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Persistent rigid-body motions and study’s
“Ribaucour” problem
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Abstract. In this work we show that the concept of a one-parameter per-
sistent rigid-body motion is a slight generalisation of a class of motions
called Ribaucour motions by Study. This allows a simple description of
these motions in terms of their axode surfaces. We then investigate other
special rigid-body motions, and ask if these can be persistent. The special
motions studied are line-symmetric motions and motions generated by the
moving frame adapted to a smooth curve. We are able to find geometric
conditions for the special motions to be persistent and, in most cases, we
can describe the axode surfaces in some detail. In particular, this work
reveals some subtle connections between persistent rigid-body motions
and the classical differential geometry of curves and ruled surfaces.
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1. Introduction

Historically kinematics was seen as a branch of geometry. Mathematical in-
terest in the subject however, declined over the last century. Recent advances
in the Engineering side of the discipline have sparked renewed interest in the
classical geometry underlying the subject.

In a recent series of papers Carricato and co-workers introduced the concept
of persistent screw systems [7,11]. A mechanism generates a ‘persistent screw
system’ if the end-effector twist system remains invariant up to a rigid displace-
ment under arbitrary finite displacements, away from singular configurations.
In this case, the output screw system preserves its internal pattern and ‘shape’,
but it moves in space like a rigid body. The submanifold of SE(3) ‘enveloped’
by the output twist system can be referred to, in brief, as a ‘persistent mani-
fold’.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00022-016-0331-5&domain=pdf
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Persistent manifolds can be observed in many complex spatial kinematic chains
with useful limited mobility of the end-effector [11]. In particular, Carricato
[8–10] classified all persistent submanifolds of dimension smaller than 5 that
can be generated by serial kinematic chains; these submanifolds are products
of subgroups. The notion of persistence, however, has a wider applicability and
applies to general chains generating submanifolds of SE(3). That is, some sub-
manifolds have the property of persistence others, most others, do not. There
are persistent submanifolds that cannot be generated by serial chains (i.e. by
products of subgroups), but still have important applications. A noteworthy
example is provided by homokinetic couplings or zero-torsion parallel manip-
ulators, whose persistence property emerges from the in-parallel connections
of mirror-symmetric kinematic chains, see [2,14,30].

In [28] Study describes what he calls the ‘Ribaucour problem’ and gives a
general solution for one dimensional submanifolds of SE(3). Here, we show
that these solutions are a particular type of persistent submanifold and this
allows us to generalise Study’s Ribaucour problem to arbitrary pitches and
hence to characterise all persistent one-dimensional submanifolds of SE(3) in
a similar fashion to the one-dimensional Ribaucour manifolds described by
Study.

Unfortunately, for higher dimensional submanifolds solutions to Study’s Rib-
aucour problem and the notion of a persistent submanifold diverge, so knowl-
edge of one does not help study of the other.

However, the main focus of the work is to examine some special rigid motions
and ask if they can be persistent. In particular, we look at motions defined by
a frame attached to a curve and line-symmetric motions generated by ruled
surfaces. This leads us to revisit some classical differential geometry of curves
and ruled surfaces.

2. Study’s Ribaucour problem

Study seeks 1, 2 and 3-dimensional submanifolds of the group of rigid-body
displacements such that, the instantaneous twist velocity is always a pure rota-
tion, that is, has pitch 0. In the present work only 1-dimensional submanifolds
are considered.

Suppose a rigid-body motion is given by a curve in the group of rigid-displace-
ments, G(t) ∈ SE(3). The instantaneous twist Sd of the motion G(t) is given
by

Sd =
dG(t)

dt
G−1(t). (2.1)

This is, of course, the Lie algebra element corresponding to the tangent vector
to the curve G(t). It is well known that elements of the Lie algebra se(3)
can be described as lines with a pitch. If G(t) is given in the standard 4 × 4
representation of SE(3), sometimes called the homogeneous representation,
then a general Lie algebra element can be written as
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Sd =

⎛
⎜⎜⎝

0 −P03, P02 P23 + pP01

P03 0 −P01 P31 + pP02

−P02 P01 0 P21 + pP03

0 0 0 0

⎞
⎟⎟⎠,

where the Pijs are the Plücker coordinates of the axis of the twist and p is the
pitch of the element. When p = 0, the motion is, instantaneously, a pure rota-
tion about the axis. More generally, the motion will be instantaneously a screw
motion, that is a rotation about the axis together with a translation along the
axis. The ratio of the rotational and translational velocities is given by the
pitch of the twist. It is also possible to have motions that are instantaneously
pure translations, in which case, the pitch is often said to be infinite.

The Lie algebra elements can also be written in a partitioned form, as

Sd =
(

Ω vvv
0 0

)
,

where Ω is a 3×3 anti-symmetric matrix corresponding to the angular velocity
ωωω = (P01, P02, P03)T . We will sometimes also write the Lie algebra elements
as 6-vectors, in partitioned form as

sssd =
(

ωωω
vvv

)
.

In general, any rigid-body motion can be generated by the motion of a moving
axode rolling and slipping on a fixed axode, see [3, Chapter 6, §5]. The fixed ax-
ode of a motion G(t) ∈ SE(3) is given by the axis of Sd as t varies. The instan-
taneous twist in the moving reference frame is given by Sb = G−1(t)SdG(t),
that is, by the adjoint action on the twist in the fixed frame. The instantaneous
twist Sb can also be found from the relation

Sb = G−1(t)
dG(t)

dt
.

The moving axode is then the axis of Sb as t varies. Notice that, since the
adjoint action preserves the pitch of a twist, the adjoint action which maps
the twist velocity in the fixed frame to the twist in the moving frame will also
map the fixed axode to the moving axode.

Study’s description of the one-dimensional Ribaucour motions consists of triv-
ial cases produced by cones or cylinders rolling without slipping on each other,
together with non-trivial cases given by two general ruled surfaces rolling with-
out slipping on each other. Notice that among the trivial cases are rotations
about a fixed point, given by general cones rolling on each other and the planar
motions given by general cylinders rolling on each other.

This solution is straightforward if we think of the axodes of the motion, as
described above. The screw-axis of the instantaneous twist of the motion is
given by the generating lines of the two axode surfaces which coincide at the
instant under consideration. The pitch of the instantaneous twist will be given
by the ratio of the slipping and rolling velocities. Hence, if there is no slipping,
the pitch of the instantaneous twist will be zero, that is a pure rotation. So,



152 J. M. Selig and M. Carricato J. Geom.

it is clear that any motion generated in this way, by rolling a ruled surface
on another ruled surface without slipping, will produce a Ribaucour motion.
Moreover, since any rigid motion can be realised as a motion given by the
moving axode rolling and slipping on the fixed axode, this is the only way to
produce such a motion.

Suppose that G(t) is a Ribaucour motion, then the instantaneous twist Sd will
have zero pitch. Let L0 be a fixed twist, that is an element of the Lie algebra
se(3), with pitch zero. As mentioned, the pitch of a twist is invariant under
the adjoint action of the group. Moreover the adjoint action is transitive on
lines in space. Hence, the instantaneous twist velocity of G(t) can be written
as Sd = HL0H

−1 where H = H(t) is some other smooth path in the group.
From Eq. (2.1) we get a differential equation for a general Ribaucour motion,

dG(t)
dt

= HL0H
−1G(t), (2.2)

where H is an arbitrary smooth motion. In this case, the fixed axode of the
motion is just HL0H

−1 and the moving axode is given by G−1HL0H
−1G.

3. Persistent motions

Suppose that M is a submanifold of SE(3) and assume that G is some fixed
point in M . The tangent space to the submanifold at G is given by TGM .
Translating the tangent space back to the identity in the group gives a subspace
of the Lie algebra, (TGM)G−1 ⊆ se(3). Such a subspace is usually called a
screw system. With this notation, the definition of a persistent submanifold
can be stated as follows.

Definition 3.1. Let G1, G2 be any pair of points in a submanifold M ⊆ SE(3),
M is persistent if and only if the screw systems determined by the tangent
spaces at these points are congruent. That is,

(TG1M)G−1
1 = H(TG2M)G−1

2 H−1

for some H ∈ SE(3).

In the rest of this paper only persistent 1-dimensional rigid-body motions will
be considered. For such a one-dimensional submanifold persistence just means
that the velocity twist at any point must have constant pitch. In other words,

dG

dt
= HLpH

−1G, (3.1)

where Lp is a fixed twist with pitch p and H as before is an arbitrary smooth
motion in the group. Clearly, when p = 0, this is exactly Study’s Ribaucour
problem.

The characterisation of these motions in terms of axodes is also similar to that
given in the previous section. Finally here, we look at a couple of small results
relating the twist velocities in the fixed and moving coordinate frames.
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Lemma 3.2. Suppose that a persistent motion has velocity twist in the global
frame given by HLpH

−1, then in the moving frame the twist velocity is given
by U−1LpU , where G = HU is the motion of the body.

Proof. Since the fixed axode is HLpH
−1, the moving axode is,

G−1HLpH
−1G = U−1H−1(HLpH

−1)HU = U−1LpU.

�
Lemma 3.3. Consider a persistent motion G = HU with twist velocity HLpH

−1

as above, then

Lp = Zb + Zd,

where Zb = H−1Ḣ and Zd = U̇U−1.

Proof. Substitute G = HU into Eq. (3.1) above to get

dG

dt
G−1 = HLpH

−1 = (ḢU + HU̇)U−1H−1.

Hence,
Lp = H−1Ḣ + U̇U−1. (3.2)

�

Remark 3.4. If H and Lp are given, then the motion U can be found by
integrating,

dU

dt
= (Lp − Zb)U.

Symmetrically, if U and Lp are given, H can be found by integrating

dH

dt
= H(Lp − Zd).

3.1. Examples

In general it is difficult to integrate the differential equations for the motions
H and U , given in Remark 3.4 above. The exceptional cases are when the Lie
algebra elements are constant and the solutions are just exponentials. So we
look at these as our first examples.

Assume that Zb = H−1Ḣ is constant, say Zb = S. Hence H = etS , if we
assume the initial condition H(0) = I. Now, to produce a p-persistent motion
with pitch p we must solve,

dU

dt
= (Lp − S)U,

where Lp is a twist with pitch p. Since the factor (Lp − S) is constant this is
again an exponential,

U = et(Lp−S)U(0)
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where U(0) is the initial condition which we will again assume to be the identity
U(0) = I. Hence the persistent motion will be given by the product

G(t) = HU = etSet(Lp−S).

Substituting S1 = S and S2 = Lp − S, we see that

G(t) = etS1etS2

will be a persistent motion, where the pitch of the motion will be given by the
pitch of the twist S1+S2. This result, for an arbitrary 2-joint kinematic chain,
can be found in [7,11].

In this simple case, it is also possible to describe the fixed and moving axodes
of motion. These are given by

etS1L0e
−tS1 and e−tS2L0e

tS2 ,

respectively, where L0 is the line with the same axis as the twist Lp. The
nature of these surfaces depend on the pitch of the twists in the exponent. If
S has pitch 0 then the ruled surface etSL0e

−tS will be a regulus of a circular
hyperboloid, or the tangent lines to a circle if S and L0 are perpendicular. If
the pitch of S is non-zero (but finite) then the ruled surface will be, in general,
a ruled helicoid. It may happen that the perpendicular distance between S and
L0 is δ and the angle between these axes is arctan(δ/p) where p is the pitch
of S. In such a case, the ruled surface traced out by L0 will be the tangent
developable surface of a helix. The helix is the curve traced out by the foot of
the common perpendicular on L0, between L0 and the axis of S.

4. Persistent Frenet–Serret motions

4.1. General Frenet–Serret motions

Another way to specify a rigid-body motion uses a curve. Given a curve in
space we demand that a specified point on the body follows the curve and
the orientation is determined by the Frenet–Serret frame to the curve, see [3,
Chapter 9, §2].

We recall here the basic ideas concerning Frenet–Serret motions as a way to
fix notation. For a Frenet–Serret motion the motion of the body is fixed with
respect to the Frenet frame of a curve γγγ(μ). The frame equations of the Frenet
frame can be written as

d

dμ
ttt = νωωω × ttt,

d

dμ
nnn = νωωω × nnn,

d

dμ
bbb = νωωω × bbb,
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where ωωω = τttt + κbbb is the Darboux vector with ttt, nnn and bbb the tangent, normal
and binormal vectors to the curve and ν, κ and τ the speed, curvature and
torsion of the curve. The motion is given by,

G(μ) =
(

R γγγ
0 1

)
,

with,

R = (ttt |nnn | bbb).

The conditions for a Frenet–Serret motion to be persistent turn out to be quite
stringent. The result follows from classical theorems,

Theorem 4.1. The instantaneous twist of a Frenet–Serret motion has pitch,
τ/(κ2 + τ2), where κ and τ are the curvature and torsion functions of the
curve that the motion is based on.

This result appears to be well known, it appears in [3] as an exercise (Example
2 in section 2 of Chapter 9). Also from Bottema and Roth we have the following
results.

Theorem 4.2. The fixed axode of a Frenet–Serret motion consists of generator
lines parallel to the curve’s Darboux vector ωωω and passing through a point that
is displaced from the curve generating the motion along the principle normal
to the curve. So the fixed axode is given by

aaa(μ, λ) =
(

γγγ(μ) +
κ(μ)

κ2(μ) + τ2(μ)
nnn(μ)

)
+ λωωω(μ).

In general this ruled surface is not developable.

and also

Theorem 4.3. The moving axode of a Frenet–Serret motion is a conoid.

We include proofs of these results for completeness.

Proof of Theorems 4.1 and 4.2. The instantaneous velocity twist of a Frenet–
Serret motion is given by

dG(μ)
dμ

G−1(μ) = ν

(
ΩR ttt
0 0

)(
RT −RTγγγ
0 1

)
= ν

(
Ω ttt − ωωω × γγγ
0 0

)
,

where Ω is the 3 × 3 antisymmetric matrix corresponding to ωωω. Now, we can
write

ttt = ωωω ×
( −κ

κ2 + τ2
nnn

)
+

τ

κ2 + τ2
ωωω,

so the instantaneous twist of the motion can be written as

sssd = ν

(
ωωω
vvv

)
, (4.1)

with

vvv =
(

γγγ +
κ

κ2 + τ2
nnn

)
× ωωω +

τ

κ2 + τ2
ωωω (4.2)
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The pitch of this twist is given by

p =
ωωω · vvv
ωωω · ωωω =

τ

(κ2 + τ2)
.

This show Theorem 4.1, to see Theorem 4.2 observe that, from Eq. (4.2) the
lines of the axode surface pass through the point,

γγγ +
κ

κ2 + τ2
nnn

with direction ωωω. The parametric form of the ruled surface then follows. �
Proof of Theorem 4.3. The instantaneous velocity twist of a Frenet–Serret mo-
tion in the body frame is given by

G−1(μ)
dG(μ)

dμ
= ν

(
RT −RTγγγ
0 1

)(
ΩR ttt
0 0

)
= ν

(
RT ΩR RT ttt

0 0

)
.

By construction of the Frenet–Serret motion the coordinate axes of the body
fixed frame correspond to the Frenet frame of the curve at μ = 0. So let
us write ttt0 = ttt(0) = RT (μ)ttt(μ) and so forth. In particular we will denote
ωωω0 = RT (μ)ωωω(μ). The body-fixed velocity twist will be,

sssb = ν

(
ωωω0

vvv0

)
,

with

v0v0v0 =
κ

κ2 + τ2
nnn0 × ωωω0 +

τ

κ2 + τ2
ωωω0.

Notice that γγγ(0) = 000 in these coordinates. The generator lines of the moving
axode are thus given by,

	(μ) =
(

ωωω0
κ

κ2+τ2nnn0 × ωωω0

)
,

where ωωω0 = τttt0 + κbbb0. These lines are all reciprocal and perpendicular to the
fixed line,

	n =
(

nnn0

000

)
,

that is, they all intersect the line orthogonally, hence the ruled surface is a
conoid. �

4.2. Persistence

Theorem 4.1 has the straightforward corollary.

Corollary 4.4. The Frenet–Serret motion based on a curve is persistent if and
only if τ/(κ2 + τ2) is a constant, where κ and τ are the curvature and torsion
functions of the curve.



Vol. 108 (2017) Persistent rigid-body motions 157

Theorem 4.5. If the curve γγγ(μ) generates a p-persistent Frenet–Serret motion
(p �= 0), that is if p = τ/(κ2 + τ2) is constant, the curvature and torsion of
γγγ(μ) can be parametrised by

κ =
1
2p

cos φ, τ =
1
2p

(sin φ + 1),

where φ is the parameter. The curvature and torsion functions can also be
parametrised by the rational functions,

κ =
1 − t2

2p(1 + t2)
, τ =

(1 + t)2

2p(1 + t2)
.

Proof of Theorem 4.5. If p �= 0 the relation p = τ/(κ2 + τ2) can be rearranged
to give,

κ2 +
(

τ − 1
2p

)2

=
(

1
2p

)2

.

In a plane with κ and τ as coordinates this relation represents a circle of radius
(1/2p) centred at a distance of (1/2p) along the τ axis. The trigonometric
parameterisation of this circle gives the result.

The alternative, rational parameterisation is obtained using the tangent-half-
angle substitution with parameter t = tan(φ/2). �
Notice that, if φ is constant then the curvature κ and torsion τ will also be
constant and the curve γγγ(μ) will be a helix. Also, for a Ribaucour motion, that
is a motion with p = 0, we must have τ = 0, so that γγγ(μ) will be a plane curve
in this case.

Remark 4.6. Curves with constant τ/(κ2 + τ2) do not seem to have been
studied in the classical literature.1 Standard theory of curves tells us that,
given a curvature and a torsion function, there will be a unique curve, up to
rigid displacement, with these properties. So, illustrations of curves with the
curvature and torsion functions given by the parameterisations above can be
produced by numerical integration, see Fig. 1.

4.3. Moving axode of the persistent Frenet–Serret motion

Here we show that,

Theorem 4.7. The moving axode of a persistent Frenet–Serret motion, with
p �= 0, is an equilateral hyperbolic paraboloid (also known as an orthogonal
hyperbolic paraboloid).

Proof. From Theorem 4.3 above, the moving axode of a general Frenet–Serret
motion is given in body-fixed coordinates as,

aaa(μ, λ) =
κ

κ2 + τ2
nnn0 + λωωω0.

1The quantity τ(κ2 + τ2)−1 does however appear as the distribution parameter of a ruled
surface formed from the principle normals to a general curve, see [29].
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Figure 1 A curve with a persistent Frenet–Serret motion,
κ = (1 − t2)/(3(1 + t2)) and τ = (1 + t)2/(3(1 + t2)), that is,
p = 1.5. The grey lines are normal vectors and light grey lines
are binormals

Taking x, y and z as coordinates along the ttt0, nnn0 and bbb0 axes respectively, a
point on the surface is given by the parametric equations,

x(μ, λ) = λτ,

y(μ, λ) = κ/(κ2 + τ2),
z(μ, λ) = λκ.

For a persistent Frenet–Serret motion we have that p = τ/(κ2 + τ2), so in the
above parameterisation y(μ, λ) = pκ/τ . Eliminating κ, τ and λ gives,

xy = pz,

the equation of an equilateral hyperbolic paraboloid. �

5. Bishop motions

Bishop motions, also called rotation minimising frame motions, are similar
to the Frenet–Serret motions studied above. The only difference is that the
orientation of the body is required to follow the Bishop frame to the curve.
This type of motion has been advocated by several authors over the years for
different applications in robotics and computer aided design, see for example
[16,25,26].

The main result here is that the fixed axode of such a motion is a ruled surface
familiar from the classical differential geometry of curves.
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5.1. Generalities

In [27] it was shown that Bishop motions are characterised by the fact that their
body-frame velocity twist must always lie in a IIB three system of screw with
modulus p = 0. The fact that this is a II system indicates that (almost) all the
twists in the system have the same pitch, the B here means that the system
contains a single exceptional twist with infinite pitch. Finally the modulus
p = 0 means that (almost) all the twists in the screw system have pitch zero.
Hence any Bishop motion will be Ribaucour motion.

Given a curve in space γγγ(μ), there is a moving frame of reference associated
with the curve called the Bishop frame. Actually, there are many Bishop frames
each determined by a choice of the initial frame. The tangent to the curve is
given by the vector (dγγγ/dμ) = νttt, where ν is the speed ds/dμ, of the curve;
that is, the derivative of the arc-length s with respect to the parameter μ.
Now, for the Bishop frame there are two normal vectors to the curve, nnn1 and
nnn2, and the frame equations are

d

dμ
ttt = ν(k1nnn1 + k2nnn2),

d

dμ
nnn1 = −νk1ttt,

d

dμ
nnn2 = −νk2ttt.

The functions k1 and k2 are curvature-like functions. At every instant the unit
vectors ttt, nnn1 and nnn2 form a right-handed ortho-normal frame and satisfy

ttt × nnn1 = nnn2, nnn1 × nnn2 = ttt, nnn2 × ttt = nnn1.

Comparing these vectors with the usual Frenet–Serret vectors, we can see from
the derivative of the tangent that

κnnn = k1nnn1 + k2nnn2,

where nnn is the principal normal vector. Since all these vectors have unit length
the curvature satisfies κ2 = k2

1+k2
2. The binormal vector is defined as bbb = ttt×nnn,

so it is easy to see that

κbbb = −k2nnn1 + k1nnn2.

Inverting the equations for nnn and bbb gives

nnn1 =
k1√

k2
1 + k2

2

nnn − k2√
k2
1 + k2

2

bbb, nnn2 =
k2√

k2
1 + k2

2

nnn +
k1√

k2
1 + k2

2

bbb.

This shows that the Bishop frame rotates about the tangent vector with re-
spect to the Frenet frame. Calling the rotation angle θ, we see that cos θ =
k1/

√
k2
1 + k2

2 and sin θ = k2/
√

k2
1 + k2

2. By differentiating the equation for the
binormal it is possible to show that dθ/dμ = ντ , where τ is the torsion of the
curve. Hence the rotation angle is given by the integral θ =

∫
ντ dμ + θ0. The
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constant of integration θ0 represents the choice we have for the initial orienta-
tion of the Bishop frame. This freedom does not really affect the motion based
on the Bishop frame.

The Bishop motion based on the curve γγγ(μ) will be given by a curve in the
group SE(3)

G(μ) =
(

R γγγ
0 1

)

where the rotation matrix R has columns given by the tangent and normal
vectors of the Bishop frame,

R = (ttt |nnn1 | nnn2).

5.2. Axodes

The fixed and moving axodes of a Bishop motion are ruled surfaces familiar
from classical differential geometry. The Bishop frame was only introduced in
1975 [1], by which time the heyday of classical kinematic geometry was almost
over. So it is unlikely that these results appear in the classical literature. The
result are expressed as the following pair of theorems.

Theorem 5.1. The fixed axode of a Bishop motion based on a curve γγγ(μ) is the
polar developable surface of the curve.

Theorem 5.2. The moving axode of a Bishop motion consists of lines lying in
a fixed plane.

Proof of Theorem 5.1. At any parameter value μ the point on the curve γγγ(μ) is
instantaneously rotating about an axis. This axis will pass through the centres
of the circles of curvature at the current point and will be a generator line
of the fixed axode. The line through the centres of the circles of curvature is
known to be perpendicular to the osculating plane of the curve at the current
point, that is it is parallel to the binormal vector to the curve. The line is also
known to pass through the centre of the osculating sphere to the curve. As the
parameter varies the centre of the osculating sphere traces out the pole curve
of γγγ(μ) and the line trough the centres of the circles of curvature is tangent
to the pole curve. The ruled surface traced by these lines is clearly the fixed
axode of the motion, classically it is known as polar developable surface of the
curve. See for example, [13, §13] or [12, Chapter 1, §9]. �
Proof of Theorem 5.2. The centre of the osculating sphere is known to lie in
the normal plane to the curve and hence so does the instantaneous rotation
axis described above as the line through the centre of the osculating sphere in
the direction of the binormal vector. As the body moves along the curve the
normal plane will be fixed in the body and hence all the lines of the moving
axode all lie in this plane. �
These results can also be shown by direct computations similar to those of
Sect. 4.
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5.3. Constructing Bishop motions

As an example of the possible use of these results a construction of a Bishop
motion is presented here. In Sect. 5.1 above, Bishop motions were described as
the composition of a Frenet–Serret motion with a rotation about the tangent
line to the curve. Here an alternative construction is given but also based on a
Frenet–Serret motion. Let σσσ(μ) be a regular curve in space, and let H(μ) be the
Frenet–Serret motion based on this curve. The construction uses the tangent
developable surface of the σσσ(μ) as the fixed axode of the Bishop motion. So if
T0 is the tangent line to σσσ(μ) at μ = 0 then the tangent developable can be
written as T (μ) = H(μ)T0H

−1(μ). Now, Eq. (3.2) gives,

T0 = H−1Ḣ + U̇U−1, (5.1)

where H−1Ḣ is the Darboux twist of the Frenet–Serret motion in the moving
frame,

H−1Ḣ = ν

⎛
⎜⎜⎝

0 κ 0 1
−κ 0 τ 0
0 −τ 0 0
0 0 0 0

⎞
⎟⎟⎠

see the proof of Theorems 4.1 and 4.2 above. So setting

U̇U−1 = −ν

⎛
⎜⎜⎝

0 κ 0 1
−κ 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠,

satisfies Eq. (5.1), up to multiplication by a scalar function. The equation for
U is not too difficult to solve since this is only a planar problem. Writing,

U(μ) =

⎛
⎜⎜⎝

cos θ − sin θ 0 x
sin θ cos θ 0 y

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠,

the equation for U(μ) can be expanded into the three linear differential equa-
tions,

dθ

dμ
= νκ,

dx

dμ
+ νκy = ν,

dy

dμ
− νκx = 0.

As a concrete example the Bishop motion whose fixed axode is the tangent de-
velopable to a circular helix can be constructed. The computations are straight-
forward, but long and not very instructive. The motion is illustrated in Fig. 2.
In Sect. 5.1 Bishop motions were defined using the Bishop frame to a regular
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Figure 2 A Bishop motion (the arrows) whose fixed axode
is the tangents to a circular helix

curve, in the present example this curve has not been found. The motion of
an arbitrarily placed rigid body, the arrow, is illustrated in the figure.

6. Persistent aeroplane motions

The most general rigid-body motion associated with a curve is a general frame
motion which was called an aeroplane motion in [27]. Such a motion can be
written as the product G(μ) = G2(μ)G1(μ), where G2(μ) is a Frenet–Serret
motion associated with the curve γγγ, and G1(μ) is an arbitrary rotation about
the tangent vector to the curve. Does this extra freedom allow for more per-
sistent motions? The results can be stated as the following theorems:

Theorem 6.1. On a smooth curve with minimum radius of curvature ρ, there
are two p-persistent frame motions for any p �= 0 and −(ρ/2) < p < (ρ/2).

Theorem 6.2. Every regular curve has a unique frame motion which is a Rib-
aucour motion. This motion is given by any Bishop frame to the curve.

Proof of Theorems 6.1 and 6.2. The instantaneous twist velocity of an aero-
plane motion can be written in the fixed frame as

dG(μ)
dμ

G−1(μ) = Ġ1G
−1
1 + G1Ġ2G

−1
2 G−1

1 ,

or, in the 6-vector representation of the Lie algebra se(3), as

sssd = ν

(
ωωω
vvv

)
− λ

(
ttt

γγγ × ttt

)
,

where ωωω and vvv are as in Sect. 4 and λ represents the rotational velocity about
the tangent vector. The negative sign multiplying λ is for consistency with the
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Bishop motion studied in Sect. 5. The pitch of sssd is given by

p =
ν(ντ − λ)

λ2 − 2νλτ + ν2(κ2 + τ2)
.

This can be rearranged to give a quadratic equation in λ,

pλ2 − (2νpτ − ν)λ + ν2(pκ2 + pτ2 − τ) = 0.

Now, for the curve to have a p-persistent aeroplane motion, we must be able
to solve for λ in terms of the speed, curvature and torsion functions of the
curve. The discriminant of this quadratic simplifies to

Δ = ν2(1 − 4p2κ2).

Hence, we can find real solutions to the quadratic, and hence p-persistent
motions for p satisfying

−1
2κ

< p <
1
2κ

.

So, the value of p is limited by half the minimum radius of curvature of the
curve, ±(ρ/2), where ρ = 1/κ. The two roots of the quadratic will give the two
possible p-persistent aeroplane motions when the condition is satisfied. This
settles Theorem 6.1.

For Theorem 6.2, we can see that every regular curve has an aeroplane motion
which is a Ribaucour motion given by setting λ = ντ . �

7. Persistent line-symmetric motions

In this section we explore the problem of finding persistent line-symmetric
motions. A line-symmetric motion is given by reflecting a rigid-body in the
successive generators of a ruled surface. These motions are of fundamental
importance in kinematics, see for example [3]. They were extensively studied
in a series of papers by Krames, see [18–24].

The following results are due to Krames [18]:

Theorem 7.1. The pitch of the instantaneous twist velocity of a line symmetric
motion is equal to the distribution parameter of the ruled surface generating
the motion.

Theorem 7.2. The fixed axode of a general line-symmetric motion is the ruled
surface generated by the central tangent lines to the surface generating the
motion.

This gives the straightforward corollary,

Corollary 7.3. A line-symmetric motion generated by a ruled surface with con-
stant distribution parameter p is a p-persistent motion. In particular, a line-
symmetric motion generated by a developable ruled surface is a Ribaucour mo-
tion.
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Although the proof of the above theorems given in [18] are elegant and subtle,
they rely on a detailed knowledge of synthetic geometry which is not com-
mon these days. Hence, in the interests of clarity and completeness modern
proofs are offered below. These may not be as elegant as the originals but are
straightforward and rely on little extra knowledge.

We begin with a brief description of these motions. Reflection in a line is simply
a rotation of π radians about the line, sometimes called a half-turn. The Lie
algebra element corresponding to a line can be given as 4 × 4 matrix,

L =
(

Ω vvv
0 0

)
,

where Ω is the 3 × 3 antisymmetric matrix corresponding to the direction of
the line ωωω and vvv is moment of the line vvv = rrr × ωωω for some point rrr on the line,
see Sect. 2 above. These quantities constitute the Plücker coordinates of the
line. It is easy to verify that these matrices satisfy the relation L3 = −L, when
|ωωω|2 = 1. Hence, the exponential of L, corresponding to a rotation of θ about
the line is given by the Rodrigues formula,

eθL = I4 + sin θL + (1 − cos θ)L2.

A half-turn about the line will be represented by the matrix

eπL = I4 + 2L2.

The velocity twist of these motions can be calculated and the result is given
by the following lemma.

Lemma 7.4. Let L(t) be the base surface for a line-symmetric motion. The
twist velocity of this motion is given by the commutator Sd = 2[L(t), L̇(t)].

Proof. Consider reflecting a rigid-body in the successive generators of the ruled
surface given by L(t). In order that the motion passes through the identity in
the group when t = 0 we can compose the reflections in the generators with a
reflection in the initial generator. The motion can be parametrised as,

G(t) = eπL(t)eπL(0) = (I4 + 2L(t)2)(I4 + 2L(0)2).

The instantaneous twist velocity of this motion is given, in the fixed frame, by
dG(t)

dt
G−1(t) = Sd = 2(L̇L + LL̇)(I4 + 2L2)

where the explicit dependence on t has been dropped for brevity. Expanding
this in terms of the Plücker coordinates of the original lines gives,

Sd = 2
(

ΩΩ̇ − Ω̇Ω + 2ΩΩ̇Ω2 Ωv̇vv − Ω̇vvv + 2ΩΩ̇Ωvvv
0 0

)
.

Using the fact that ωωω · ωωω = 1 and hence ωωω · ω̇ωω = 0, it is possible to show that
ΩΩ̇Ω = 0. So,

Sd = 2
{(

Ω vvv
0 0

)(
Ω̇ v̇vv
0 0

)
−

(
Ω̇ v̇vv
0 0

) (
Ω vvv
0 0

)}
= 2[L(t), L̇(t)]

�
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Remark 7.5. In terms of the 6-vector representation of se(3), the result of
Lemma 7.4 can be written as

sssd = 2
(

ωωω × ω̇ωω
ωωω × v̇vv + vvv × ω̇ωω

)
.

This is the vector product of the two twists corresponding to L and L̇.

The proof of the main theorem is now straightforward.

Proof of Theorem 7.1. Remembering that ωωω · vvv = 0 and |ωωω|2 = 1 since these
are the Plücker coordinates of a line, the pitch of the velocity twist sssd, given
in Remark 7.5, can be evaluated as

p =
(ωωω × ω̇ωω) · (ωωω × v̇vv + vvv × ω̇ωω)

|ωωω × ω̇ωω|2 =
ω̇ωω · v̇vv
|ω̇ωω|2 .

This can be compared with standard formulas for the distribution parameters
of a ruled surface, for example see [6]. After accounting for the fact that we
have set |ωωω|2 = 1 the formulas agree. �
Finally, the result for the velocity twist of these motions can be used to prove
Theorem 7.2.

Proof of Theorem 7.2. Assume that the ruled surface generating the line-
symmetric motion is given by,

rrr(t, λ) = sss(t) + λωωω(t),

where the directions of the generating lines ωωω(t) are unit vectors so that ωωω ·ω̇ωω =
0. Moreover, assume that the directrix curve sss(t) is actually the striction curve
of the ruled surface, so that ṡss · ω̇ωω = 0. The central normal vector is given by
ωωω × ṡss and hence the central tangent vector is given by ωωω × (ωωω × ṡss). The vector
can be shown to be parallel to the vector ωωω×ω̇ωω: all that is needed is to take the
cross product of the two vectors and simplify using the relations above. Hence,
we see that the axis of the motion’s velocity twist, as given in Remark 7.5,
is parallel to the central tangent of the surface. To show that the axis of the
twist passes through the striction point, at time t, we look at the translational
part of the twist. Substituting vvv = sss × ωωω in the twist velocity gives

ωωω × v̇vv + vvv × ω̇ωω = ωωω × (ṡss × ωωω + sss × ω̇ωω) + (sss × ωωω) × ω̇ωω

= ωωω × (ṡss × ωωω) + sss × (ωωω × ω̇ωω).

The first term on the right of the equation above is parallel to the direction of
the axis (ωωω × ω̇ωω). The second term is thus the moment of the line and clearly
it passes through sss, the striction point on the generator. �

7.1. An example persistent line-symmetric motion

To produce a p-persistent line-symmetric motion we need examples of ruled
surfaces with constant distribution parameter. Such surfaces have been studied
in the context of classical differential geometry by several workers, see for
example [5].
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The circular hyperboloid and ruled helicoid met in Sect. 3.1 are examples. Note
that the motions generated using these surfaces as axodes and those generated
by the same surfaces as line-symmetric motions will be different in general.

Another set of known examples consists of the binormal lines to curves with
constant torsion. Given a space curve, the set of lines along the binormal
vectors to the curve form a ruled surface. It is straightforward to show that
the distribution parameter of such a surface is equal to the torsion of the
original curve. In fact the striction curve to the surface is the original curve
from which the surface was constructed, see [29].

Before working on line-symmetric motions, Krames found a special class of
Cayley’s cubic ruled surfaces with constant distribution parameter, [17]. Later
Brauner showed that these were the only cubic ruled surfaces with constant
distribution parameter, [4]. Line-symmetric motions based on Cayley’s cubic
ruled surface were studied by Husty [15], but this work did not use a surface
with constant distribution parameter.

The Cayley cubic ruled surface with constant distribution parameter is given
in Plücker coordinates by

P01 = 2t3, P23 = −6dt,
P02 = 3t2 + 1, P31 = 6dt2,

P03 =
√

3(t2 + 1), P12 = −2
√

3dt2.

Figure 3 A cubic Cayley ruled surface with constant distri-
bution parameter (d = 1/3)
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This has been adapted very slightly from the result given in [4], the parameter
d has been scaled so that in this representation the distribution parameter of
the surface is exactly d. An illustration of this surface is given in Fig. 3. This
diagram also shows the generator line which is also a directrix of the surface,
that is a curve which meets all the generators. The directrix corresponds to
t = 0 in the parameterisation given above.

As a 4 × 4 matrix, the motion is then given by

G(t) = (I4 + 2L(t)2)(I4 + 2L(0)2)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

−t6+3t4+3t2+1
(t2+1)3

t3

(t2+1)3

√
3(2t5+t3)
(t2+1)3

− 2
√
3dt2(3t2+2)
(t2+1)3

− 3t5+t3

(t2+1)3
t6+3t4+6t2+2

2(t2+1)3
−

√
3t2(t4−3t2−2)

2(t2+1)3

√
3dt(2t4−3t2−3)

(t2+1)3

−
√
3t3

(t2+1)2
−

√
3t2(t2+2)
2(t2+1)2

−t4+4t2+2
2(t2+1)2

3d(2t3+t)
(t2+1)2

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The Plücker coordinates of the fixed axode of the motion are given by

F01 = −2
√

3t, F23 = −6
√

3dt,

F02 =
√

3t2(t2 + 3), F31 = −3
√

3d(t4 + 1),
F03 = 3t2(t2 + 1), F12 = −3d(t4 + 2t2 − 1),

namely a quartic ruled surface.
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