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Sodium currents are essential for the initiation and propagation
of neuronal firing. Alterations of sodium currents can lead to ab-
normal neuronal activity, such as occurs in epilepsy. The transient
voltage-gated sodium current mediates the upstroke of the action
potential. A small fraction of sodium current, termed the persis-
tent sodium current (I NaP ), fails to inactivate significantly, even
with prolonged depolarization. I NaP is activated in the subthresh-
old voltage range and is capable of amplifying a neuron’s response
to synaptic input and enhancing its repetitive firing capability. A
burgeoning literature is documenting mutations in sodium chan-
nels that underlie human disease, including epilepsy. Some of these
mutations lead to altered neuronal excitability by increasing I NaP .
This review focuses on the pathophysiological effects of I NaP in
epilepsy.

Ionic Channels and Excitability

Neuronal firing is controlled by numerous ionic conductances
that interact to produce a wide array of threshold and sub-
threshold behaviors. The foundation of the understanding of
neuronal firing comes from the pioneering work of Hodgkin
and Huxley, who showed that the action potential upstroke
is due to the rapid influx of sodium ions (1). Sodium influx
through specific ion channels in the neuronal membrane causes
a depolarizing inward current. Once open, sodium channels
inactivate and cannot pass further current until they recover
from inactivation. Sodium channel inactivation, in conjunc-
tion with outward current through potassium channels, allows
the membrane potential to repolarize to the resting level.
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In the past decade, an enormous expansion in the knowl-
edge of the diverse ion channels that contribute to the regula-
tion of neuronal firing has occurred (2). In addition to the tran-
sient sodium and potassium currents described by Hodgkin and
Huxley (1), channels for a variety of ions have been described,
including Ca2+ and Cl–; furthermore, channels that pass multi-
ple ions, such as the hyperpolarization-activated cation current
Ih (3), have been identified to play critical roles in regulating
neuronal excitability. Ion channels are distributed differently
in different parts of the neuron, allowing specific excitability
profiles of dendrites, soma, initial segment, and axon (4). Ion
channel expression and distribution also varies as a function
of development (5), and each neuron class is endowed with a
distinct electrical personality (6). Epilepsy emerges from abnor-
mal activity of neuronal networks. However, hyperexcitability
on many levels, including altered ion channel function, con-
tributes to the seizure-prone state.

As integral membrane proteins, ion channels are under
genetic control, and mutations are responsible for diverse hu-
man diseases, ranging from cystic fibrosis to cardiac arrhythmias
to migraine (7,8). In neurons, channelopathies often mediate
paroxysmal alterations in function. Inherited forms of epilepsy
constitute a prime example of channelopathies in which ion
channel dysfunction alters neuronal excitability. Epilepsy is a
heterogeneous condition that can result from an acquired brain
insult or from an inherited error in voltage- or ligand-gated
ion channel function (9–11). Since the first voltage-gated ion
channel defect in human epilepsy was reported, involving a
potassium channel mutation that caused benign familial neona-
tal convulsions (12), numerous genetic mutations have been
discovered in families with epilepsy. Some inherited epilepsies
might even result from a combination of genetic and environ-
mental factors (13).

This review focuses on sodium channels. The normal func-
tion and structure of sodium channels are reviewed as a pref-
ace to discussion of sodium channel mutations and resultant
epilepsy syndromes. While other recent reviews discuss the
wider spectrum of sodium channel mutations associated with
epilepsy (10,11,14–16), this review focuses on one type of
sodium current presently receiving increased attention as a fac-
tor in inherited epilepsies—it is the slowly inactivating or non-
inactivating sodium current, known as the persistent sodium
current (INaP).

Transient and Persistent Sodium Currents

Voltage-dependent sodium current involves a transient inward
flux of Na+ that depolarizes the cell membrane. The sodium
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FIGURE 1. A. Left—Schematic of persistent sodium current traversing a channel with incomplete (impaired) inactivation, as likely occurs
in many epilepsy-related sodium channel mutations. Right—Current traces depicting the fast transient sodium current (downward spike)
and persistent sodium current, reflecting the long-lasting increase in a small fraction of sodium current that can influence repetitive firing,
synaptic integration, and threshold for action potential generation (reprinted with permission from J Clin Invest [reference 14]).B. Current
clamp record of a plateau potential, mediated by persistent sodium current, in a layer V pyramidal neuron with potassium and calcium
currents blocked. The sustained, depolarizing plateau potential long outlasts the brief current pulse (lower trace). The gradual decline of
the plateau and eventual return of regenerative action potentials implies a very slow recovery of sodium channels from fast inactivation
(reprinted with permission from J Neurophysiol [reference 41]).C–E. Persistent sodium current demonstrated in current clamp (panel
C) and single-electrode ramp voltage-clamp (panels D and E) recordings from a single layer V neocortical neuron. In panels C and D,
upper traces are voltage and lower traces are current. Panel C shows voltage responses to 200-millisecond hyperpolarizing (traces 1) and
depolarizing current pulses (traces 2 and 3). At subthreshold voltages and voltages traversed by spike afterpotentials during repetitive firing
(indicated by lines b and c, respectively), persistent inward current is generated (points b and c in panel D). Panel E shows current traces
in response to ramp voltage commands (not shown), superimposed on a current–voltage plot. With TTX application, this rectification is
eliminated, verifying that the inward current is mediated by voltage-sensitive sodium channels (adapted with permission from Brain Res
[reference 20]).

channel varies among three functional states, depending upon
the membrane potential: closed, open (activated), and inac-
tivated. The current passing through open sodium channels
has rapid kinetics, reaching its peak in less than a millisecond
and declining to baseline within a few milliseconds. The kinet-
ics and all-or-none threshold behavior of the transient sodium
current makes it well suited to mediate the upstroke of the
neuronal action potential. Some sodium current persists after
the rapid decay of the transient sodium current (Figure 1A,
arrows). INaP ordinarily accounts for about 1% of the peak in-
ward sodium current (17). Despite its small amplitude com-
pared with peak sodium current, INaP can alter firing behav-
ior profoundly, especially in the subthreshold voltage range.
INaP can be activated by small synaptic depolarizations and
can then augment those potentials. Since the voltage range
in which INaP is activated is traversed in the interspike inter-
val in an action potential train, INaP can facilitate repetitive
firing. INaP maintains prolonged, depolarizing plateau poten-
tials in many neuron types (Figure 1B). Clearly, an increase
of only a few percent in the sodium current can dramatically

alter cell firing and facilitate hyperexcitability, as in seizure
behavior.

Function of INaP in Cell Firing and Its Regulation

The existence of INaP was first suggested by current clamp ex-
periments in hippocampal (18) and cerebellar (19) neurons,
in which prolonged depolarizing current pulses produced an
inward rectification of the membrane potential and sustained
plateau potentials when other ionic conductances (e.g., potas-
sium, calcium) were blocked. Voltage clamp experiments first
established the identity of the current underlying this inward
rectification as INaP (20, 21). Figure 1C and D demonstrate that
in neocortical pyramidal layer V neurons, an inward current is
activated at exactly the appropriate voltage range to augment
depolarization and facilitate repetitive firing. The elimination
of this inward rectification by the anesthetic agent QX-314
(22) or by external application of tetrodotoxin (TTX) (19) es-
tablishes that the underlying current is carried by sodium ions
(Figure 1E). Unfortunately, there is no unique pharmacological
blocker of INaP. TTX blocks both the transient and persistent
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sodium currents, which is not surprising since both currents pass
through from the same channel protein; the two currents differ
in their kinetics because of different modes of gating rather than
because of separate channel proteins (23).

In addition to hippocampus, cerebellum, and neocortex,
INaP has now been found on several other mammalian neuron
types, including thalamus (24), inferior olive (25), entorhinal
cortex (26), mesencephalic V nucleus (27), hypoglossal nucleus
(28), and even glia (29). INaP plays critical roles in several aspects
of neuronal function of many cell types, amplifying subthresh-
old oscillations and synaptic potentials as well as facilitating
repetitive firing (30–32). INaP adds to synaptic current to boost
membrane potential toward threshold for action potential gen-
eration. INaP is localized on neuronal dendrites, where it boosts
distal synaptic potentials to allow them to reach the soma (33);
on the proximal axon, where it can profoundly affect spike ini-
tiation (34); as well as on peripheral axons (35, 36). Its high
density near the axon initial segment is an optimal location
for control of repetitive firing behavior (30). Experimental and
modeling studies have shown that INaP amplifies the spike af-
terhyperpolarization and increases the regularity of repetitive
firing, thus governing the spatiotemporal pattern of neuronal
firing in potentially opposite directions (37). INaP can be mod-
ulated by neurotransmitters and by phosphorylation, adding to
its complex role in the regulation of spike timing and firing (38,
39). Theoretically, INaP also could participate in pathophysio-
logical neuronal firing (e.g., epileptic firing), since it keeps the
membrane depolarized longer. In neocortex, the robust pres-
ence of INaP in layer V neurons (compared with neurons of
layer II/III (40)) enhances excitability in neurons that comprise
the neocortical output circuit and are critical to the spread of
epileptic activity.

A persistent current can arise through several mechanisms,
including increased channel open times, decreased inactivation,
change in voltage dependence of activation or inactivation, or
late/delayed channel openings. INaP could be generated either
through distinct sodium channel subtypes or through different
gating modes of a single sodium channel type. The latter hy-
pothesis is supported by single-channel recordings (23,41). In
addition to the usual short latency and brief opening that char-
acterize the transient INaP, two forms of late/delayed openings
were identified: brief, late openings and bursts of late openings,
lasting for several seconds. These late openings suggest that
INaP is generated by different kinetic modes of the same sodium
channel, with the same channel occasionally entering an open
state that lacks fast inactivation (42). INaP probably is not due to
a “window current,” reflecting overlap between the Hodgkin–
Huxley activation and inactivation curves (i.e., a voltage range
in which some channels are activated, while others are not yet
inactivated); this window current occurs only over a restricted
voltage range (30).

Structure and Genetics of Sodium Channels

Voltage-gated sodium channels are heteromers composed of
α and β subunits (43). These channels are highly conserved
through evolution and have similar structure and function in
several excitable tissues, including cardiac muscle, skeletal mus-
cle, and neurons. Each α subunit is a large polypeptide of about
2,000 amino acid residues composed of four homologous re-
peats or domains (I-IV), each repeat consisting of six transmem-
brane segments (S1–S6). The four domains form the channel
pore through which the sodium ion passes. The α subunit serves
several functions including voltage sensor (positively charged S4
segments of each domain), ion selectivity filter/pore (hydropho-
bic S5–S6 segments of each domain), and inactivation gate at
the inner mouth of the channel (an intracellular loop connect-
ing domains III and IV). Each α subunit is associated with
one or more β subunits; four β subunits have been described,
β1–β4 (15). The β subunit is a single transmembrane segment
that has an extracellular IgG-like loop and an intracellular C
terminus. β subunits modulate α subunit function by altering
their voltage dependence, kinetics, and cell surface expression.

As integral membrane proteins, each subunit is encoded by
a specific gene. At least 13 genes encode sodium channel α or
β subunits in the CNS. Mutations of these genes cause altered
excitability regulation in every tissue in which sodium channels
are found. For example, in skeletal muscle, mutation of SCN4A,
which codes for sodium channel NaV1.4, results in paroxysmal
muscle hyperexcitability in syndromes such as hyperkalemic pe-
riodic paralysis and paramyotonia congenita (7,14). In cardiac
muscle, mutation of SCN5A causes several distinct disorders
of cardiac rhythm, including long QT syndrome. In the cen-
tral nervous system, SCN1A, SCN2A, and SCN3A code for
α subunits of sodium channel isoforms NaV1.1, 1.2, and 1.3,
respectively. These three genes are clustered on chromosome
2q24. SCN8A also is found in brain and is located on chromo-
some 12q13. SCN1B, on chromosome 19q13, codes for the
β1 subunit, which typically is associated with the α subunit to
form the intact channel. Other genes coding for sodium chan-
nel subtypes are specific for the peripheral nervous system and
could contribute to disorders of axonal excitability (44).

Epilepsy Syndromes with Sodium Channel
Mutations and Role of INaP in Epilepsy

Epilepsy can arise from either a genetic mutation of a sodium
channel gene or from an acquired insult to normal sodium
channels—each mechanism is described here.

Inherited Channelopathies

Sodium channel mutations have been identified in several fam-
ilies with inherited epilepsy, with the syndromes reflecting a
spectrum of clinical severity. Although each mutation is rare,
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TABLE 1. Number of Epilepsy Patients Identified with
Various Sodium Channel Mutations (Adapted with

Permission from J Clin Invest 2005;115:2010–2017)

Epilepsy Syndrome SCN1A SCN2A SCN1B

Severe myoclonic epilepsy of
infancy

150 1 0

Generalized epilepsy with febrile
seizures plus

13 1 2

Intractable childhood epilepsy
with generalized tonic–clonic
seizures

7 0 0

Benign familial neonatal–infantile
seizures

0 6 0

new mutations are being revealed at a striking rate, adding to the
opportunity to establish specific genotype–phenotype correla-
tions. However, despite a common phenotype (e.g., seizures),
the syndromes are clinically diverse in terms of epilepsy severity,
seizure type, age of onset, and neurological outcome. The un-
derlying pathophysiological mechanisms also are quite diverse.
Table 1 lists the number of reported patients with sodium
channel mutations underlying their epilepsy syndromes (up to
2005), thus depicting the distribution of genetic defects (15).

Generalized epilepsy with febrile seizures plus (GEFS+) is
characterized by febrile seizures early in life but afebrile seizures
occur after 6 years of age when typical febrile seizures have sub-
sided (45). The seizure types at older ages span the phenotypic
range, including partial, generalized tonic–clonic, absence,
and myoclonic. Affected individuals often have fairly mild
epilepsy. GEFS+ families are genetically heterogeneous, with
documented sodium channel mutations in SCN1A, SCN2A,
SCN1B, as well as in one GABA receptor subunit (GABRG2).
The first family in which a GEFS+ mutation was identified had
a defective SCN1B gene. The mutation, C121W, consists of
a substitution of a highly conserved cysteine residue (C) by a
tryptophan (W) in amino acid 121. The substitution disrupts a
disulphide bridge in the extracellular loop of the β1 subunit and
results in slowed channel inactivation and inability to modulate
channel gating (46). Therefore, this mutation is an example of
a sodium channel loss-of-function mutation. Mice with null
mutations of the β1 subunit develop spontaneous seizures and
other neurological problems (47).

Subsequently, other families with GEFS+ were linked to
chromosome 2q24-33, where a cluster of sodium channel α

subunits resides. Most mutations appear in the S4 voltage sen-
sor region of SCN1A. A variety of functional defects was found,
including an increase in INaP, therefore representing a gain-of-
function mutation (48). Increased INaP could facilitate seizures
for the reasons discussed above—enhancement of repetitive fir-
ing, heightened depolarization in the sub- and near-threshold

voltage range, and reduced threshold for action potential fir-
ing. However, the absence of a gain-of-function mutation in
many SCN1A patients suggests that this mechanism is not the
full explanation. Other pathophysiological defects have been
reported in GEFS+, including shifts in the voltage dependence
of activation or inactivation (49,50). Even mutations that, on
the surface, decrease sodium channel excitability (e.g., positive
shift in the voltage dependence of activation and slow recovery
from inactivation) can predispose to epilepsy, for reasons that
are not yet completely understood (51).

In addition, a single patient with a mutation in SCN2A was
reported to have slowed inactivation and persistent repetitive fir-
ing, also suggesting a gain-of-function (52). In the Q54 trans-
genic mouse, which harbors an SCN2A mutation, sodium chan-
nel inactivation is impaired and a prominent INaP is seen when
the mutant gene is expressed in an oocyte expression system.
In recordings from hippocampal CA1 neurons of these mice,
enhanced INaP was documented before spontaneous seizures
developed, rendering this animal model promising for investi-
gation of sodium channel pathophysiological derangements in
genetic epilepsy (53). The model also is being used to study
the effect of modifier genes on epilepsy development and the
interactions between multiple epilepsy gene mutations (54).

A second epilepsy syndrome with sodium channel muta-
tions is severe myoclonic epilepsy of infancy (SMEI) or Dravet
syndrome. As the name implies, affected children initially de-
velop febrile seizure during the first year of life, followed by
intractable seizures (generalized tonic–clonic, myoclonic) and
cognitive impairment. About one-third of children with SMEI
have mutations in SCN1A, the majority being frameshift or
missense, especially at the pore region (S5–S6) (55,56). These
mutations result in truncated protein and, therefore, are asso-
ciated with a severe phenotype.

A variant of SMEI, recently described, is called in-
tractable childhood epilepsy with generalized tonic–clonic
seizures (ICEGTC). This syndrome differs from SMEI in that
children lack myoclonic seizures and have fewer cognitive dif-
ficulties. ICEGTC is associated with SCN1A missense muta-
tions, whereas SMEI is associated with nonsense, frameshift,
and missense mutations, endowing the latter syndrome with a
more severe phenotype (57,58). Several, but not all, ICEGTC
mutants exhibit increased INaP (59). Finally, a new benign
syndrome termed benign familial neonatal-infantile seizures
(BFNIS) is characterized by seizures that remit by 1 year of
age and are not associated with any long-term neurological se-
quelae; six different SCN2A mutations have been reported (60).
Four of those mutations have been characterized biophysically.
In transfected neocortical neurons in primary culture, mutated
channels had abnormal gating properties, predisposing to en-
hanced neuronal excitability by increasing sodium current via a
positive shift of the inactivation curve or a negative shift of the
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TABLE 2. Selected Sodium Channel Mutations Associated with an Increase in INaP

Epilepsy
Gene Syndrome Mutation Mechanism of Increased INaP Reference

SCN1A GEFS+ T875M Impaired (enhanced) slow inactivation 48
Acceleration of activation 73

SCN1A GEFS+ W1204R Impaired inactivation 48
Hyperpolarized shifts in voltage-dependent activation and inactivation 49

SCN1A GEFS+ R1648H Accelerated recovery from inactivation 48,74
Increased probability of late reopenings
Increased fraction of channels with prolonged open times

SCN1A SMEI R1648C Impairment of fast inactivation 62
F1661S

SCN1A ICEGTC V1611F Abnormal voltage-dependent activation with hyperpolarizing shift 59
P1632S
F1808L

GEFS+, generalized epilepsy with febrile seizures plus; SMEI, severe myoclonic epilepsy of infancy; ICEGTC, intractable childhood epilepsy with generalized
tonic-clonic seizures.

activation curve (61). The consistent gain-of-function of these
mutations contrasts with SCN1A mutations, in which sodium
channel function may be increased or decreased.

It is difficult to generalize about defective channel func-
tions associated with sodium channel mutations, since there
is an inexact correlation between phenotype and genotype.
Even within gain-of-function mutations (i.e., with increased
INaP), there is heterogeneity of pathophysiological mechanisms
(Table 2). Both loss- and gain-of-function mutations are seen
in GEFS+, so the seizure susceptibility in this syndrome cannot
always be ascribed to persistent sodium current. GEFS+ muta-
tions are usually of the missense variety, while SMEI mutations
involve frameshift and nonsense mutations as well, correlat-
ing with the more severe phenotype. Functionally, most SMEI
mutations are loss-of-function, except with missense mutations
for which increased INaP is seen (62). As highlighted in the
accompanying commentary by Cooper, sodium channel loss-
of-function mutations can result in neuronal hyperexcitabil-
ity (and hence, epilepsy) by virtue of relative localization of
sodium channel subtypes (with subtle differences in biophys-
ical properties) along different parts of the neuron as well as
on different cell types within neuronal circuits. For example,
intriguing recent results from SCN1A−/− null mutant mice
and heterozygous SCN1A+/− mice showed reduced sodium
currents in hippocampal inhibitory neurons but not in pyra-
midal neurons (63). This selective distribution of mutations
would decrease the firing of GABAergic inhibitory neurons,
thus increasing excitability of the principal excitatory neurons.
The enormous diversity of biophysical mechanisms underly-
ing seizure predisposition in genetic epilepsies remains to be
clarified, and explanations will need to take into account neu-
ronal network behavior (64); channel function/dysfunction in
multiple types of neurons, interneurons, and glia; and the de-
velopmental stage of the patient (65,66).

Acquired Channelopathies

In genetically normal animals, sodium channel dysfunction
can occur as a consequence of altered channel expression
or function. Two studies have provided evidence that limbic
seizures induce an increase in INaP. In rats subjected to lithium-
pilocarpine–induced status epilepticus, whole cell recordings of
layer V entorhinal cortex neurons showed significantly larger
INaP compared with age-matched controls—at a time point
coinciding with the onset of spontaneous recurrent seizures
(67). These results presume that status epilepticus caused the
increased persistent current, which in turn contributes to the
emergence of spontaneous seizures. In subicular burst firing
neurons resected from patients with temporal lobe epilepsy, a
large increase of INaP has been recorded, with an amplitude
up to half of the total sodium current (68). In this study, the
increased INaP could partially explain the enhanced epilepto-
genicity in the subicular region (69,70). However, lacking con-
trol (i.e., nonepileptic) neurons, these authors used rat subicular
neurons as a comparison, which exhibited less INaP. A complete
understanding of whether epileptogenesis causes expression of
INaP or whether INaP was dysfunctional prior to seizures and led
to the seizure-prone state (or both) remains to be determined.

Anticonvulsant Effects on INaP

Sodium channels are targets for many antiepileptic drugs
(AEDs) as well as for anesthetic agents and antiarrhythmic
agents. Given the increasing role of INaP in epilepsy, it is a
reasonable target for AEDs as well. The effects of several AEDs
on INaP have been evaluated (Table 3) and have been found to
reduce INaP at clinically appropriate doses. At present, none of
these AEDs is specific for INaP, but several of them reduce INaP

at a dose lower than that which alters the transient sodium cur-
rent. Of note, antiabsence drugs, such as ethosuximide, do not
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TABLE 3. Examples of the Effects of Antiepileptic Drugs
on INaP

Antiepileptic Drug Effect on INaP Reference

Phenytoin ↓ 75
↓ 76
↓ 77
↓ 78
↓ 79

Valproic acid ↓ 80
None 78

Topiramate ↓ 81
Losigamone ↓ 82
Lamotrigine ↓ 83

↓ 79
Riluzole ↓ 78

↓ 83
↓ 84

Ethosuximide Minimal 78
Propofol ↓ 85

affect INaP. Another mechanism that is just beginning to be ex-
plored is whether a genetic mutation alters channel sensitivity to
AEDs; in the C121Wβ1 mutation, mutant channels were less
sensitive to inhibition by phenytoin (71). Finally, any drug that
reduces sodium current in a loss-of-function mutation, thereby
further reducing even essential sodium current, must be viewed
with caution, as is the case for lamotrigine in SMEI (72).

Conclusions

The INaP is a noninactivating component of the total sodium
current that dramatically affects the excitability of neurons and
other excitable tissues. This current, activated at subthreshold
voltages, has been shown to play important roles in the regula-
tion of neuronal firing. Some sodium channel mutations asso-
ciated with human epilepsy syndromes exhibit increased INaP,
but other sodium channel mutations lead to seizures by alter-
native pathophysiological mechanisms. Future research will be
focused on identifying exact biophysical defects by which INaP

alterations cause neuronal hyperexcitability and epilepsy and in
finding specific therapeutic agents that diminish this current.
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