 11053229] 

6. Just MA, Cherkassky VL, Keller TA, Minshew NJ. Cortical activation and synchronization during 

sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain. 2004; 

127:1811–1821. [PubMed: 15215213] 

7. Mayberg, H. Frontal-subcortical circuits in psychiatric and neurological disorders. Cummings, JL., 

Lichter, DG., editors. Guilford Press; 2001. p. 177-206.

8. Curtis CE, Lee D. Beyond working memory: the role of persistent activity in decision making. 

Trends Cogn Sci. 2010; 14:216–222. [PubMed: 20381406] 

9. D’Esposito M, Postle BR. The cognitive neuroscience of working memory. Annu Rev Psychol. 

2015; 66:115–142. [PubMed: 25251486] 

10. Fedorenko E, Duncan J, Kanwisher N. Broad domain generality in focal regions of frontal and 

parietal cortex. Proc Natl Acad Sci. 2013; 110:16616–16621. [PubMed: 24062451] 

11. Goard MJ, Pho GN, Woodson J, Sur M. Distinct roles of visual, parietal, and frontal motor cortices 

in memory-guided sensorimotor decisions. eLife. 2016; 5:e13764. [PubMed: 27490481] 

12. Fuster JM, Bodner M, Kroger JK. Cross-modal and cross-temporal association in neurons of 

frontal cortex. Nature. 2000; 405:347–351. [PubMed: 10830963] 

13. Hernandez A, Zainos A, Romo R. Temporal evolution of a decision-making process in medial 

premotor cortex. Neuron. 2002; 33:959–972. [PubMed: 11906701] 

14. Kim JN, Shadlen MN. Neural correlates of a decision in the dorsolateral prefrontal cortex of the 

macaque. Nature Neurosci. 1999; 2:176–185. [PubMed: 10195203] 

15. Rainer G, Rao SC, Miller EK. Prospective coding for objects in primate prefrontal cortex. J 

Neurosci. 1999; 19:5493–5505. [PubMed: 10377358] 

16. Riley MR, Constantinidis C. Role of prefrontal persistent activity in working memory. Front Syst 

Neurosci. 2016; 9:181. [PubMed: 26778980] 

17. Siegel M, Buschman TJ, Miller EK. Cortical information flow during flexible sensorimotor 

decisions. Science. 2015; 348:1352–1355. [PubMed: 26089513] 

18. Stokes MG. ‘Activity-silent’ working memory in prefrontal cortex: a dynamic coding framework. 

Trends Cogn Sci. 2015; 19:394–405. [PubMed: 26051384] 

19. Chafee MV, Goldman-Rakic PS. Matching patterns of activity in primate prefrontal area 8a and 

parietal area 7ip neurons during a spatial working memory task. J Neurophysiol. 1998; 79:2919–

2940. [PubMed: 9636098] 

20. Huang Y, Matysiak A, Heil P, Konig R, Brosch M. Persistent neural activity in auditory cortex is 

related to auditory working memory in humans and nonhuman primates. eLife. 2016; 5:e15441. 

[PubMed: 27438411] 

21. Romo R, De Lafuente V. Conversion of sensory signals into perceptual decisions. Prog Neurobiol. 

2013; 103:41–75. [PubMed: 22472964] 

22. Curtis CE, Rao VY, D’Esposito M. Maintenance of spatial and motor codes during oculomotor 

delayed response tasks. J Neurosci. 2004; 24:3944–3952. [PubMed: 15102910] 

23. Curtis CE, Connolly JD. Saccade preparation signals in the human frontal and parietal cortices. J 

Neurophysiol. 2008; 99:133–145. [PubMed: 18032565] 

24. Bastin J, Lebranchu P, Jerbi K, Kahane P, Orban G, Lachaux JP, Berthoz A. Direct recordings in 

human cortex reveal the dynamics of gamma-band [50-150Hz] activity during pursuit eye 

movement control. Neuroimage. 2012; 63:339–347. [PubMed: 22819950] 

Haller et al. Page 20

Nat Hum Behav. Author manuscript; available in PMC 2018 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



25. Edwards E, et al. Spatiotemporal imaging of cortical activation during verb generation and picture 

naming. Neuroimage. 2010; 50:291–301. [PubMed: 20026224] 

26. Ossandon T, et al. Efficient ‘Pop-Out’ visual search elicits sustained broadband gamma activity in 

the dorsal attention network. J Neurosci. 2012; 32:3414–3421. [PubMed: 22399764] 

27. Manning JR, Jacobs J, Fried I, Kahana MJ. Broadband shifts in local field potential power spectra 

are correlated with single-neuron spiking in humans. J Neurosci. 2009; 29:13613–20. [PubMed: 

19864573] 

28. Mukamel R, et al. Coupling between neuronal firing, field potentials, and fMRI in human auditory 

cortex. Science. 2005; 309:951–954. [PubMed: 16081741] 

29. Ray S, Crone NE, Niebur E, Franaszczuk PJ, Hsiao SS. Neural correlates of high-gamma 

oscillations (60-200 Hz) in macaque local field potentials and their potential implications in 

electrocorticography. J Neurosci. 2008; 28:11526–11536. [PubMed: 18987189] 

30. Ray S, Maunsell JHR. Different origins of gamma rhythm and high-gamma activity in macaque 

visual cortex. PLoS Biol. 2011; 9:e1000610. [PubMed: 21532743] 

31. Flinker A, et al. Redefining the role of Broca’s area in speech. Proc Natl Acad Sci. 2015; 

112:2871–2875. [PubMed: 25730850] 

32. Fedorenko E, Duncan J, Kanwisher N. Language-selective and domain-general regions lie side by 

side within Broca’s area. Curr Biol. 2012; 22:2059–2062. [PubMed: 23063434] 

33. Sahin NT, Pinker S, Cash SS, Schomer D, Halgren E. Sequential processing of lexical, 

grammatical, and phonological information within Broca’s area. Science. 2009; 326:445–449. 

[PubMed: 19833971] 

34. Braun U, et al. Dynamic reconfiguration of frontal brain networks during executive cognition in 

humans. Proc Natl Acad Sci USA. 2015; 112:11678–83. [PubMed: 26324898] 

35. Murray JD, et al. A hierarchy of intrinsic timescales across primate cortex. Nature Neurosci. 2014; 

17:1661–1663. [PubMed: 25383900] 

36. Catani M, et al. Short frontal lobe connections of the human brain. Cortex. 2012; 48:273–291. 

[PubMed: 22209688] 

37. Sreenivasan KK, Curtis CE, D’Esposito M. Revisiting the role of persistent neural activity during 

working memory. Trends Cogn Sci. 2014; 18:82–89. [PubMed: 24439529] 

38. Duncan J, Owen AM. Common regions of the human frontal lobe recruited by diverse cognitive 

demands. Trends Neurosci. 2000; 23:475–483. [PubMed: 11006464] 

39. Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD. Large-scale automated synthesis 

of human functional neuroimaging data. Nature Methods. 2011; 8:665–670. [PubMed: 21706013] 

40. Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 

2001; 24:167–202. [PubMed: 11283309] 

41. Cohen JD, et al. Temporal dynamics of brain activation during a working memory task. Nature. 

1997; 386:604–608. [PubMed: 9121583] 

42. Mukamel R, Fried I. Human intracranial recordings and cognitive neuroscience. Annu Rev 

Psychol. 2012; 63:511–537. [PubMed: 21943170] 

43. Lundqvist M, Rose J, Herman P, Brincat SL, Buschman TJ, Miller EK. Gamma and beta bursts 

underlie working memory. Neuron. 2016; 90:152–164. [PubMed: 26996084] 

44. Tottenham N, et al. The NimStim set of facial expressions: Judgments from untrained research 

participants. Psychiat Res. 2009; 168:242–249.

45. Kominek J, Black AW. The CMU Arctic speech databases. Fifth ISCA Workshop on Speech 

Synthesis. 2004

46. Kawahara H, Irino T. Underlying principles of a high-quality speech manipulation system 

STRAIGHT and its application to speech segregation. Speech Separation by Humans and 

Machines. 2005:167–180.

47. Freedman DJ, Riesenhuber M, Poggio T, Miller EK. Categorical representation of visual stimuli in 

the primate prefrontal cortex. Science. 2001; 291:312–316. [PubMed: 11209083] 

48. Bradley, MM., Lang, PJ. Affective norms for English words (ANEW): Instruction manual and 

affective ratings. Center for Research in Psychophysiology, Univ. Florida; 1999. Tech. Rep C-1

Haller et al. Page 21

Nat Hum Behav. Author manuscript; available in PMC 2018 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



49. Crone N. Functional mapping of human sensorimotor cortex with electrocorticographic spectral 

analysis. II. Event-related synchronization in the gamma band. Brain. 1998; 121:2301–2315. 

[PubMed: 9874481] 

50. Lachaux JP, Axmacher N, Mormann F, Halgren E, Crone NE. High-frequency neural activity and 

human cognition: Past, present and possible future of intracranial EEG research. Prog Neurobiol. 

2012; 98:279–301. [PubMed: 22750156] 

51. Miller KJ, et al. Broadband changes in the cortical surface potential track activation of functionally 

diverse neuronal populations. Neuroimage. 2014; 85:711–720. [PubMed: 24018305] 

52. Bruns A. Fourier-, Hilbert- and wavelet-based signal analysis: are they really different approaches? 

J Neurosci Methods. 2004; 137:321–332. [PubMed: 15262077] 

53. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach 

to multiple testing. J Royal Stat Soc Series B. 1995:298–300.

54. Ruscio J, Roche B. Determining the number of factors to retain in an exploratory factor analysis 

using comparison data of known factorial structure. Psychol Assessment. 2012; 24:282–292.

Haller et al. Page 22

Nat Hum Behav. Author manuscript; available in PMC 2018 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG 1. Anatomical and functional influences on the chronology of information processing across 
cortex
Panel a: Sites with significant HG activity classified according to anatomical regions of 

interest (ROI). Panel b: Latency for HG onsets (green) and peak amplitude (red) across 

ROIs (NSensory=26, NPFC=NMotor=34). Panel c: Sites with significant HG activity classified 

according to activity patterns, demonstrating functional heterogeneity within each ROI and 

anatomical heterogeneity for each HG activity type. Panel d: Latency for HG onsets and 

peak amplitude calculated only across sites with HG activity pattern predominant in each 

ROI (Supp. Table 6; Sensory – Early Stimulus, PFC – Persistent Stimulus-to-Response, 

Motor – Response; NSensory=26, NPFC=NMotor=34).
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FIG 2. Cortical distribution and temporal dynamics of HG activity across regions of interest
Panel a: The relationship of HG onset and peak amplitude latencies in the PFC to reaction 

times (RTs) across datasets (NPFC=34, sorted by RT; left). Correlations between RTs and 

HG onset (middle) and HG peak (right) latencies in the PFC. Panel b: Time course of HG 

activity across ROIs for a representative RT bin. Panel c: The relationship between RTs and 

the point of divergence between HG signals in the PFC and Motor ROIs across RT bins 

(NRTbins=34).
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FIG 3. Cortical distribution and temporal dynamics of HG activity
Four common patterns of HG activity were observed: Early Stimulus (Panel a), Late 

Stimulus (Panel b), Persistent Stimulus-to-Response (Panel c), and Response (Panel d). 

Single trial plots for all participants, tasks, and channels sorted by response times (black tick 

marks) are presented on the left side of each pane. Stimulus offset is plotted for each trial as 

a gray tick mark. Cortical distribution (left lateral surface) of sites corresponding to each HG 

pattern is presented on the right. Percent of all active sites exhibiting the corresponding HG 

pattern is indicated for each activity type.
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FIG 4. Persistent Stimulus-to-Response HG activity is critical for response selection
Average traces for the Early Stimulus (N=570), Persistent Stimulus-to-Response (N=1734), 

and Response (N=596) HG activity patterns for trials with and without a response (matched 

numbers of trials) in the Antonym Generation task. Persistent HG activity was delayed and 

diminished in amplitude, but still present, on trials where no response was generated. 

Shading on each trace indicates s.e.m. across trials for each time point. Black bold segments 

along the x-axis indicate time points with significant differences between trials with and 

without responses (p<0.05, FDR-corrected).
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FIG 5. Stimulus features and task demands affect spatial and temporal profiles of Persistent 
Stimulus-to-Response HG activity
Panel a: Persistent Stimulus-to-Response sites exhibiting a category effect in the Antonym 

Generation as well as the Visual and Auditory Categorization tasks (N=7 participants). 

Panel b: Representative Persistent Stimulus-to-Response sites showing a category effect in 

the Visual Categorization task (dog, N=91 vs. cat, N=90) and a part of speech effect in the 

Antonym Generation task (noun, N=78 vs. adjective, N=69). Shading on each trace indicates 

s.e.m. across trials for each time point. Black bold segments along the x-axis indicate 

significant differences between traces (p<0.01 for at least 100 ms). Panel c: Persistent 

Stimulus-to-Response sites active during both the Word Repetition and Antonym Generation 

tasks (overlap, N=24) or active only during the Antonym Generation task (unique, N=24). 

Panel b: Onsets of Persistent Stimulus-to-Response HG activity averaged across overlap 

sites in Word Repetition, overlap sites in Antonym Generation, and unique sites in Antonym 

Generation (S3: Noverlap=11, Nunique=6; S15: Noverlap=6, Nunique=11; S18: Noverlap=10, 

Nunique=7). Error bars denote s.e.m. across sites.
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FIG 6. Interaction between Persistent and Response HG activity predicts reaction times
Panel a: The relationship of reaction times (RTs) to onset and peak amplitude latencies for 

Persistent Stimulus-to-Response HG activity across datasets (sorted by RT; Early Stimulus 

N=20, Late Stimulus N=15, Persistent N=28, Response N=29.). Panel b: Chronology of the 

Persistent and Response HG activity as a function of RT (shown across select RT bins). The 

Persistent Stimulus-to-Response plateau (from the first to the last HG peak) is blocked in 

gray. Shading on each trace indicates s.e.m. across trials for each time point (average 

number of trials per bin=439 trials). Panel c: Longer RTs were associated with decreased 

HG amplitudes of Persistent Stimulus-to-Response plateau (top) and larger peak amplitudes 

for Response activity (bottom) across RT trial bins (NRTbins=30).
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