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Abstract 

There are strategies available for nonnegative gambling problems 

which are not only s-optimal but persist in being conditionally 

e-optima.l along every history. 

Key words: gambling, .optimal strategies,. probability, finite additivity, 

dynamic progranming, stochastic control, decision theory • 
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1. Introduction. 

Let (F, r, u) be a gambling problem where, as in [3], F is 

the set of fortunes or states, r is the gambling house, and u the 

utility function. The gambling problem is nonnegative if u is a 

nonnegative, possibly unbounded function. 

Let O < e < 1, f e F, and V(f) be the most a gambler with 

fortune f can achieve ([3], section 3.3). A strategy cr available 

at f in r is (multiplicatively} e-optimal at f if u(cr) ~ (1-e)V(f). 

Let p = (f1 , ••• ,fn). Then cr is conditionally (multiplicatively) 

e-optimal given p if the conditional strategy cr(p] is multiplicatively 

e-optimal at f • 
n 

If cr is (multiplicatively) e-optimal at f and is 

conditionally (multiplicatively) e-optimal given p for every partial 

history p, then cr is said to be persistently (multiplicatively) 

e-optimal !E_ f. If u is bounded or, more generally, if u is non

negative and V is everywhere finite, then persistently e-optimal 

strategies are always available (Theorem 1 below). If, in addition, the 

gambling problem is sufficiently measurable, there exist measurable 

strategies which are persistently e-optimal (Theorem 2). 

The notion of persistently {or thoroughly) optimal strategies was 

introduced in [3, section 3.5]. It is related to the concept of stationarity. 

-For suppose a is a stationary family of e-optimal strategies. Then, 

for every f, a(f) is persistently e-optimal since a(f)[f
1

, ••• ,f 1 = a(f ). 
n n 

Gambles in [3] were taken to be finitely additive probability 

measures defined on all subsets of F. Here a gamble y can be regarded 

as a nonnegative functional with domain the collection h of nonnegative, 
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real-valued functions defined on F and satisfying 

y(u + v) = yu + yv, 

y(a u) = a y u 

for u, v e h and a ~ O. A gamble in the present sen.se is, when 

restricted to the collection of indicator functions, a gamble in the 

sense of [3]. Thus the gambling problems considered here are slightly 

more general than those of [3]. However, much of the theory remains 

unchanged and appropriate definitions and results from (3) will be. 

used without further comment • 
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2. Preliminaries. 

Let H = F x F X ••• be the set of histories. A mapping t from 

H to {l,2, ••• } U {~} is called a stopping time if,. whenever h and 

h' are in H, t{h) = n < ~, and h' agrees with h in the first n 

coordinates, then t{h') = n. A stopping time which assumes only finite 

values is a stop rule. Let n be a positive integer and h = (f
1

, ••• ,fn,•••) 

be a history. Re.call that p {h} = {f
1

,ooo,f }o 
n n 

{See [3] for a detailed 

explanation of the notation and terminology.} If r is a stopping time, 

the conditional stopping time given p (h) is defined by 
n 

t[p (h)]{h') = t{p {h)h') - n for h' e H. Notice that t[p (h}] is a 
n n n 

stopping time or identically zero according as 

than or equal to n. 

r{p {h)h') 
n. 

is greater 

Let {cr, t) be a policy and s be a stop rule. Make the convention 

that u{cr[p (h}], t[p (h)]) is u(ft(h)) when s(h) ~ t(h}. Then the 
s s 

formula 

(1) u(cr, t) = Ju(cr[p ], t[p ])dcr 
s s 

is a special case of formula 3.7.1, [3]. The similar formula 

(2) u(cr) = Ju{cr[p
8

]}dcr 

follows from Theorem 3.2.1, [3] and an argument by induction on the 

structure of p. The first lemma below generalizes (2) and gives a 
s 

formula which, in a sense, separates the utility of a strategy into 

that earned before a given time r and that earned afterwards. 

For simplicity, assume henceforth that u is nonnegative and all 

strategies have finite utility. 
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Lemma 1. Let a be a strategy and r be a stopping time. Then 

(3) 

where 

u(a) = lim sup u (a,t) 
f ~ co r 

u (a,t) = £ u{ft)da + £ u(a[p ])dcr 
r [ t~r ] [ t>r ] r 

and the lim sup is taken over the directed set of stop rules. 

Proof: By definition ([3], section 3.2) 

(4) u{a) = lim sup u(a,t) o 

t ~ co 

For t a stop rule, apply (1) with s = ti\ r to get 

(5) 

Let 

u(a,t) = Ju(a[ptAr]' t[p· ])dcr 
tl\r 

= I u(ft)dcr + J u(a[p ], t(p ])da. 
[ t~r] [ t>r] r r 

e > o. 

Claim: There is a stop rule t 0 such that, for every stop rule t,. 

J u{a[p ], t[p ])da < e • 
] 

r r 
[t>r,to~r 

suppose the claim is false. Then, for every stop rule t, there is 

a stop rule s such that 

Define t
1 

= t if t > r or s ~ t, 

= s if t ~ r and s_> t. 

Then t
1 

is a stop rule, t
1 
~ t and 
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J u(a[p ], t 1 [p. ])da = J u(a[p ], t[p ])da + J u{a[p ], s[p ])dcr 
[tl>r] r r [t>r] r r [t~r,s>r]~ r 

~ J u(a[p ] , t(p ])da + e· • 
[t>r] r r 

Similarly, there exist stop rules t
2

, t
3

, ••• such that t s: t. l and n n+ 

J u(a[p: ] , t 
1

(p ])da ~ J u{o-[p ] , t [p ])da + e • 
[ t >r] r n+ r . [ t >r] r n r 

n+l n 

Thus, for n = 1,2, ••• , t ~ t and 
n 

u{o-,t) ~ J u(o-[p ], t (p ])do"~ n e • 
n [t >r] r n r 

n 

Hence, u{a) = ~, a contradiction which establishes the claim. 

Next, define a stop rule t' thus: If t
0

(h) ~ r(h), set 

t'(h) = t
0

(h). If t
0

(h) > r(h), choose a stop rule th such th~t 

th~ t
0

(pr(h)] and, for every stop rule s ~ th, 

(6) u(a[p (h)]~s) s: u(a[p (h)] + e • 
r r 

Then set t'{h) = r(h) + th(fr(h)+l' fr(h)+
2

, ••• ) so that t'[pr{h)] = th. 

Notice that t' ~ t
0

o 

Suppose t is a stop rule and t ~ t'. Then 

u(a,t) = J u(ft)da + J u(o-[p ], t[p ])do-+ J u(a[p ], t[p ])da 
[t~r] (t

0
>r] r r (t>r,t

0
s:r] r r 

{by (5)) 

~ J u(ft)da + f u{o-[pr])da + 2 e 
(ts:~] [t0>rJ 

(by (6) and the Claim) 
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~ £ u(ft)da + f u(o[p ])do+ 2 e 
[ t~r] [ t>r ] r 

= u (a,t) + 2 e • 
r 

u(a) ~ lim sup u (a ,_t). 
t ~ 00 r 

To prove the opposite inequality, again let e > 0 and s be a 

stop rule. Define a stop rule t as follows: If s(h) ~ r(h), let 

t{h) = s(h). If s(h) > r{h), choose th to be a stop rule at least 

as large as s[pr(h)] and such that 

Set t{h) = r(h) + th(fr(h)+l'fr(h)+
2

, ••• ) so that t(pr(h)] = th. 

Then t ~ s and 

Hence, 

u(a,t) ~ u {a,t) - e 
r 

= u (o,s) - e • 
r 

u(a) ~ lim sup u (a,t) • 0 
t -+ 00 r 

(by (5) and (7)) 

Let r be a stopping time. The strategies a and a' agree up 

to time r- if a
0 

= a~ and, for every he H and O < n < r(h), 

a (p (h)) = a'(p (h)). Here is a formulation of the nearly obvious 
n n n n 

fact that if a and a' agree up to some time and if, given the past 

up to that time, a' does conditionally nearly as well as a, then 

unconditionally a' does nearly as well as a. 

Lemma 2o If r is a stopping time, a and a' are strategies which 

agree up to time r- and e > O, then each of the following conditions 
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implies its successor: 

{i) cr' is available in r and u(cr[p (h)]) ~ (1-e)V(f (h)) whenever 
r r 

r(h) < co; 

{ii) u(cr[p (h}] ~ (1-e)u{cr'(p (h)]) whenever r(h) < co; 
r r 

{iii) u{cr) ~ (1-e)u(cr') o 

Proof: To see that (i) implies (ii), observe that 

u(cr'[p (h)]) ~ V(f (h)) when r(h) < 00 0 Use Lemma 1 for an easy proof 
r r 

that (ii) implies {iii). 0 

The next lemma states that a good strategy earns relatively little 

income after it becomes conditionally bado Moreover, any strategy which 

agrees with a good strategy until it becomes conditionally bad is itself 

a fairly good strategy. A related fact (Lemma 3.1 in (6)) is that a 

sufficiently good strategy is unlikely to ever become conditionally bad. 

First some notation: If cr is a st.rategy and O < a< 1, let r(cr,a) 

be the first time (if any) when cr is not conditionally a-optimal. 

That is, 

(8) r(cr,a)(h) = inf{n:u{a[p (h)]) < (1-a)V(f )} • 
n n 

The infimum of the empty set is taken to be infinite. 

Lemma 3. Let a and a be numbers in (O,l)o Suppose a is available 

at f in r and u{cr) ~ (1-a}v(f). If r = r(a,a), then, for every 

stop rule t, 

(9) 

Furthermore, if cr' is available at f in r and if a' and a 

agree up to time r-, then 
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(10) 

where 

Proof: 

u{a') ~ (1-e)V(f) 

-1 
e = 13(1 + a ). 

Let t be a stop ~ule and set 

(1-13)V(f) ~ u(o-) 

vt = £ V(f )do-. Then 
[t>r] r 

= Ju{o-[ptAr])da (by (2)) 

= J u(a[pt])do- + J u(o-[p ]da 
[t~r] [t>r] r 

~ J V(ft)do- + (1-a)J V(f )da 
[t~r] [t>r] r 

= Jv(ftAr)da - avt 

~V(f) -avt (Corollary 3.3.4, [3]) • 

Inequality (9) is now clear. 

Now let s be a stop rule and e' > O. By Lemma 1 there is a stop 

rule t such that t ~ s and 

(11) 

Hence, 

(1-13 )V(f) - e' ~ £ u(ft)do- + J u(o-[p ])da 
[t~r] [t>r] r 

~ J u(ft)do- + Vt • 
[t~] 

J u(ft)da' + £ u{o-' [p ])do-' ~ J u(f )do-' 
[ t~r] [ t>r] r ( t~r] t 

= J u{f )do
[t~r] t 

{since a and a' agree up to r-) 

- 8 -



•\ I 

I.al •• 

~ 

w· 

! 

~ 

~ 

\ I 

w 

\ I 

\.i 

I 

' . 
I ', 

w 

I j 

i..J 

i, I 
w 

I 

w 

i ) 

w 
\ i 
(.J 

i 1 

w 
! 

1.1 

l I 
bJ 

\al 

\ i •• 
: ! 1' 

~ 

; l 

w 

i ~ 

~ (l-l:3 )y(f) - Vt - 8 
1 

(by (11)) 

~ (1-e)V(f) - e 1 
• 

{by (9)) 

Inequality (10) now follows from anoth~r appl_ication of Lemma L D 
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. 3. The existence proof. 

Let (F, r, u) be a nonnegative gambling problem. A family of 

strategies is a mapping from F to the set of strategies. Let p be 

a family of strategies and O <a< 1. Define another family of strategies 

a= t(p, a) as follows: For every f 1 e F, let 

(12) r(f') = r(p(f'), a) (see formula (8)) • 

Fix f e F. Set s(l) = r(f) and, for n = 1,2, ••• , let s{n+l) be 

the composition of s(n) with the family r(•) (p. 22, [3]); that is, 

for h = {f
1
,f

2
, ••• ) e H, let 

(13) s(n+l)(h) = s{n){h) + r(fs(n)(h)}(fs(n)(h)+l'fs(n)(h)+2, ••• ) 

if s(n){h) < ~, 

= 00 if s{n)(h) = ~ o 

Define cr(f) to be that strategy which agrees with p(f) up to time 

r(f)- and is such that, for n ~ 1 and he H, cr[ps(n)(h)] agrees with 

p(fs(n)(h)) up to time r(fs(n)(h))-. The family cr = v(p, a) is now 

defined. 

Let O < ~ < 1. Let s(~) be the collection of families of strategies 

p such that, for every f, p(f) is available at f in r and 

u(p(f)) ~ (1-~)V(f). Define P(a, a) to be the set of families of 

strategies a such that a= v(p, a) for some p in s(~). Intuitively, 

to construct an element of P(a, a), start with a family p of 

a-optimal strategies; use the strategy which p specifies at the initial 

fortune until it becomes conditionally less than a-optimal; then switch 

- 10 -
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to the strategy specified by p at the current fortune and use it until 

it becomes conditionally less than a-optimal and so forth. 

Notice that if V is everywhere finite then s(S) and P(a, S) -are 

not empty. 

Theorem 1. Let (F, r, u) be a nonnegative gambling problem ~ith V 

everywhere finite. For every f e F and O < e < 1, there is available 

at f in r a strategy cr which is persistently (multiplicatively) 

e-optimal. Indeed if 

(14) o < a< 1, o < S < 1, (1-S(l + a-1))(1-a) ~ 1 - e , 

and a e P(a, $), then ;(f) is persistently (multiplicatively) e-optimal at f. 

Proof: Choose a, S to satisfy (14). Let p e s(S) and 

a= t(P, a) e P(a, S)o Set ·a= a(f). Let r(f) and s(n) be as in 

- ' ( -1) the definition of a. Set e = S 1 + a • Since u(p(f)) ~ (1-S)V{f) 

and cr agrees with p(f) up to time r(f)-, Lemma 3 applies to show 

u(cr) ~ (1 - e')V(f) ~ (1-e)V(f)o Similarly, for each positive integer 

m and he H, it follows from Lemma 3 that, whenever s(m)(h) < ~, 

(15) u(cr[ps(m)(h)]) ~ (1 - e')V(fs(m)(h)) 

~ (1 - e)V(fs(m)(h)) • 

Consider next a partial history p = {f
1

, ••• ,fn) which, for every 

k = 1,2,.o•, is not of the form ps{k)(h). Let m be the least positive 

integer such that n < s(m)(ph') for some h' {and, hence, every h'). 

If m ~ 2, let k = s(m-l)(f1 ,o •• ,fn,•••) so that fk = fs(m-l)(f1 , ••• ,fn,•••>• 

If m = 1, let k = 0 and fk = f. Set a'= p(fk)[(fk+l'••o,fn)] and 

- 11 -



... 

-
-
\a 

'-

... 

al 

laJ 

-
... 

-
.. 

-
-
.. 
'-' 

... 

... 

.i 

r 0 = r(fk)[(fk+l'•••,fn)]. Use the definitions of r(fk) and s(m) 

(formulas (12) and (13)) to see that 

(16) u(a') ~ (1 - a)V(fn) • 

Check that a(p] and a' agree up to time r
0
-. Also, for h' e H, 

u(a[p](pr
0 

(h')]) = u(a[ps(m)(ph')]) 

~ {1 - e')V(fs(m)(ph')) 

= (1 - e')V(f (h')) , 
. ro 

(by (15)) 

whenever r
0

(h') < ~. Apply Lemma 2 to the strategies a[p] and a' to 

conclude 

(17) u(a[p]) ~ (1 - e')u{a') • 

By (16) and (17), 

u{a[p]) ~ (1 - e')(l - a)V(f) 
n 

~ (1 - s)V(fn) • 

The proof of the theorem is now complete. D 

Even if optimal strategies are available at every fortune, persistently 

0-optimal strategies need not be as can be seen from the following example. 

Example. Let F = {O, l,o.o); u(l) = 1, u(n) = 0 if n t l; 
r(n) = {6(n)) for n ~ 1, r(n) = {6{n), (l-n-

1
)6(1) + n-

1
6(0),y} 

for n ~ 2 where y is a diffuse gamble on F. 

Corollary 1. Let (F, r, u) be a gambling problem with u bounded. 

For each f e F and e > O, there is a strategy a available at f 

in r such that u{a) ~ V{f) - e 

p = (fl'oeo,fn). 

and u(a[p]) ~ V(f) - e n 

- 12 -
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Proof: There is no real loss of generality in assuming u is nonnegative. 

Since V is bounded, the conclusion follows easily from the theorem. D 

An example of Blackwell in [l] can easily be modified to show that 

for unbounded, even nonnegative u, there need not exist strategies 

which are persistently (additively) e-optimal, that is, strategie~ which 

satisfy the conclusion of Corollary lo 

- 13 -
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4. Measurable gambling problems. 

Let X be a separable metric space. Call X analytic if there 

is a continuous function from the set of irrationals in the unit interval 

onto x. (See Kuratowski (4] or Blackwell, Freedman, and Orkin [2] for 

a discussion of analytic sets.) Let B(X) denote the sigma-field of 

Borel subsets of x. A nonnegative, real-valued function g defined 

on X is semi-analytic if {x:g{x) > a) is analytic for all nonnegative 

a. (see [2] and [4].) Denote by P(X) the set of countably additive 

probability measures defined on B(X)a Equip ~(X) with the weak-star 

topology. Then P(X) is an analytic set if X is. (Lemma (25) in 

[2]). A function g from an analytic set X into an analytic set Y 

is universally measurable or measurable for short if, for every Se 6(Y) 

and p e P(X), g-
1

(s) is in the completion of B(X) under p. 

A gambling problem (F, r, u) is nonnegative analytic if F is an 

analytic set, u is semi-analytic, and the set ((f,y):y e r(f)) is 

an analytic subset of F X P(F). (Here each gamble y is identified 

with its restriction to B(F) and is assumed to be countably additive 

on B(F)a) This definition of analytic gambling problems was inspired 

by Blackwell, Freedman, and Orkin [2]. Analytic gambling problems include 

the Borel measurable gambling problems defined by Strauch [5]. 

A strategy a is measurable if, for n = 1,2, ••• , the mappings 

(f1, ••• ,f) ~ a (f
1

, •• a,f) are measurable from Fn to P(F). A 
n n n 

measurable strategy a determines a probability measure p(cr) on the 

Borel subsets of the product space H=FxFx ... as follows: the 

p(a)-marginal distribution of f
1 

is a
0 

and, for every (£
1

, ••• ,fn) 

- 14 -
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is a (f
1

, ••• ,f ). 
n n 

For simplicity, denote p(a) by cr below. A measurable family of 

strategies is a mapping a which assigns to each f e F a measurable 

strategy ;(f) in such a way that, for every n = O, 1, ••• , the 

function (f,f
1

, ••• ,f) ~ a(f) (f
1

, ••• ,f) is measurable from Fn+l 
n n n 

to P(F). The family is available if a(f) is available at f for 

every f. 

-Lemma 4. If a is a measurable family of strategies and u is a bounded 

Borel function from F to the reals, then the mapping cp:f ~ u{~(f)) is 

measurable from F to the reals and the mappings cp :(f, h) ~ u(a(f)[p (h)]) 
n n 

are measurable from F x H to the reals for n = 1,2, •••• 

Proof: If g is a nonnegative Borel function from H to the real line 

and if g depends only on a finite number of coordinates, then, by 

Corollary (41a) of [2], the mapping 

is measurable. The collection q of functions g such that cp 
g 

is 

measurable includes, in particular, the indicator functions of Borel 

cylinder sets. Since q is closed under linear combinations and in

creasing limits of nonnegative functions, conclude that q contains all 

nonnegative Borel functions on H. By Theorem 3.2 of [8], 

u(a(f)) =Ju* da(f) where u*(f
1

,£
2

, ••• ) = lim sup u(f ). 
n ~ co n 

Thus 

cp = cpu* is measurable. The proof that the cp are measurable is similar. 0 
n 

Theorem 2. Let (F, r, u} be a nonnegative analytic gambling problem 

and assume u is a bounded, Borel measurable function. Suppose that, 

for every ~ e (0, 1), there.is a measurable family of (multiplicatively} 
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~-optimal strategies available. Then, for every E e (0,1), there 

is available a measurable family of strategies which are persistently 

{multiplicatively) e-optimal. 

-Proof: First notice that V is measurable. To see this, let an be 

-1 
a measurable family of n -optimal strategies for n = 1,2, •••• Then 

V(f) = sup u(a (f)) and, by Lennna 4, V is measurable. 
n 

To prove the assertion of the theorem, it suffices, by Theorem 1, 

to show that, given a,~ 6 (o, 1), there is a measurable family a 

in P(a, ~). By assumption, there.is a measurable family p es(~). 

Let cr = v(p, a). By definition, cr e P(a, ~). In checking that a is 

measurable, the only real difficulty lies in showing that the map 

(f,h) ~ r(f)(h) is measurable from F X H to the real line. (see 

formulas (12) and (8).) This in turn follows easily from the measurability 

of V together with Lemma 4. D 

Perhaps, the conclusion of Theorem 2 holds for every nonnegative 

analytic gambling problem which has V everywhere finite. However, up 

to the present only two special cases have been treated. It was shown 

in (4) that good measurable strategies are available for leavable, Borel 

measurable problems with a bounded utility function. In fact, good 

measurable families of strategies are always available for leavable, 

nonnegative analytic problems and so Theorem 2 applies. The same is true 

for nonleavable problems in which u is the indicator of a single fortune 

(see [7] for the Borel case). Of course, if F is countable, every 

strategy is measurable and Theorem 1 yields the existence of persistently 

good measurable strategies. 
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