
Persistent Transactional Memory

Zhaoguo Wang, Han Yi, Ran Liu, Mingkai Dong, and
Haibo Chen

Abstract—This paper proposes persistent transactional memory (PTM), a new

design that adds durability to transactional memory (TM) by incorporating with the

emerging non-volatile memory (NVM). PTM dynamically tracks transactional

updates to cache lines to ensure the ACI (atomicity, consistency and isolation)

properties during cache flushes and leverages an undo log in NVM to ensure PTM

can always consistently recover transactional data structures from a machine

crash. This paper describes the PTM design based on Intel’s restricted transac-

tional memory. A preliminary evaluation using a concurrent key/value store and a

database with a cache-based simulator shows that the additional cache line

flushes are small.

Index Terms—Hardware transactional memory, non-volatile random access

memory

Ç

1 INTRODUCTION

TRANSACTIONAL memory (TM) [6], as a concept borrowed from
database transactions, essentially ensures atomicity, isolation and
consistency (ACI) of a group of memory operations. However, TM
lacks an important property from database transactions, namely
durability, which ensures a transaction can persist permanently
once committed.

On the other hand, recent hardware advances in non-volatile
memory (NVM) [1], [9] have made durability of key data structures
in a program a necessity to preserve key program invariants dur-
ing a machine crash. Though NVM has already enabled persistence
of in-memory data structures, non-volatile on-chip structures may
cause such data structures to violate the ACI properties during
crashes, due to unordered cache line flushes.

However, adding durability to TM is hard due to potentially
high hardware and/or performance overhead. One approach
would be adding a battery to CPU chip and flushing all cache
lines to memory before a power failure. However, such an
approach is not reliable due to issues with diminishing battery
volume and limited battery lifecycle. Further, it is hard to iden-
tify the dependency among cache lines and blind cache flushes
may still violate program invariants. Another approach is using
a write-through cache to flush all cache lines of a transaction to
NVM once committed. However, this not only incurs prohibitive
performance overhead, but also cannot ensure atomicity due to
non-atomic cache flushes.

This paper proposes persistent transactional memory (PTM), a
new design that adds durability to TM by combining TM with
NVM. Strict durability in database usually requires making the
working set of a transaction durable before the acknowledgement
of a transaction commit. This, however, requires flushing related
cache lines to NVM during a transaction commit, and thus will
cause significant performance overhead due to no reuse of cached
data. Hence, PTM trades freshness for performance by ensuring
eventual persistence: a committed transaction either are persistent as
a whole or not persistent at all, while still respecting consistency
and isolation among committed transactions. Hence, PTM

preserves the ACI properties of committed transactions even under
power outage, machine crashes or system errors.

PTM introduces only small hardware cost to CPU and NVM. It
adds a small-sized scoreboard to CPU that tracks dependency of
committed transactions to respect their orders. Each cache line is
extended with 8-bit transaction ID to identify which transaction
this cache line belongs to, such that all cache lines of a transaction
are flushed as a whole. A transaction ID register is added to a CPU
chip to uniquely identify a transaction. To ensure all-or-nothing
during flushing multiple cache lines to memory, PTM uses an
undo log in NVM during flushing a group of cache lines, by first
checkpointing related data to a log space before writing cache lines
to their home locations.

We implement PTM on a cache simulator, by modeling Intel’s
restricted transactional memory (RTM) design. PTM assumes a
three-level cache, using the general MESI [8] cache coherence pro-
tocol,1 and uses L1 cache to detect transactional conflicts. Evalua-
tion using a concurrent key/value store [7] and a concurrent
database (LevelDB [5]) shows that PTM only incurs only 10 percent
more cache line flushes on average.

2 CHALLENGES AND RELATED WORK

2.1 Violation of Transaction Semantics

Simply integrating transactional memory (referred to as SITM)
with NVM may violate atomicity, consistency and isolation during
a machine crash.

Atomicity. A transactional region may contain updates to multi-
ple cache lines, while SITM can only flush a cache line into NVM at
a time. Hence, as shown in Fig. 1a, in the case of a machine crash,
only parts of the committed cache lines (e.g., cache line B) may be
persisted. As a result, the transaction can only recover parts of its
data (e.g., cache line B) after a machine restarts, which violates the
atomicity property of transactional memory.

Consistency. The order of cache line eviction may also be differ-
ent from the transaction commit order, which may break isolation
of multiple transactions. As shown in Fig. 1b, if transaction 1 (T1)
updates A from 0 to 1 and successfully commits. Transaction 2 (T2)
checks A and update B from 0 to 1. However, only the cache line
with B is evicted to NVM. As a result, the program states may be
inconsistent (A ¼ 0, B ¼ 1) after recovery from a crash.

Isolation. Committed data can be updated before being persis-
tent. When a transaction commits, the updated data is still buffered
in the CPU cache and not persistent. However, the dirty cache line
can be modified by a transactional update. As shown in Fig. 1c, if
T1 updates two variables A and B, then a subsequent transaction
T2 may update variable B and C. During a crash, as the value of B
updated by T1 is lost, this violates the isolation property of transac-
tional memory.

2.2 Related Work

Providing proper hardware/software interface between persistent
memory and volatile CPU structures has been intensively studied
recently [2], [3], [4], [10]. For example, Kiln [10] uses a non-volatile
last-level cache (LLC) and NVM-aware cache replacement policy
to ensure atomicity and ordering of memory updates. WRaP [4]
uses a victim persistence cache to coalesce updates to NVM and a
redo log in memory. In contrast, PTM mostly retains existing
cache hierarchy structures (e.g., no non-volatile or specialized
caches). BPFS [3] uses epochs delimited by write barriers to
ensure ordering among epochs. In contrast, PTM relies on a score-
board for dependence tracking among transactions, which absorbs
updates from different transactions in cache. Hence, BPFS may

� The authors are with Shanghai Key Laboratory of Scalable Computing and Systems
and Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University,
Shanghai, China. E-mail: {tigerwang1986, ken.yihan1990, naruilone, mingkaidong}@
gmail.com, haibochen@sjtu.edu.cn.

Manuscript received 24 Dec. 2013; revised 11 Apr. 2014; accepted 17 May 2014. Date of
publication 9 June 2014; date of current version 19 June 2015
For information on obtaining reprints of this article, please send e-mail to: reprints@ieee.
org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/LCA.2014.2329832

1. Intel uses MESIF protocol that adds a “forward” state. It should be straight-
forward to apply PTM to that one.

58 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 14, NO. 1, JANUARY-JUNE 2015

1556-6056� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

incur more cache line flushes as updates to cache lines in an old
epoch will flush all cache lines of older epochs. More importantly,
PTM is designed to couple with TM to add persistence support,
while other proposals use decoupled designs that require addi-
tional hardware or software mechanism to preserve consistency
and/or isolation.

3 PTM DESIGN

PTM is designed based on CMP architectures. It currently assumes
three-level on-chip caches and the MESI coherence protocol.

3.1 Overall Architecture

PTM guarantees a consistent state after recovery from a machine
crash. Inspired from designs in file system and database, PTM uses
logging to provide atomic writes of multiple cache lines to NVM.
To track non-persistent transactions in cache, PTM uses a score-
board to track dependency among them, as shown in Fig. 2. To
uniquely identify a transaction, PTM uses a global transaction ID
register to generate transaction ID for each transaction. The follow-
ing details the components of PTM:

Transaction ID (TxID). PTM uses an 8-bits register to assign the
next assigned TxID. When a transaction commits successfully, it
atomically gets a TxID from the register and increases the register
by one. The TxID can be used to identify the timeline of transaction
execution.

Cache line. Like Intel’s HTM implementation, the working set of
a transaction is tracked at the cache line granularity. PTM adds a
TxID field to each cache line to track the committed transaction
that modified the cache line.

Scoreboard. PTM uses a scoreboard of 264 entries to track the
dependency among transactions. It essentially records that a com-
mitted cache line of a transaction is dirtied by a subsequent trans-
action (called modifier TX). The kth entry of this board records the
TxID of lastmodifier TX that dirties a cache line belonged to transac-
tion k. Currently, it is implemented in a centralized location of
CMP for simplicity. As it will only be updated when evicting dirty
cache lines to L2/L3 caches, the access latency can be overlapped
with the eviction process.

Undo log. All cache lines evicted to NVM will be recorded in the
log space in NVM at first. PTM uses “undo log” instead of “redo
log” to avoid interfering with normal memory reads. This because
the newest data may locate at the log space under “redo log” and
hence other concurrent memory reads also need to first search the
log space before directly reading from the NVM. In contrast, the
newest data always locates at the NVM and thus other concurrent
reads can directly operate on NVMwhen using “undo log”.

Before flushing multiple cache lines to NVM, PTM first logs the
original data in such cache lines from NVM to the log space. Then,
PTM can write these cache lines to their home locations. The log
space only buffers the most recent flushed cache lines and thus a

small size is enough. It can either be the normal NVM or a special-
purpose static memory for the sake of life cycle.

3.2 Maintaining PTM States

PTM mainly interacts with cache-related operations. In the follow-
ings, we describe how PTM maintains corresponding states during
cache read, update and eviction.

3.2.1 Cache Read

A cache line read by a transaction may be with or without a trans-
action ID. Here we discuss how to handle these two cases for a
transaction read.

Read a cache line with a TxID. This means that the transaction
depends on a predecessor transaction, because it reads a cache line
modified by the former transaction. Thus, if this transaction’s
update becomes persistent, all committed transactions whose
states have been observed by this transaction should be persistent
as well. To provide this guarantee, when a transaction’s update is
flushed into NVM, any updates of all earlier transactions (with
smaller TxIDs) are also flushed into NVM.

Read a cache line without a TxID. This happens when the cache
line was modified by a normal instruction or loaded into cache on
a cache miss. In PTM, if a transaction reads a cache line without a
TxID, when it commits, it will tag the cache line with its own TxID.
If the cache line is in shared state, PTM will broadcast an invalida-
tion message and set its state to “exclusive”. Any concurrent or
successor transactions reading this cache line will inherit this TxID
for this cache line. When any cache line of this transaction is
evicted to NVM, all cache lines tagged with the same TxID in
“modified” state will be flushed to NVM. Thus, dirty cache lines
depended by this transaction will also be persistent.

3.2.2 Cache Update

A cache line can be updated by either a transactional write or a nor-
mal write. PTM only needs to maintain cache states related to
transactional states. If a normal write tries to update a cache line
which is already tagged with a TxID, PTM will assign a TxID to
this instruction by treating this instruction as a simple transaction
that never aborts. In the followings, we will show how PTM
updates the cache line states and the scoreboard during a transac-
tional write.

Update the TxID field. If a transaction issues a write, the corre-
sponding cache line is changed to “modified” and the TxID field is
set to be a special value (TX-PENDING). If the transaction com-
mits, the TxID fields of all modified cache lines are changed from

Fig. 1. Example violation of transaction semantics: each cache line has a cache
status (e.g., M for modified, E for exclusive) and transactional ID (e.g., T1 and T2).

Fig. 2. Design of PTM.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 14, NO. 1, JANUARY-JUNE 2015 59

TX-PENDING to a newly assigned transaction ID. If a transaction
tries to update a cache line that is already in “modified” state, this
cache line needs to be evicted to L2 cache before being written. As
a result, L2 cache always maintains the old version of the modified
cache lines. In case of transaction aborts, PTM can simply roll back
by invalidating the modified cache lines in L1 cache and clearing
the TxID fields.

Update scoreboard. When a cache line is to be evicted from L1
cache to L2/L3 caches, PTM will check the state of the cache line to
be evicted (evicting cache line) and the cache line to replaced (vic-
tim cache line) in L2/L3 cache. If both of them are “modified” and
tagged with TxIDs, this means that both of them belong to non-
persistent commits of some transactions. Hence, there may be a
dependency between the two transactions as they update the same
data. In this case, PTM will read the entry in the scoreboard for the
owner TX of the victim cache line, and check if the TxID of the evict-
ing cache line is larger than the modifier TX’s TxID of the victim
cache line. If so, PTM will replace the entry with the TxID of the
evicting cache line. Otherwise the original modifier TX’s TxID will
remain in the entry.

3.2.3 Cache Eviction to NVM

Cache lines may be evicted due to cache set conflict or transition
from “modified” to other states. If the evicted cache lines are modi-
fied by a transaction, to guarantee transactional semantics in NVM,
cache lines modified by the following three kinds of transactions
should also be flushed into NVM: 1). Owner TX of the evicted cache
lines; 2). Transactions committed before the owner TX; 3). Modifier
TXs of the transaction to be persistent. PTM calculate a closure that
includes all three kinds of transaction by scanning the scoreboard.
A top pointer is initialized to the ID of the transaction that owns
the cache line to be evicted. Then, from the beginning of the score-
board, PTM scans the scoreboard to check whether TxID stored in
each entry is larger than the top pointer. If so, the top pointer will
be updated to that TxID in that entry. The scan stops when the
index of the entry to be checked equals the top pointer. After scan-
ning, the top pointer contains the largest TxID of the minimal clo-
sure. PTM will then flush all the cache lines tagged with TxIDs less
than the largest TxID. As the underlying cache flushing can be
streamed, the latency of this bulk flush should not be very long.
Moreover, CPU would not be stalled during flushing if it did not
access the cache bank that is in the middle of a flush operation.

Note that this scheme will likely cause more cache lines being
flushed. Another approach would be precisely tracking the depen-
dency of transactions, instead of flushing transactions earlier than
largest TxID. This, however, would require more complex hard-
ware, which will be our future work.

Atomic flushes. During scanning the scoreboard, new TXs may
also require updating the scoreboard, which may lead to races
and thus imprecise tracking. To this end, PTM adds a lock bit to
each scoreboard entry and each TX needs to acquire the lock bit
before updating the scoreboard. When scanning scoreboard for
cache flushing, PTM will lock all scanned entries in the score-
board and stall TXs that requires updating the locked entries.
After cache flushes, PTM then unlocks the lock bits originally
locked for scanning.

3.2.4 A Running Example

Here we use a simple example to illustrate the process of cache
operations. As shown in Fig. 3, transactions update variables in dif-
ferent cache lines and execute on a single core sequentially. The
figure shows the executed transactions and the corresponding
cache line states after transaction execution. After the first transac-
tion has executed, one cache line (A) in L1 cache is dirtied and
tagged with T3 as the TxID. Then T4 updates both A and B, the

cache line (A) dirtied by previous transaction (T3) needs to be
evicted to L2 cache. Meanwhile both cache lines (A and B) in L1
cache are set to be “modified” and tagged with T4. Then T5 will
update all A, B and C. Before updating operations, cache lines
holding A and B updated by T4 should be evicted to L2 cache. Due
to a cache line tagged with T3 is already in in L2 cache and will
replaced by the evicted cache line tagged with T4. We need to
record T4 in T3’s scoreboard entry.

3.3 Other Issues

TxID overflow. As PTM only uses 8-bit to identify a transaction, the
TxID will overflow after 254 transactions’ execution (0 for normal
cache lines and TX-PENDING for pending TXs). To guarantee cor-
rectness, all cache lines in “modified” state and tagged with a
transaction ID will be flushed into NVM during an overflow. Then
the state is changed to “exclusive” and the transaction tag is
cleared. It is straightforward to use more bits to identify transac-
tions as well, which results in different tradeoffs between hardware
overhead and cache lines flushed due to TxID overflow.

Durability. By default, PTM seamlessly follows the program-
ming convention of TM by preserving ACI properties even during
machine crashes. Like other designs in database and file systems,
PTM also needs to tradeoff between freshness and performance:
buffering more data in CPU cache may result in more data loss
during machine crashes, while frequently evicting data may hurt
performance. PTM further provides a special instruction called
“psync” to force all transactions before “psync” has been persisted,
similarly to its “sync” counterpart in file systems. This enables con-
trolling when transactions should be persistent, instead of relying
on PTM to eventually persist them.

Hardware cost. The major costs of PTM to CPU are an 8-bit TxID
register, an 8-bit extension to each cache line and a 254-entry score-
board, which sums up as (1 þ #cache lines þ 254 (scoreboard entry)
þ32 (lock bits)) bytes. Other costs include the hardware logics,
which aremostly fixed. The off chip costs include the log space (cur-
rently 16Mbytes) as well the hardware logics to support “undo log”.

4 PRELIMINARY EVALUATION

We built a multi-level cache simulator with the MESI protocol
based on Pin to implement PTM. The processor is configured with
four cores, and each core has a 32 KB L1 cache and a 256 KB L2
cache. All cores share an 8 MB L3 cache, which are the typical con-
figuration of the current Intel Haswell processor that supports
HTM. As we currently have no cycle-accurate simulator with HTM
support on hand, we only collect the number of cache lines evicted
to the NVM.

We compare PTM with the write back policy without any con-
sistency guarantee, as well as a commit-through policy, in which
all cache lines updated by a transaction will be flushed to the NVM
on commit. For all three cases, we assume that NVM is used as the

Fig. 3. A simple example.

60 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 14, NO. 1, JANUARY-JUNE 2015

main memory. For evaluation, we test a concurrent Bþ-tree (i.e.,
Masstree [7]) wrapped using HTM and the concurrent skip list
using HTM from the LevelDB [5]. They are key data structures in
database and key/value stores and thus demand consistency
semantics during a crash. We evaluate their performance using
Yahoo’s YCSB benchmark with 20 percent put and 80 percent get.

Figs. 4 and 5 show the evaluation result, y-axis is the number of
cache lines flushed to NVM during the execution, x-axis is the
number of cores (worker threads). PTM adds around 5 and 12 per-
cent more cache lines being flushed for Masstree and LevelDB
accordingly. By contrast, flushing cache lines during transaction
commit adds 3�more cache lines being flushed.

5 SUMMARY AND FUTURE WORK

This paper presented PTM, a new design that adds durability sup-
port to transaction memory by combining it with NVM. By extend-
ing HTM design with simple hardware component, PTM ensures
that the ACI properties are preserved even under machine crashes.
Preliminary evaluation shows that PTM incurs small amount of
additional cache line flushes. We plan to further explore, extend
and evaluate different design choices of PTM in future.

ACKNOWLEDGMENTS

This research was supported in part by the Foundation for the
Author of National Excellent Doctoral Dissertation of PR China
and Singapore NRF (CREATE E2S2). Haibo Chen is the corre-
sponding author.

REFERENCES

[1] L. Chua, “Memristor-the missing circuit element,” IEEE Trans. Circuit The-
ory, vol. 18, no. 5, pp. 507–519, Sep. 1971.

[2] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala, and
S. Swanson, “NV-heaps: Making persistent objects fast and safe with next-
generation, non-volatile memories,” in Proc. 16th Int. Conf. Archit. Support
Program. Languages Operating Syst., 2011, pp. 105–118.

[3] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and D.
Coetzee, “Better I/O through byte-addressable, persistent memory,” in
Proc. ACM SIGOPS 22nd Symp. Operating Syst. Principles, 2009, pp. 133–
146.

[4] E. Giles, K. Doshi, and P. Varman, “Bridging the programming gap
between persistent and volatile memory using wrap,” in Proc. ACM Int.
Conf. Comput. Frontiers, article no. 30, 2013.

[5] Google Inc. (2013). Leveldb: A fast and lightweight key/value database
library by google [Online]. Available: http://code.google.com/p/leveldb/

[6] M. Herlihy and J. E. B. Moss, “Transactional memory: Architectural sup-
port for lock-free data structures,” in Proc. 20th Annu. Int. Symp. Comput.
Archit., 1993, pp. 289–300.

[7] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast multicore
key-value storage,” in Proc. 7th ACM Eur. Conf. Comput. Syst., 2012,
pp. 183–196.

[8] M. S. Papamarcos and J. H. Patel, “A low-overhead coherence solution for
multiprocessors with private cache memories,” in Proc. 11th Annu. Int.
Symp. Comput. Archit., 1984, pp. 348–354.

[9] H. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M.
Asheghi, and K. E. Goodson, “Phase change memory,” Proc. IEEE, vol. 98,
no. 12, pp. 2201–2227, Dec. 2010.

[10] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi, “Kiln: Closing the per-
formance gap between systems with and without persistence support,” in
Proc. 46th Annu. IEEE/ACM Int. Symp. Microarchit., 2013, pp. 421–432.

Fig. 4. LevelDB (skiplist).

Fig. 5.Masstree (B+tree).

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 14, NO. 1, JANUARY-JUNE 2015 61

