

Open access • Journal Article • DOI:10.1287/MOOR.2.2.125

Persistently *ϵ*-Optimal Strategies — Source link []

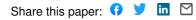
Lester E. Dubins, William D. Sudderth

Published on: 01 May 1977 - Mathematics of Operations Research (INFORMS)

Topics: Decision theory and Stochastic control

Related papers:

- Discounted Dynamic Programming
- · On the existence of stationary optimal strategies
- On the existence of good stationary strategies
- A Note on the Characterization of Optimal Return Functions and Optimal Strategies for Gambling Problems
- Negative Dynamic Programming



PERSISTENTLY &-OPTIMAL STRATEGIES

by

Lester E. Dubins* University of California, Berkeley William D. Sudderth* University of Minnesota

Technical Report No. 250

June 13, 1975

* Research supported by National Science Foundation Grants NSF GP 43085 (for Dubins) and MPS75-06173 (for Sudderth).

Abstract

There are strategies available for nonnegative gambling problems which are not only ϵ -optimal but persist in being conditionally ϵ -optimal along every history.

<u>Key words</u>: gambling, optimal strategies, probability, finite additivity, dynamic programming, stochastic control, decision theory.

A.M.S. classification numbers: 6000, 60G99, 62C05.

1. Introduction.

Let (F, Γ, u) be a gambling problem where, as in [3], F is the set of fortunes or states, Γ is the gambling house, and u the utility function. The gambling problem is <u>nonnegative</u> if u is a nonnegative, possibly unbounded function.

Let $0 \le \epsilon \le 1$, f ϵ F, and V(f) be the most a gambler with fortune f can achieve ([3], section 3.3). A strategy σ available at f in Γ is (<u>multiplicatively</u>) $\underline{\epsilon}$ -optimal at f if $u(\sigma) \ge (1-\epsilon)V(f)$. Let $p = (f_1, \dots, f_n)$. Then σ is <u>conditionally</u> (<u>multiplicatively</u>) $\underline{\epsilon}$ -optimal given p if the conditional strategy $\sigma[p]$ is multiplicatively ϵ -optimal at f_n . If σ is (multiplicatively) ϵ -optimal at f and is conditionally (multiplicatively) ϵ -optimal given p for every partial history p, then σ is said to be <u>persistently</u> (<u>multiplicatively</u>) $\underline{\epsilon}$ -optimal at f. If u is bounded or, more generally, if u is nonnegative and V is everywhere finite, then persistently ϵ -optimal strategies are always available (Theorem 1 below). If, in addition, the gambling problem is sufficiently measurable, there exist measurable strategies which are persistently ϵ -optimal (Theorem 2).

The notion of persistently (or thoroughly) optimal strategies was introduced in [3, section 3.5]. It is related to the concept of stationarity. For suppose $\bar{\sigma}$ is a stationary family of ε -optimal strategies. Then, for every f, $\bar{\sigma}(f)$ is persistently ε -optimal since $\bar{\sigma}(f)[f_1, \dots, f_n] = \bar{\sigma}(f_n)$.

Gambles in [3] were taken to be finitely additive probability measures defined on all subsets of F. Here a gamble γ can be regarded as a nonnegative functional with domain the collection h of nonnegative,

- 1 -

real-valued functions defined on F and satisfying

$$\gamma(u + v) = \gamma u + \gamma v$$
,
 $\gamma(a u) = a \gamma u$

for u, v \in h and a ≥ 0 . A gamble in the present sense is, when restricted to the collection of indicator functions, a gamble in the sense of [3]. Thus the gambling problems considered here are slightly more general than those of [3]. However, much of the theory remains unchanged and appropriate definitions and results from [3] will be used without further comment.

2. Preliminaries.

Let $H = F \times F \times ...$ be the set of histories. A mapping t from H to $\{1,2,...\} \cup \{\infty\}$ is called a <u>stopping time</u> if, whenever h and h' are in H, $t(h) = n < \infty$, and h' agrees with h in the first n coordinates, then t(h') = n. A stopping time which assumes only finite values is a <u>stop rule</u>. Let n be a positive integer and $h = (f_1,...,f_n,...)$ be a history. Recall that $p_n(h) = (f_1,...,f_n)$. (See [3] for a detailed explanation of the notation and terminology.) If r is a stopping time, the conditional stopping time given $p_n(h)$ is defined by $t[p_n(h)](h') = t(p_n(h)h') - n$ for h' ε H. Notice that $t[p_n(h)]$ is a stopping time or identically zero according as $r(p_n(h)h')$ is greater than or equal to n.

Let (σ, t) be a policy and s be a stop rule. Make the convention that $u(\sigma[p_s(h)], t[p_s(h)])$ is $u(f_t(h))$ when $s(h) \ge t(h)$. Then the formula

(1)
$$u(\sigma, t) = \int u(\sigma[p_{\sigma}], t[p_{\sigma}]) d\sigma$$

is a special case of formula 3.7.1, [3]. The similar formula

(2)
$$u(\sigma) = \int u(\sigma[p_s]) d\sigma$$

follows from Theorem 3.2.1, [3] and an argument by induction on the structure of p_s . The first lemma below generalizes (2) and gives a formula which, in a sense, separates the utility of a strategy into that earned before a given time r and that earned afterwards.

For simplicity, assume henceforth that u is nonnegative and all strategies have finite utility.

- 3 -

Lemma 1. Let σ be a strategy and r be a stopping time. Then

(3)
$$u(\sigma) = \lim_{t \to \infty} \sup_{\sigma, t} u_r(\sigma, t)$$

where

$$u_{r}(\sigma,t) = \int u(f_{t})d\sigma + \int u(\sigma[p_{r}])d\sigma$$
$$[t \le r] \qquad [t \ge r]$$

and the lim sup is taken over the directed set of stop rules. <u>Proof:</u> By definition ([3], section 3.2)

(4)
$$u(\sigma) = \limsup_{t \to \infty} u(\sigma, t)$$
.

For t a stop rule, apply (1) with $s = t \wedge r$ to get

(5)
$$u(\sigma,t) = \int u(\sigma[p_{tAr}], t[p_{tAr}]) d\sigma$$

$$= \int u(f_t) d\sigma + \int u(\sigma[p_r], t[p_r]) d\sigma \cdot \int [t \le r] d\sigma \cdot \int [t \le r] d\sigma \cdot \int [t \ge r] d\sigma \cdot \int [t \ge r] d\sigma$$

Let $\varepsilon > 0$.

<u>Claim</u>: There is a stop rule t_0 such that, for every stop rule t,

$$\int_{[t>r,t_0\leq r]} u(\sigma[p_r], t[p_r])d\sigma < \varepsilon .$$

Suppose the claim is false. Then, for every stop rule t, there is a stop rule s such that

$$\int_{\substack{u(\sigma[p_r], s[p_r])d\sigma \geq \varepsilon \\ [s>r, t\leq r]}} u(\sigma[p_r], s[p_r])d\sigma \geq \varepsilon .$$

Define $t_1 = t$ if t > r or $s \le t$,

= s if $t \leq r$ and s > t.

Then t_1 is a stop rule, $t_1 \ge t$ and

$$\int u(\sigma[p_r], t_1[p_r]) d\sigma = \int u(\sigma[p_r], t[p_r]) d\sigma + \int u(\sigma[p_r], s[p_r]) d\sigma$$

$$[t>r] \qquad [t>r] \qquad [t\leq r, s>r]^r$$

$$\geq \int u(\sigma[p_r], t[p_r]) d\sigma + \varepsilon .$$

$$[t>r]$$

Similarly, there exist stop rules t_2, t_3, \dots such that $t_n \le t_{n+1}$ and

$$\int u(\sigma[p_r], t_{n+1}[p_r]) d\sigma \geq \int u(\sigma[p_r], t_n[p_r]) d\sigma + \epsilon .$$

$$[t_{n+1} > r] \qquad [t_n > r]$$

Thus, for $n = 1, 2, \ldots, t_n \ge t$ and

$$u(\sigma,t_n) \ge \int u(\sigma[p_r], t_n[p_r]) d\sigma \ge n \epsilon$$
.
 $[t_n > r]$

Hence, $u(\sigma) = \infty$, a contradiction which establishes the claim.

Next, define a stop rule t' thus: If $t_0(h) \le r(h)$, set t'(h) = $t_0(h)$. If $t_0(h) \ge r(h)$, choose a stop rule t_h such that $t_h \ge t_0[p_r(h)]$ and, for every stop rule $s \ge t_h$,

(6)
$$u(\sigma[p_r(h)],s) \le u(\sigma[p_r(h)] + \epsilon$$
.

Then set $t'(h) = r(h) + t_h(f_{r(h)+1}, f_{r(h)+2}, ...)$ so that $t'[p_r(h)] = t_h$. Notice that $t' \ge t_0$.

Suppose t is a stop rule and $t \ge t^{1}$. Then

$$u(\sigma,t) = \int u(f_t) d\sigma + \int u(\sigma[p_r], t[p_r]) d\sigma + \int u(\sigma[p_r], t[p_r]) d\sigma$$

$$(by (5))$$

$$\leq \int u(f_t) d\sigma + \int u(\sigma[p_r]) d\sigma + 2 \varepsilon$$

$$(by (6) \text{ and the Claim})$$

$$\leq \int u(f_t) d\sigma + \int u(\sigma[p_r]) d\sigma + 2 \varepsilon$$
$$[t \leq r] \qquad [t > r]$$
$$= u_r(\sigma, t) + 2 \varepsilon$$

Hence, $u(\sigma) \leq \limsup_{t \to \infty} u_r(\sigma, t)$.

To prove the opposite inequality, again let $\varepsilon > 0$ and s be a stop rule. Define a stop rule t as follows: If $s(h) \le r(h)$, let t(h) = s(h). If s(h) > r(h), choose t_h to be a stop rule at least as large as $s[p_r(h)]$ and such that

(7)
$$u(\sigma[p_r(h)], t_h) \ge u(\sigma[p_r(h)] - \epsilon$$

Set $t(h) = r(h) + t_h(f_{r(h)+1}, f_{r(h)+2}, \dots)$ so that $t[p_r(h)] = t_h$. Then $t \ge s$ and

$$u(\sigma,t) \ge u_r(\sigma,t) - \epsilon$$
 (by (5) and (7))
= $u_r(\sigma,s) - \epsilon$.

Hence, $u(\sigma) \ge \limsup_{t \to \infty} u_r(\sigma, t) . \square$

Let r be a stopping time. The strategies σ and σ' <u>agree up</u> <u>to time r-</u> if $\sigma_0 = \sigma'_0$ and, for every h ε H and 0 < n < r(h), $\sigma_n(p_n(h)) = \sigma'_n(p_n(h))$. Here is a formulation of the nearly obvious fact that if σ and σ' agree up to some time and if, given the past up to that time, σ' does conditionally nearly as well as σ , then unconditionally σ' does nearly as well as σ .

<u>Lemma 2.</u> If r is a stopping time, σ and σ' are strategies which agree up to time r- and $\epsilon > 0$, then each of the following conditions

- 6 -

implies its successor:

- (i) σ' is available in Γ and $u(\sigma[p_r(h)]) \ge (1-\varepsilon)V(f_r(h))$ whenever r(h) < ∞ ;
- (ii) $u(\sigma[p_r(h)] \ge (1-\varepsilon)u(\sigma'[p_r(h)])$ whenever $r(h) \le \infty$; (iii) $u(\sigma) \ge (1-\varepsilon)u(\sigma')$.
- <u>Proof:</u> To see that (i) implies (ii), observe that $u(\sigma'[p_r(h)]) \leq V(f_r(h))$ when $r(h) < \infty$. Use Lemma 1 for an easy proof that (ii) implies (iii). \Box

The next lemma states that a good strategy earns relatively little income after it becomes conditionally bad. Moreover, any strategy which agrees with a good strategy until it becomes conditionally bad is itself a fairly good strategy. A related fact (Lemma 3.1 in [6]) is that a sufficiently good strategy is unlikely to ever become conditionally bad. First some notation: If σ is a strategy and $0 < \alpha < 1$, let $r(\sigma, \alpha)$ be the first time (if any) when σ is not conditionally α -optimal. That is,

(8)
$$r(\sigma,\alpha)(h) = \inf\{n:u(\sigma[p_n(h)]) < (1-\alpha)V(f_n)\}$$
.

The infimum of the empty set is taken to be infinite.

Lemma 3. Let α and β be numbers in (0,1). Suppose σ is available at f in Γ and $u(\sigma) \ge (1-\beta)V(f)$. If $r = r(\sigma, \alpha)$, then, for every stop rule t,

(9)
$$\int_{[t>r]} V(f_r) d\sigma \leq \beta \alpha^{-1} V(f) .$$

Furthermore, if σ' is available at f in Γ and if σ' and σ agree up to time r-, then

- 7 -

(10)
$$u(\sigma') \ge (1-\varepsilon)V(f)$$

where $\epsilon = \beta(1 + \alpha^{-1})$.

<u>Proof:</u> Let t be a stop rule and set $v_t = \int_{[t>r]} V(f_r) d\sigma$. Then

$$(1-\beta)V(f) \le u(\sigma)$$

$$= \int u(\sigma[p_{tAr}])d\sigma \quad (by (2))$$

$$= \int u(\sigma[p_t])d\sigma + \int u(\sigma[p_r])d\sigma$$

$$\le \int V(f_t)d\sigma + (1-\alpha)\int V(f_r)d\sigma$$

$$= \int V(f_t)d\sigma + (1-\alpha)\int V(f_r)d\sigma$$

$$= \int V(f_{tAr})d\sigma - \alpha v_t$$

$$\le V(f) - \alpha v_t \quad (Corollary 3.3.4, [3])$$

Inequality (9) is now clear.

Now let s be a stop rule and $\epsilon' > 0$. By Lemma 1 there is a stop rule t such that $t \ge s$ and

Hence,

$$\int_{[t\leq r]}^{u(f_t)d\sigma'} + \int_{[t>r]}^{u(\sigma'[p_r])d\sigma'} \ge \int_{[t\leq r]}^{u(f_t)d\sigma'} \\ = \int_{[t\leq r]}^{u(f_t)d\sigma}$$

(since σ and σ' agree up to r-)

- 8 -

 $\geq (1-\beta)V(f) - v_{t} - \epsilon'$ (by (11)) $\geq (1-\epsilon)V(f) - \epsilon' .$ (by (9))

Inequality (10) now follows from another application of Lemma 1.

i c

ر ا ا

3. The existence proof.

Let (F, Γ, u) be a nonnegative gambling problem. A <u>family of</u> <u>strategies</u> is a mapping from F to the set of strategies. Let $\bar{\rho}$ be a family of strategies and $0 < \alpha < 1$. Define another family of strategies $\bar{\sigma} = \psi(\bar{\rho}, \alpha)$ as follows: For every f' ϵ F, let

(12)
$$r(f') = r(\rho(f'), \alpha)$$
 (see formula (8)).

Fix $f \in F$. Set s(1) = r(f) and, for n = 1, 2, ..., let <math>s(n+1) be the composition of s(n) with the family $r(\cdot)$ (p. 22, [3]); that is, for $h = (f_1, f_2, ...) \in H$, let

(13)
$$s(n+1)(h) = s(n)(h) + r(f_{s(n)}(h))(f_{s(n)}(h)+1, f_{s(n)}(h)+2, \cdots)$$

if $s(n)(h) < \infty$,
 $= \infty$ if $s(n)(h) = \infty$.

Define $\bar{\sigma}(f)$ to be that strategy which agrees with $\bar{\rho}(f)$ up to time r(f)- and is such that, for $n \ge 1$ and $h \in H$, $\sigma[p_{s(n)}(h)]$ agrees with $\bar{\rho}(f_{s(n)}(h))$ up to time $r(f_{s(n)}(h))$ -. The family $\bar{\sigma} = \psi(\bar{\rho}, \alpha)$ is now defined.

Let $0 < \beta < 1$. Let $S(\beta)$ be the collection of families of strategies $\bar{\rho}$ such that, for every f, $\bar{\rho}(f)$ is available at f in Γ and $u(\bar{\rho}(f)) \ge (1-\beta)V(f)$. Define $P(\alpha, \beta)$ to be the set of families of strategies $\bar{\sigma}$ such that $\bar{\sigma} = \psi(\bar{\rho}, \alpha)$ for some $\bar{\rho}$ in $S(\beta)$. Intuitively, to construct an element of $P(\alpha, \beta)$, start with a family $\bar{\rho}$ of β -optimal strategies; use the strategy which $\bar{\rho}$ specifies at the initial fortune until it becomes conditionally less than α -optimal; then switch

- 10 -

to the strategy specified by ρ at the current fortune and use it until it becomes conditionally less than α -optimal and so forth.

Notice that if V is everywhere finite then $S(\beta)$ and $P(\alpha, \beta)$ are not empty.

<u>Theorem 1.</u> Let (F, Γ, u) be a nonnegative gambling problem with V everywhere finite. For every $f \in F$ and $0 \le 1$, there is available at f in Γ a strategy σ which is persistently (multiplicatively) ε -optimal. Indeed if

(14)
$$0 < \alpha < 1, 0 < \beta < 1, (1-\beta(1 + \alpha^{-1}))(1-\alpha) \ge 1 - \epsilon$$
,

and $\bar{\sigma} \in P(\alpha, \beta)$, then $\bar{\sigma}(f)$ is persistently (multiplicatively) ϵ -optimal at f. <u>Proof:</u> Choose α, β to satisfy (14). Let $\bar{\rho} \in S(\beta)$ and $\bar{\sigma} = \psi(\bar{\rho}, \alpha) \in P(\alpha, \beta)$. Set $\sigma = \bar{\sigma}(f)$. Let r(f) and s(n) be as in the definition of $\bar{\sigma}$. Set $\epsilon' = \beta(1 + \alpha^{-1})$. Since $u(\bar{\rho}(f)) \ge (1-\beta)V(f)$ and σ agrees with $\bar{\rho}(f)$ up to time r(f)-, Lemma 3 applies to show $u(\sigma) \ge (1 - \epsilon')V(f) \ge (1-\epsilon)V(f)$. Similarly, for each positive integer m and h ϵ H, it follows from Lemma 3 that, whenever $s(m)(h) < \infty$,

(15)
$$u(\sigma[p_{s(m)}(h)]) \ge (1 - e')V(f_{s(m)}(h))$$
$$\ge (1 - e)V(f_{s(m)}(h)).$$

Consider next a partial history $p = (f_1, \dots, f_n)$ which, for every $k = 1, 2, \dots$, is not of the form $p_{s(k)}(h)$. Let m be the least positive integer such that n < s(m)(ph') for some h' (and, hence, every h'). If $m \ge 2$, let $k = s(m-1)(f_1, \dots, f_n, \dots)$ so that $f_k = f_{s(m-1)}(f_1, \dots, f_n, \dots)$. If m = 1, let k = 0 and $f_k = f$. Set $\sigma' = \overline{\rho}(f_k)[(f_{k+1}, \dots, f_n)]$ and $r_0 = r(f_k)[(f_{k+1},...,f_n)]$. Use the definitions of $r(f_k)$ and s(m) (formulas (12) and (13)) to see that

(16)
$$u(\sigma') \ge (1 - \alpha)V(f_n)$$
.

Check that $\sigma[p]$ and σ' agree up to time r_0^- . Also, for h' ϵ H,

$$\begin{aligned} u(\sigma[p][p_{r_{O}}(h')]) &= u(\sigma[p_{s(m)}(ph')]) \\ &\geq (1 - \varepsilon')V(f_{s(m)}(ph')) \qquad (by (15)) \\ &= (1 - \varepsilon')V(f_{r_{O}}(h')) , \end{aligned}$$

whenever $r_0(h') < \infty$. Apply Lemma 2 to the strategies $\sigma[p]$ and σ' to conclude

(17)
$$u(\sigma[p]) \ge (1 - \varepsilon')u(\sigma')$$
.

By (16) and (17),

$$u(\sigma[p]) \ge (1 - \epsilon')(1 - \alpha)V(f_n)$$
$$\ge (1 - \epsilon)V(f_n) .$$

The proof of the theorem is now complete. \Box

Even if optimal strategies are available at every fortune, persistently O-optimal strategies need not be as can be seen from the following example.

Example. Let
$$F = \{0, 1, ...\}; u(1) = 1, u(n) = 0$$
 if $n \neq 1;$
 $\Gamma(n) = \{\delta(n)\}$ for $n \le 1$, $\Gamma(n) = \{\delta(n), (1-n^{-1})\delta(1) + n^{-1}\delta(0), \gamma\}$
for $n \ge 2$ where γ is a diffuse gamble on F .

<u>Corollary 1.</u> Let (F, Γ, u) be a gambling problem with u bounded. For each $f \in F$ and $\varepsilon > 0$, there is a strategy σ available at fin Γ such that $u(\sigma) \ge V(f) - \varepsilon$ and $u(\sigma[p]) \ge V(f_n) - \varepsilon$ for every $p = (f_1, \dots, f_n)$. <u>Proof:</u> There is no real loss of generality in assuming u is nonnegative. Since V is bounded, the conclusion follows easily from the theorem.

An example of Blackwell in [1] can easily be modified to show that for unbounded, even nonnegative u, there need not exist strategies which are persistently (additively) ϵ -optimal, that is, strategies which satisfy the conclusion of Corollary 1.

4. Measurable gambling problems.

Let X be a separable metric space. Call X <u>analytic</u> if there is a continuous function from the set of irrationals in the unit interval onto X. (See Kuratowski [4] or Blackwell, Freedman, and Orkin [2] for a discussion of analytic sets.) Let $\mathfrak{G}(X)$ denote the sigma-field of Borel subsets of X. A nonnegative, real-valued function g defined on X is <u>semi-analytic</u> if $\{x:g(x) > a\}$ is analytic for all nonnegative a. (See [2] and [4].) Denote by $\mathfrak{P}(X)$ the set of countably additive probability measures defined on $\mathfrak{G}(X)$. Equip $\mathfrak{P}(X)$ with the weak-star topology. Then $\mathfrak{P}(X)$ is an analytic set if X is. (Lemma (25) in [2]). A function g from an analytic set X into an analytic set Y is <u>universally measurable</u> or <u>measurable</u> for short if, for every S $\in \mathfrak{G}(Y)$ and $p \in \mathfrak{P}(X)$, $g^{-1}(S)$ is in the completion of $\mathfrak{G}(X)$ under p.

A gambling problem (F, Γ, u) is <u>nonnegative analytic</u> if F is an analytic set, u is semi-analytic, and the set $\{(f,\gamma):\gamma \in \Gamma(f)\}$ is an analytic subset of $F \propto P(F)$. (Here each gamble γ is identified with its restriction to B(F) and is assumed to be countably additive on B(F).) This definition of analytic gambling problems was inspired by Blackwell, Freedman, and Orkin [2]. Analytic gambling problems include the Borel measurable gambling problems defined by Strauch [5].

A strategy σ is <u>measurable</u> if, for $n = 1, 2, ..., the mappings <math>(f_1, \ldots, f_n) \rightarrow \sigma_n(f_1, \ldots, f_n)$ are measurable from F^n to $\mathcal{P}(F)$. A measurable strategy σ determines a probability measure $p(\sigma)$ on the Borel subsets of the product space $H = F \times F \times \ldots$ as follows: the $p(\sigma)$ -marginal distribution of f_1 is σ_0 and, for every (f_1, \ldots, f_n)

- 14 -

the $p(\sigma)$ -distribution of f_{n+1} given (f_1, \ldots, f_n) is $\sigma_n(f_1, \ldots, f_n)$. For simplicity, denote $p(\sigma)$ by σ below. A <u>measurable family of</u> <u>strategies</u> is a mapping $\bar{\sigma}$ which assigns to each $f \in F$ a measurable strategy $\bar{\sigma}(f)$ in such a way that, for every $n = 0, 1, \ldots$, the function $(f, f_1, \ldots, f_n) \rightarrow \bar{\sigma}(f)_n(f_1, \ldots, f_n)$ is measurable from F^{n+1} to P(F). The family is <u>available</u> if $\bar{\sigma}(f)$ is available at f for every f.

Lemma 4. If $\overline{\sigma}$ is a measurable family of strategies and u is a bounded Borel function from F to the reals, then the mapping $\varphi: f \rightarrow u(\overline{\sigma}(f))$ is measurable from F to the reals and the mappings $\varphi_n: (f, h) \rightarrow u(\overline{\sigma}(f)[p_n(h)])$ are measurable from F x H to the reals for n = 1, 2, ...

<u>Proof:</u> If g is a nonnegative Borel function from H to the real line and if g depends only on a finite number of coordinates, then, by Corollary (41a) of [2], the mapping

 $\varphi_{g}: f \rightarrow \int g d \bar{\sigma}(f)$

is measurable. The collection G of functions g such that φ_g is measurable includes, in particular, the indicator functions of Borel cylinder sets. Since G is closed under linear combinations and increasing limits of nonnegative functions, conclude that G contains all nonnegative Borel functions on H. By Theorem 3.2 of [8], $u(\bar{\sigma}(f)) = \int u^* d\bar{\sigma}(f)$ where $u^*(f_1, f_2, \ldots) = \lim_{n \to \infty} \sup u(f_n)$. Thus $\varphi = \varphi_{u^*}$ is measurable. The proof that the φ_n are measurable is similar. \Box <u>Theorem 2.</u> Let (F, Γ, u) be a nonnegative analytic gambling problem and assume u is a bounded, Borel measurable function. Suppose that, for every $\beta \in (0, 1)$, there is a measurable family of (multiplicatively)

- 15 -

 β -optimal strategies available. Then, for every $\in \epsilon$ (0,1), there is available a measurable family of strategies which are persistently (multiplicatively) ϵ -optimal.

<u>Proof:</u> First notice that V is measurable. To see this, let $\overline{\sigma}_n$ be a measurable family of n^{-1} -optimal strategies for n = 1, 2, Then $V(f) = \sup u(\overline{\sigma}_n(f))$ and, by Lemma 4, V is measurable.

To prove the assertion of the theorem, it suffices, by Theorem 1, to show that, given α , $\beta \in (0, 1)$, there is a measurable family $\overline{\sigma}$ in $P(\alpha, \beta)$. By assumption, there is a measurable family $\overline{\rho} \in S(\beta)$. Let $\overline{\sigma} = \psi(\overline{\rho}, \alpha)$. By definition, $\overline{\sigma} \in P(\alpha, \beta)$. In checking that $\overline{\sigma}$ is measurable, the only real difficulty lies in showing that the map $(f,h) \rightarrow r(f)(h)$ is measurable from $F \times H$ to the real line. (See formulas (12) and (8).) This in turn follows easily from the measurability of V together with Lemma 4. \Box

Perhaps, the conclusion of Theorem 2 holds for every nonnegative analytic gambling problem which has V everywhere finite. However, up to the present only two special cases have been treated. It was shown in [4] that good measurable strategies are available for leavable, Borel measurable problems with a bounded utility function. In fact, good measurable families of strategies are always available for leavable, nonnegative analytic problems and so Theorem 2 applies. The same is true for nonleavable problems in which u is the indicator of a single fortune (see [7] for the Borel case). Of course, if F is countable, every strategy is measurable and Theorem 1 yields the existence of persistently good measurable strategies.

- 16 -

References

- Blackwell, David (1967). Positive dynamic programming.
 <u>Proc. Fifth Berkeley Symp on Math., Stat., and Prob. I</u>.
 415 418.
- Blackwell, D., Freedman, D., and Orkin, M. (1974). The optimal reward operator in dynamic programming. <u>Ann. Prob.</u> 2 926 941.
- 3. Dubins, Lester E. and Savage, Leonard J. (1965). <u>How to Gamble If</u> You Must. M^CGraw-Hill, New York
- 4. Kwatowski, K. (1966, 1968). <u>Topology 1</u> and <u>Topology 2</u>. Academic Press, New York.
- 5. Strauch, Ralph E. (1967). Measurable gambling houses. <u>Trans. A.M.S.</u> <u>126</u> 64 - 72.
- 6. Sudderth, W. D. (1969). On the existence of good stationary strategies. <u>Trans. A.M.S.</u> <u>135</u> 399 - 414.
- 7. _____ (1969). On measurable, nonleavable gambling houses with a goal. Ann. Math. Statist. 40 66 - 71.
- 8. (1971). On measurable gambling problems. Ann. Math. Statist. 42 260 - 269.