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Abstract

The large amount of molecular dynamics simulation data produced by modern computational models brings big
opportunities and challenges to researchers. Clustering algorithms play an important role in understanding biomolecular
kinetics from the simulation data, especially under the Markov state model framework. However, the ruggedness of the free
energy landscape in a biomolecular system makes common clustering algorithms very sensitive to perturbations of the
data. Here, we introduce a data-exploratory tool which provides an overview of the clustering structure under different
parameters. The proposed Multi-Persistent Clustering analysis combines insights from recent studies on the dynamics of
systems with dominant metastable states with the concept of multi-dimensional persistence in computational topology. We
propose to explore the clustering structure of the data based on its persistence on scale and density. The analysis provides
a systematic way to discover clusters that are robust to perturbations of the data. The dominant states of the system can be
chosen with confidence. For the clusters on the borderline, the user can choose to do more simulation or make a decision
based on their structural characteristics. Furthermore, our multi-resolution analysis gives users information about the
relative potential of the clusters and their hierarchical relationship. The effectiveness of the proposed method is illustrated
in three biomolecules: alanine dipeptide, Villin headpiece, and the FiP35 WW domain.
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Introduction

Molecular Dynamics (MD) simulation is a useful tool to

understand biomolecular events such as protein folding at the

atomic level. Insights derived from simulations have the potential

to guide laboratory experiments. The development of advanced

hardware, computing architecture, and algorithms in MD

simulation has given researchers the power to produce massive

trajectory data. For example, the Folding@Home project, which

uses distributed computing on CPUs, GPUs and game consoles,

has simulated protein folding up to the 10 ms timescale [1].

Besides, the special-purpose supercomputer Anton has been used

to simulate 12 structurally different proteins with folding time-

scales up to 0.1 ms [2,3].

Biomolecular kinetics are frequently understood in terms of

a free energy landscape characterized by basins (local minima)

which represent long-lived or metastable states. Facing increasing

volume of MD simulation data, researchers need some means to

help them study the free energy landscape of a molecule system

from the simulation data. Direct visualization of the trajectory is

an straightforward way of analyzing MD simulations. However, as

the systems become more complex, these analyses provide an

oversimplified picture of the conformational kinetics; global

properties or rare but important events may be overlooked.

Another common way of studying the MD simulation data is to

project the trajectories onto a small number of reaction

coordinates, designed to capture transitions between relevant

metastable states. Nevertheless, it has been shown that important

features of the dynamics can be hidden in such projections (f.g.

[4]).

A promising alternative for studying the free energy landscape

from MD simulations is to group the sampled conformations, so

that the clustering of the conformations or the partition of the

configuration space reflects the basins of the free energy landscape.

Then the thermodynamics or kinetics of the molecule system can

be summarized in a model or a graph built upon the clusters. For

example, popular strategies include building a disconnectivity

graph (DG) for the basins and building a Markov state model

(MSM) for the metastable states.

In a disconnectivity graph, conformations are mapped by direct

minimization to their nearest local minimum several times each at

a different temperature or energy [5,6]. The mapping forms

a partition of the configuration space into basins, and the topology

of the basins is summarized into a tree to reveal the thermody-

namic and kinetic properties of underlying potential energy

surface. The disconnectivity graph approach has been applied to

several systems and proven to be a useful tool for providing an

overview of the basins [7]. However, computing databases of
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minima, which requires numerical minimization of an energy or

free energy function, is usually not an easy task especially for an

all-atom model (f.g. [8]), and it could be sensitive to perturbation

of data.

In a Markov state model (MSM) [9,10], a finite number of

metastable states are obtained by clustering the conformations

based on structural similarity and kinetics, and the kinetics

between the metastable states are modeled as a reversible Markov

chain. The Markov state model can be represented as a graph with

edge weights reflecting the kinetics between states. Although an

MSM can provide clearer kinetics information among states

compared to a DG, building an MSM requires much insight about

the system, which is precisely what we hope to derive from our

analysis of the data. For example, most clustering algorithms take

as an input the number of clusters, and that is an important

question we seek to answer: how many metastable states

characterize the system. A common heuristic to answer this

question uses the location of the largest spectral gap in a microstate

transition probability matrix (c.f. [10]). Another disadvantage of an

MSM comparied to a disconnectivity graph is that it only provides

information at one resolution. MSMs are multi-resolution in

nature; it is possible to divide a metastable state into finer states

that are still metastable to some extent; knowing the hierarchical

structure of the states could provide a clearer global picture of the

system.

In this paper, we proposed a data exploration method, Multi-

Persistent Clustering (MPC), for solving the model selection

problem of MSMs by extending the topology analysis concept

used in building a disconnectivity graph. The central idea of MPC

is the multi-dimensional persistence concept in computational topology

(c.f.[11–13]) with commute time distance. The MPC analysis

provides an overview of the clustering structure at different free

energy levels, by which researchers can build an MSM with states

persistent across a certain range of clustering and sampling

settings. This goal seems can be achieved by using a disconnectivity

graph as well, but the clustering procedure in our approach is

much simpler to compute. Furthermore, the commute time

distance used in our approach is based on the global structure of

free energy surface and is much more robust to noise and data

perturbation. Compared with conventional methods of building

an MSM, the clustering procedure in MPC requires little prior

knowledge about the system, and it does not have the problem of

being trapped in local optimums. In summary, the proposed MPC

analysis aims to combine the merits of the disconnectivity graph

and the Markov state model but avoid corresponding complicated

optimization and model selection problems.

In the following sections, we first reviewed the conventional

methods of building a MSM from MD simulations. Then, we

described the MPC analysis for data exploration and model

selection of MSMs, and applied it to a simulation of the terminally-

capped alanine dipeptide. The energy landscape of this small

molecule can be visualized in a two dimensional space, which will

help illustrate the advantages of our algorithm. We also applied

the method to simulations of the Villin headpiece and the FiP35

WW domain. We will see our approach can easily produce some

previously published results in an interpretable approach without

much fine-tuning and solving an complicated optimization

problem.

Methods

Clustering procedure
To use both the structural similarity of conformations and

kinetic information in the simulated trajectories, an MSM is

usually built by a two-step procedure [10,14]. In the first step, the

conformations observed in the simulation are clustered into

microstates according to a structural distance function, such as the

root-mean-squared distance (RMSD). The algorithms used for this

structure-based clustering include the k-medoids, k-center, and

hierarchical clustering methods [10,15]. Since RMSD could be

misleading when used as a surrogate for kinetics, this step needs to

be done with care. Please see [16] for more discussion. The second

step in the construction of an MSM uses the number of transitions

observed in the simulation between different microstates to further

group them into metastable states. Optimization algorithms such

as PCCA [17,18] produce a full partition of the microstates.

The first step can be viewed as a discretization step, in which we

partition a continuous space of structures into a finite set of

microstates. A good discretization should avoid merging con-

formations across barriers of the free energy landscape. As a result,

there are usually hundreds to thousands of microstates. Further-

more, we would like the model resulting from the second step to

contain a small number of clusters interpretable at a high level. For

example, the final metastable states could correspond to the native

state of the protein or an important intermediate.

The proposed MPC analysis focuses on the second step in the

construction of an MSM. That is, MPC is a cluster analysis

method for clustering the microstates and its input is a set of MD

trajectories where each conformation is represented by a micro-

state index. In stead of solving a discrete optimization problem

directly, our method is based on the neighborhood clustering

algorithm, also known as the Vietoris-Rips complex in the

computational topology literature. Given a distance function

between data points and a scale parameter, r, the clusters are defined

as the connected components of the neighborhood graph, in which

the nodes are microstates and there exists an edge between two

nodes if the distance between them is no larger than the scale

parameter. The output of this algorithm matches the result of

a single-linkage hierarchical clustering cut at the scale r.

Commute time distance
Our clustering procedure requires a distance function in the

space of microstates, which should capture the kinetic similarity

between two microstates. In this paper, we will use the commute time

distance, which we now define. For two microstates x and x’, the

hitting time from x to x’ is the expected number of steps it takes

a random walker which starts at x to reach x’ for the first time.

Note that the hitting time between two microstates may not be

symmetric. The commute time between two microstates is defined as

the sum of the hitting time from x to x’ and the hitting time from

x’ to x. In other words, the commute time distance between x and

x’ is the expected number of steps it takes a random walker starting

from x to return to x after it visits x’. Unlike hitting time, the

commute time distance is symmetric.

To estimate the commute time distance between two states, we

will use a Markov model in the space of microstates. We estimate

a transition probability T(x,x’) from microstate x to x’ by dividing

the number of transitions observed between x and x’ in the

trajectories by the total number of transitions out of x’. Given the

transition probability matrix T , the commute time distance

between two microstates is the solution of a simple linear equation

[19]. There are a number of methods to assess the quality of such

estimates of kinetic properties from a Markov model [16]. We

expect that, even if the estimates are not exact, they represent

a notion of kinetic similarity that is useful to explore the hierarchy

of metastable states in the free energy landscape.

Persistent Topology and Metastable State
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Density and scale persistence
To clarify the goals of our analysis, we will use a toy example.

Figure 1 shows a set of microstates in a one-dimensional space,

and a kernel density estimate of the free energy landscape. The

plot contains information about both the relative depths of the

microstates in the landscape, and how close they are to each other.

It is clear that there are three minima, with a natural hierarchical

structure shown to the right of the plot. State C is more shallow

than the other two and is closer to A than to B. As a data

exploration tool, our method would help the investigator identify

the three minima and visualize this hierarchy without too much

tuning. Of course, this task is more challenging when the distance

is embedded in a high-dimensional space.

The whole procedure of the MPC analysis is summarized in

Figure 2, and it is explained as follows. As a proxy for the free

energy of a microstate x, we will use the negative logarithm of the

stationary probability of x in the microstate Markov model

discussed above, or { log p(x). As a result, a microstate of lower

free energy is a microstates with high stationary probability. In

order to identify the major minima or metastable states in the

system, we will evaluate the persistence of different clusters in our

neighborhood clustering algorithm as we vary (i) the scale

parameter, and (ii) a threshold in free energy for the microstates

included in the clustering or density parameter. We define a sequence

of super level sets Li~fx; p(x)whig for a sequence of density

parameters h1w � � �whn. We also choose a sequence of scale

parameters r1v � � �vrm. For each point (i,j) on a two-di-

mensional grid with i~1, . . . ,n and j~1, . . . ,m, we cluster the

microstates in Li with a scale parameter rj .

In the neighborhood clustering algorithm, the clusters evolve in

an understandable and predictable way as the parameters change.

This allows us to label a cluster across all parameter settings by its

microstate with the lowest free energy. As we decrease the density

parameter (that is, increase the free energy threshold), we will

include more microstates in the clustering procedure (if hiwhj ,

then Li(Lj ). Thus, the cluster labeled by microstate x grows from

the core of a metastable state by incorporating new microstates,

until it is possibly merged by a different cluster containing

a microstate x’ with p(x’)wp(x). No clusterings above this point

will contain the cluster labeled by x. Similarly, as we increase the

scale parameter, the cluster labeled by x persists until it is merged

by another cluster containing a microstate x’ with p(x’)wp(x).
This defines a persistence region for each cluster in the grid of

clusterings defined above. It is not difficult to prove that this region

is connected.

If the commute time distance between two microstates is large,

those microstates are either distant from each other on the free

energy landscape or there is a big barrier between them. On the

contrary, if the commute time distance between two microstates is

small, they should be in the same basin of the free energy

landscape. For a cluster to have long persistence in the scale

parameter, the microstates in the cluster must have long commute

time distance to all other microstates, and the intra-cluster

commute time must be small. Therefore, a cluster that is persistent

with respect to the scale parameter can be interpreted as a group

of well-connected microstates which are kinetically distant from all

other microstates. In other words, the system takes very long time

in the cluster before leaving the cluster, which is consistent with the

definition of a metastable state. Furthermore, the cluster may

correspond to a single basin on the free energy landscape.

However, persistence analysis with respect to the scale

parameter alone can suffer from the chaining effect, through which

two clusters that are clearly separate are linked by states with high

free energy (c.f. the Alanine Dipeptide example in the Result

section). The chaining effect can be excluded if those two clusters

stay separate for a large range of density parameters. Therefore,

density thresholding is essential to understanding the effect of rare

states or noise in the clustering. Furthermore, if a cluster has long

density persistence, it must contain a microstate with very low free

energy. Therefore, the cluster corresponds to a deep basin of the

free energy landscape.

Because the notion of long persistence is relative, users should

run the MPC analysis over a broad range of parameters.

Fortunately, there are bounds for both the scale and density

parameters. First, h1 and hn should be chosen between max p(x)
and minp(x). If there exists hiwmax p(x), then

L1~L2~ � � �~Li~1. If there exists hivminp(x), then

Li~Liz1~ � � �~Ln and they all contain the whole set of

microstates. In both cases, we do not get more information on

those level sets. Second, r1 should be larger than the shortest

pairwise commute time distance between the microstates; other-

wise, all clusters are just singletons. On the contrary, there exists

a number r’ such that if the scale parameter is large than r’ there is

only one cluster in the result. Clearly, rm should be less than r’.

Figure 1. One dimensional example. A one-dimensional dataset
(left lower part) and its density landscape. There are three basins in the
density landscape. However, C is very shallow compared to A and B, so
it might be reasonable to merge C with A to form two main clusters as
shown in the right part.
doi:10.1371/journal.pone.0058699.g001

Figure 2. Summary of The Multi-Persistent Cluster Analysis.
doi:10.1371/journal.pone.0058699.g002
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Choosing persistent clusters
In contrast to most clustering algorithms where the user chooses

the number of clusters, the MPC analysis allows the user to choose

candidate clusters directly, according to the area and shape of their

persistence regions. As discussed in the previous subsection, the

persistence of a cluster reflects how long the molecule system will

stay in the cluster before leaving it. As a result, to construct a valid

set of metastable states, users should choose the clusters with scale

persistence. However, the free energy landscape is usually rugged

and the MD simulation can be noisy. Therefore, it makes sense to

focus on clusters with long persistence in density, which

corresponds to deep basins of the free energy landscape.

Since our goal is to discover metastable states, if a cluster does

not have significant persistence in the scale parameter (that is, it is

not kinetically disconnected to other states) we would not choose it

even though it has long persistence in the density parameter. The

case of a cluster with only long persistence in the scale but not in

the density parameter requires more examination. Basically, the

reason for a cluster to be kinetically disconnected to other states

regarding to the commute time distance is that there very few

transitions between the microstates of the cluster and all other

microstates in the MD simulation. It can result from a true

metastable state or just because the simulation is not detailed

enough to observe those transitions. In the first case, it is a small

but metastable state, which could correspond to interesting

intermediate states. In the latter case, the persistence will disappear

when more simulation around the state is performed. This is in

fact an advantage of the MPC analysis, because it does not

recklessly ignore those clusters or merge them with other clusters

but leaves hints about where to investigate more. This is also an

important feature of a good data exploration tool.

In summary, there are three main principles in choosing

clusters. First, clusters with high persistence in both dimensions are

usually important. Second, if a cluster has high persistence in the

scale dimension but low persistence in the density dimension, we

should check whether it is merged quickly when we add more

microstates or whether it simply appears late in the density

dimension. In the later case, it could be a rare but kinetically

distinct state. Third, we should only choose clusters with

a significant number of conformations; otherwise, they might be

outliers even if they show high persistence (see the Discussion

section). In the following, we illustrate those principles for the

alanine dipeptide dataset described in more detail in the next

section.

Figure 3 shows a collection of persistence diagrams for different

clusters. The colored area in the diagram is the persistence region

of that cluster, which shows under what combination of density

thresholds and scale parameters the cluster is not merged by other

clusters. Therefore, from a diagram one can obtain information

including the energy or density level at which the miscrostate, and

the corresponding cluster, appear and at which scale it get merged

by other clusters. The small gaps are used to indicate steps where

the cluster merges other clusters. For example, Cluster 2 in

Figure 3 appears at density level 16, and it does not merge or gets

merged by other clusters in the range r1, . . . ,r25 of the scale

parameter at this density level. At density level 22, it merges some

clusters when we increase the scale parameter from r1 to r2, from

r4 to r5, from r13 to r14, and it is merged by other clusters for scale

parameters larger than r18.

A reliable cluster structure should have some persistence as we

vary the scale and density parameters. It would be naive, however,

to choose candidate clusters according to the area of their

persistence region alone. The best candidate clusters are persistent

in both the density and scale parameter dimensions (for instance,

Clusters 1 and 3 in Figure 3). Nevertheless, we should also take

into account that persistence in the density dimension is limited by

how early the cluster appears. For example, Clusters 2 and 4 are

good candidates as well because they are persistent under changes

of the scale parameter and also in the density dimension after they

appeared. There will always be a cluster whose persistence region

covers the whole diagram (Cluster 1 in Figure 3). It is the cluster

labeled by the microstate with the lowest free energy; that is,

argminx { logp(x).

Clusters 5 and 11 are more ambiguous. Their long persistence

in the scale direction indicates they are far away from all other

clusters. However, they appear only at the top of the diagram,

which means they are very small compared to other ones. They

might be outliers or valid but small clusters, and the decision

should be made by further examination on the clusters. In fact, we

will later show they are meaningful clusters, but this may not

always be the case.

Recall that the number of diagrams equals the number of

microstates, so it is helpful to summarize this information into the

plot shown in Figure 4. Each cluster is assigned a coordinate

according to the maximum length of the persistence region in the

scale and density dimensions. The size of each point is pro-

portional to the maximum number of microstates in the cluster.

This visualization allows us to single out the candidate clusters 1, 3,

2, 4, 5, and 11 more easily.

Constructing a partition of microstates
To construct a Markov model of metastable states, it is

important to have a partition of microstates. In addition,

a partition is convenient to visualize conformations from each

metastable state. To form a partition, we must choose a version of

each candidate cluster under a specific pair of scale and density

parameters. The chosen version of a cluster should be as large as

possible but it should not contain elements of other candidate

clusters. Therefore, we will start from the candidate cluster labeled

by the microstate of highest free energy and continue in order of

descending free energy. For example, if we choose Clusters 1–5

and 11 in Figure 3, we will select cluster versions in the order 11, 5,

4, 3, 2, 1. The final clusters are just the core of each metastable

state and their union may not contain all microstates. If a full

partition of the microstates is preferred, one can assign the rest of

the microstates to the chosen clusters by minimizing their

commute time distance to those clusters. Finally, since the birth

time and merge order of these clusters are known, one can deduce

their hierarchical structure accordingly.

Results

In this section, we apply the multiple-persistent clustering

analysis explained in the previous section to MD simulations of

three molecules: alanine dipeptide, Villin headpiece and FiP35

WW domain. The results for the alanine dipeptide dataset can be

verified directly by visualization of the free energy landscape,

which makes it an ideal model system to compare our results to the

ground truth. The other two datasets are investigated in [20],

where the authors checked their Markov models by comparing to

published experimental results. We followed same protocol to

build microstate models and test whether the cluster persistence

analysis reveals the metastable states described therein. The work

in [20] built MSMs with hints of the number of metastable states

from the relaxation spectrum analysis, and argued both the Villin

headpiece and FiP 35 WW domain have more than one native

state. The aim of our analysis here is not to predict experiments

but to explore and visualize the states in a microstate MSM and

Persistent Topology and Metastable State
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their kinetic/energetic relationships. Our analysis shows the

multiple native states found and validated in [20] can be easily

and clearly detected using our method. As a result, even if the

microstate MSM is not perfect, the estimates of free energy and

commute time distance derived from it is good enough for our

analysis to serve as a useful exploratory tool.

Alanine Dipeptide
This demonstration of the MPC analysis is done on MD

simulations of the terminally-blocked alanine dipeptide in explicit

solvent (sequence Ace-Ala-Nme) [14]. The alanine dipeptide

system only has two slow degrees of freedom, the w and y dihedral

angles, so we can directly visualize the free energy landscape and

the metastable states (see Figure 5). From the visualization, it is

usually thought that there are six metastable states and their

mapping to the (w,y) configuration space are labeled a to f in

Figure 5(A). States e and f are quite small compared with the other

states. Furthermore, the free energy barrier between states a and

b is very low, even lower than the cores of other states. As a result,

we expect that at the density level where we can see all the states,

a and b are merged.

The alanine dipeptide dataset consists of 975 trajectories and

each trajectory is 20 ps in length with conformations stored every

0.1 ps (200 snapshots in each trajectory). See [14] for the

simulation details. The 195,000 conformations were first clustered

into 1,000 microstates using the k-center algorithm implementa-

tion in MSMBuilder [10,21]. Then a microstate Markov model is

built with 1 ps lag time, and the MPC analysis was applied on

a grid of 25 values for each, the scale and the density parameters.

Our main goal is to verify that the analysis reveals the six

metastable states and their relationship.

Figure 3. Top 12 cluster persistence diagrams (Alanine Dipeptide). The colored area in the diagram is where the cluster stays not merged by
other clusters under different configurations. This figure shows the top 12 diagrams in the decreasing order of their area. A cluster starting from
deeper basin of the landscape (thus is possibly a more reliable cluster) should have larger colored area. The persistence region is a single connected
region; the gaps in the diagrams are just used to show the cluster merges some other cluster as the configuration changes. The color of each piece
indicates the cluster size, and larger sizes are represented using color closer to yellow. The x-axis is the index of (increasing) scale parameters and
a smaller index indicates a smaller distance threshold. The y-axis is the index of density thresholds and a smaller index indicates a higher (more strict)
density threshold. Therefore, we can imagine more microstates are added for clustering as the level set index increases.
doi:10.1371/journal.pone.0058699.g003

Persistent Topology and Metastable State
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Figure 4. Overview of all persistence diagrams (Alanine Dipeptide). A dot is a persistence diagram. The coordinate of each diagram is
assigned by its maximum persistence in the scale and level set dimensions. The x-axis is the maximum length of persistence in the scale dimension,
and y-axis is maximum length of persistence in the density dimension. For example, cluster 3 has maximum scale persistence 24 (at the level sets L1

and L2) and maximum density persistence 20 (at the scale r1). The area of a dot reflects its maximum cluster size (number of conformations in the
cluster).
doi:10.1371/journal.pone.0058699.g004

Figure 5. Free energy landscape (Alanine Dipeptide). (A) Density of the data on the (w,y) plane. There are six basins (a to f) in the density
landscape. (B) Free energy landscape over the (w,y) plane. The torsions angles take values in module ½{p,p�; thus, the top and bottom parts of the
plot are connected, so does the left and right parts.
doi:10.1371/journal.pone.0058699.g005

Persistent Topology and Metastable State
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We have discussed the persistence analysis result in the previous

section. Here we briefly summarize the observations in the context

of previous studies on this molecule. First, recall that the cluster

that covers the whole diagram (Cluster 1) is the one starting from

the deepest basin and merging all other clusters in the end. In

addition, there are three other clusters (Cluster 2–4) covering

significant regions of the diagrams, so we can confidently establish

there are at least four clusters in the data. After mapping them to

the (w,y) space, they correspond to the metastable states (a)–(d).

The first density level where they appear also reflects the depth of

corresponding basins in the free energy landscape. Then, among

the other eight clusters, we see there are two clusters that do not

appear until a high free energy threshold but are nonetheless

persistent in the scale direction (Clusters 5 and 11). That suggests

they are shallow basins but they are distant from the four main

clusters; that is, they are distinct, small clusters. Indeed, if we map

those two clusters, we find they correspond to metastable states (e)

and (f). The corresponding clusters on the (w,y) plane are shown

in Figure 6(A).

The six clusters we selected do not contain all microstates. We

can assign other microstates to one of the selected clusters by

commute time distance as a post-processing step to obtain a full

partition of the microstates. This step may not be necessary if only

the core of each metastable state is needed. The full partition of

microstates is shown in Figure 6(B). Comparing Figures 4(A) and

5(B), one can see they indeed reflect the manually partitioned

metastable states very well. Moreover, Figure 6(C) shows the

relative depth of the basins of corresponding selected clusters. The

merge of two branches reflects at which free energy level the two

states merge, which also gives information about the barrier height

between those two states. For example, we can see from the figure

that Cluster 1 and Cluster 3 have merged before other clusters

appear. In addition, we can see at the last level set, Cluster 1–4

have merged.

Note these results were computed using the solute Cartesian

coordinates and transition information between microstates. The

dihedral angles are not explicitly used in the clustering algorithm;

they are only used in the final visualization to compare the results

to the ground truth clusters.

Villin Headpiece
This dataset was obtained by sampling conformations every 10

ns from a simulation of HP35-NLE-NLE at 360 K published by

Shaw et al. [3]. Beauchamp et al. [20] built a model of 900

microstates by clustering the 12,559 conformations. By a relaxation

spectra analysis, the microstates are then clustered into three

macrostates, which are labeled as native, near-native, and

unfolded states with respective equilibrium populations 18%, 6%

and 77%. According to their analysis, the conformations assigned

to the native state have structures highly similar to the

crystallographic model (PDB:2f4k). Furthermore, the conforma-

tions in the near-native state resemble the NMR structure

(PDB:1vii, 2ppz) of the wild-type sequence, which shows partial

unraveling of the C terminal helix. They further compared the

results with experimental data and found consistency.

We performed the two-dimensional cluster persistence analysis

on the same microstates obtained from the authors of [20]. It is

clear in Figure 7 there are only two clusters with long persistence

in both the scale and density parameters (labeled Cluster 1 and

Cluster 2). After comparison with the model in [20], we found

Cluster 1 corresponds to the native state, Cluster 2 corresponds to

the near-native state, and Clusters 3 and 4 correspond to the

unfolded state. In Figure 8, we randomly sampled three

conformations from each of the four selected clusters and aligned

them with the native structure (PDB:2f4k, shown in red in the

figures). The conformations from Cluster 1 strongly resemble the

native structure and conformations from Cluster 2 resemble the

near-native state identified in [20].

FiP35 WW Domain
This dataset was obtained by sampling conformations every

50 ns from the simulation of FiP35 WW domain at 395 K

published by Shaw et al. [3]. Beauchamp et al. apply the same

clustering procedure to generate a microstate model of 290 states

from 4,000 conformations, and a three-state model of the protein

[20]. The authors reported that two of those macrostates show

good agreement with NMR structures (holo PDB:1i8g, apo

PDB:1i6c) of the related Pin WW domain, and the third one is

labeled as the unfolded state.

From the persistence diagram in Figure 9, we choose four

clusters. After comparing with the PDB structures, we found that

Cluster 1 and Cluster 2 show strong similarity to the holo and apo

states, respectively. In addition, Clusters 3 and 4 correspond to the

unfolded states of the three-state model in [20]. Again, in Figure 10

we show three randomly sampled structures from each of the four

selected clusters, and the red structures in Figure 10(A) and

Figure 6. Mapping of the six chosen persistent clusters and their hierarchical relationship. (A) The projection of the cores of six chosen
persistent clusters to the (w,y) space. Each dot is the center of a microstate. (B) The full partition of the microstates into six metastable clusters. (C)
The relative depth of the basins of the six selected clusters. The height corresponds to the super level set indices.
doi:10.1371/journal.pone.0058699.g006
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Figure 10(B) are the holo (PDB:1i8g) and apo (PDB:1i6c)

structures, respectively. Note although from the visualization it

seems that there is some structures in Cluster 3 and 4, it might be

misleading because they are in fact very small clusters (c.f. the

persistence diagrams and the Discussion section). Furthermore, the

original dataset only contains 4,000 conformations; to obtain

a more reliable hint about the cluster structure beyond the holo

and apo states, more data are needed.

Discussion

Clustering stability with respect to perturbations of data is

a commonly used criterion for model selection and its theoretical

foundation has been studied in several papers including [22–24]. A

related concept in the biomolecular data clustering context can be

found in [25]. Furthermore, relevant stability theorems about the

scale persistence in our method are described in [26]. Investigating

clusters at different density levels is known as cluster tree analysis in

statistics. Recently, several algorithms for merging short branches

of a cluster tree to find statistically significant clusters have been

published and much progress has been made in their theoretical

justification [27–31]. However, most existing methods either

require users to provide a hard threshold to decide when to merge

or ignore the distance structure at all. If a small cluster is far away

from all other big clusters, it should be regarded as a cluster

without sufficient samples or just an outlier. Incorrect merging

may bias the structure of the cluster that it is merged to. Therefore,

our cluster persistence analysis gives a better solution to the

problem by providing a multiresolution view of the clusters, which

allows the user to make an informed decision.

Clusters whose microstates have low stationary probability, and

thus have low persistence in the density direction, should be

chosen with care even they have significant persistence in the scale

dimension. Although they may correspond to meaningful rare

states, as in the alanine dipeptide example, the persistence in the

scale dimension could also be an artifact of noise in the distance

function. In fact, microstates with low stationary probability have

fewer observed transitions, which results in large commute times to

other microstates and misleading persistence in the scale direction.

This could be the reason why there are multiple unfolded states in

our HP35 and FiP35 results compared with three-state models

built using PCCA related methods [20].

The main ideas behind two-dimensional persistence analysis

can be combined with other clustering methods. For example, we

could use the selected cores as seeds and assign other microstates

Figure 7. Persistence analysis of Villin Headpiece. (A) The overview of the persistence diagrams in the two dimensional persistence analysis of
HP35. (B) The persistence diagrams of the 4 chosen clusters (the circled ones). The analysis is performed using 30 scale parameters and 60 level sets.
doi:10.1371/journal.pone.0058699.g007

Figure 8. Structures of Villin Headpiece in the clusters. (A) The
alignment of three randomly sampled conformations from Cluster 1 to
the native structure (shown in red). (B) The alignment of three randomly
sampled conformations from Cluster 2 to the near native structure
(shown in red). (C) Three randomly sampled conformations from Cluster
3. (D) three randomly sampled conformations from Cluster 4.
doi:10.1371/journal.pone.0058699.g008
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in a semi-supervised fashion. Another possibility is to build a simple

model using PCCA or its variants and then apply the analysis on

the resulting metastable states to discover intermediate states.

Furthermore, the persistence analysis is not restricted to microstate

clustering. One could apply the analysis to cluster all the

conformations observed in a simulation using any distance

function which captures structural or kinetic similarities between

them.

Conclusions

Two-dimentional cluster persistence analysis is a useful tool for

exploratory analysis of MD simulations. In the proposed pipeline,

the number of clusters is not determined before running the

clustering algorithm, but selected by the user according to the

analysis of cluster persistence. The main native states of the system

can then be chosen with confidence. For the clusters on the

borderline the user can make a decision based on their structural

characteristics. The clusters chosen according to their persistence

are the clusters that are least sensitive to perturbation of the data

or distance function. Furthermore, the multi-resolution analysis

gives users the information of the relative potential of the clusters

and thus their hierarchical relationship. In the Alanine Dipeptide

dataset, the method discovers six clusters that are strongly

consistent with the manual decomposition of the free energy

landscape. Furthermore, the results of applying the method to the

HP35 and FiP35 simulation data also identifies native or near-

native states which are consistent with published results.
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