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Abstract

Background: Bacterial populations contain persisters, phenotypic variants that constitute

approximately 1% of cells in stationary phase and biofilm cultures. Multidrug tolerance of persisters

is largely responsible for the inability of antibiotics to completely eradicate infections. Recent

progress in understanding persisters is encouraging, but the main obstacle in understanding their

nature was our inability to isolate these elusive cells from a wild-type population since their

discovery in 1944.

Results: We hypothesized that persisters are dormant cells with a low level of translation, and

used this to physically sort dim E. coli cells which do not contain sufficient amounts of unstable GFP

expressed from a promoter whose activity depends on the growth rate. The dim cells were

tolerant to antibiotics and exhibited a gene expression profile distinctly different from those

observed for cells in exponential or stationary phases. Genes coding for toxin-antitoxin module

proteins were expressed in persisters and are likely contributors to this condition.

Conclusion: We report a method for persister isolation and conclude that these cells represent

a distinct state of bacterial physiology.

Background
Persisters are multidrug tolerant cells present in all bacte-
rial populations studied to date [1]. Persisters are not
mutants, but rather phenotypic variants of the wild-type
that upon reinoculation produce a culture with similar
levels of tolerance [2-4]. The number of persisters in
Escherichia coli (E. coli) remains constant throughout
early-exponential phase, with a marked increase as cells
enter late-exponential and early-stationary phases [3].
Maintaining cells in exponential growth using repeated

dilutions in fresh media, similar to growth in a chemostat,
resulted in a complete loss of persisters [3]. This lack of
persistence demonstrates that these cells are not at a par-
ticular stage in the cell cycle as originally suggested by
Moyed [5], and are not produced in response to antibiot-
ics. In a recent study employing a microfluidic device to
monitor cell growth, persisters were shown to be rare non-
growing cells that pre-exist in a population [10]. Persisters
are responsible for multidrug tolerance of biofilms [1]
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which account for the majority of infectious diseases in
the developed world [6,7].

We previously reported isolation of persisters from a cul-
ture of an E. coli hipA7 (high persistence) mutant [5] that
was lysed with ampicillin [8]. Intact persisters were col-
lected and their gene expression profile indicated overex-
pression of chromosomal toxin-antitoxin (TA) modules.
"Toxins" cause reversible stasis by blocking essential func-
tions, such as translation [9], and appeared as promising
candidates for MDT genes. Overexpression of RelE or
HipA toxins caused a sharp increase in persistence, while
deletion of the hipBA module strongly decreased the
number of persisters in both stationary and biofilm cul-
tures. The same hipBA deletion mutant exhibited no
change in persistence during exponential growth or when
grown in minimal media, suggesting that persister forma-
tion is governed by redundant genes whose activity
depends on particular conditions (indeed, there are >10
TA modules in E. coli [11]). Recent progress in under-
standing persisters is encouraging, but the main obstacle
in understanding their nature was our inability to isolate
these elusive cells from a wild-type population without
antibiotic treatment since their discovery in 1944 [2].

We reasoned that the apparent dormancy of persisters
[10] could be exploited to physically isolate these cells. A
strain expressing degradable GFP from a ribosomal pro-

moter that is only active under conditions of rapid growth
was used to physically sort dim persister cells from the
bulk of the population. Here, we report a method of iso-
lating naive persisters from wild-type E. coli and based on
their gene expression profile conclude that they represent
a third physiological state of bacterial cells, distinct from
both exponential and stationary forms.

Results and discussion
Dormant cells are expected to have a low rate of protein
synthesis, thereby providing the basic rationale for sorting
persisters from the population. E. coli strains ASV and
AGA carry gene cassettes encoding previously described
[12] unstable variants of GFP under the control of the
ribosomal rrnBP1 promoter (Fig. 1A). These gene cassettes
are inserted as a single copy into the λ phage attachment
site of the chromosome (Søren Molin, unpublished).
rrnbP1 normally controls expression of the rrnB gene
which codes for 16S rRNA and is expressed at high levels
during growth [13,14]. The half-life of this unstable GFP
is <1 hour, and it is rapidly cleared from non-growing cells
[12]. In a growing culture, fluorescence was bright at expo-
nential state, and subsequently lost shortly after cells
entered stationary state (Fig. 1B). This provided a unique
opportunity to sort bright and dim cells and analyze their
physiology.

An exponentially growing population of E. coli ASV (cul-
tured for one hour to a cell density of approximately 108

CFU/ml) was sorted with a MoFlo cell-sorter using for-
ward light scatter, which allows detection of particles
based on size. This enabled detection of cells irrespective
of their level of fluorescence. Fluorescence of GFP in indi-
vidual cells was recorded simultaneously using laser exci-
tation and light detection. Fluorescence activated cell
sorting (FACS) analysis showed that the population con-
sisted of two strikingly different types of cells – a bright
majority, and a small subpopulation of cells with no
detectable fluorescence (Fig. 2A). The two populations
were sorted based on fluorescent intensity and collected
in phosphate buffer. Epifluorescent microscopy con-
firmed that the sorted bright cells were indeed bright
green, while the dim ones had no detectable fluorescence
(Fig. 2B). The dim cells were also smaller than the fluores-
cent cells, and in this regard resembled stationary state
cells.

Sorting was performed in a non-nutritive buffer to prevent
persisters from reverting back into growing cells. There-
fore, under the sorting conditions, regular cells stopped
growing. This limited the choice of antibiotics we could
use to probe for tolerance to fluoroquinolones, which
have the ability to kill normal non-growing cells [15].
Sorted cells were exposed to a high level of a bactericidal
antibiotic ofloxacin (an inhibitor of DNA gyrase) which

Degradable GFP expression from a ribosomal promoter in a growing culture of E. coliFigure 1
Degradable GFP expression from a ribosomal pro-
moter in a growing culture of E. coli. (A) Graphical rep-
resentation of the reporter. An unstable variant of GFP was 
placed downstream of a ribosomal promoter, rrnBP1. (B) Sta-
tionary phase cultures of E. coli ASV and AGA, each contain-
ing a different variant of unstable GFP, were diluted (1:1000) 
in fresh media and cultured with aeration at 37°C. At desig-
nated timepoints samples were removed and assayed for cell 
counts (CFU/ml) and fluorescence (RFU, arbitrary units).
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rapidly kills both growing and non-growing normal cells,
but has no effect on persisters [15,3]. The dim subpopula-
tion had a 20-fold higher survival rate as compared to the
sorted bright cells (Fig. 2C). This experiment demon-
strates that the sorted dim population was in fact enriched
for cells exhibiting a persistent phenotype. This result also
validates the hypothesis that these persisters are dormant
cells with low levels of protein synthesis. Importantly, the
dim cells were sorted out from a population of wild-type
E. coli that was not pre-treated with an antibiotic. We
therefore conclude that persisters are dormant cells that
are formed within a normally distributed population.

The ability to sort and purify a population of persisters
presented an opportunity to examine their gene expres-
sion profile. In order to collect sufficient numbers of per-
sisters, several cultures of ASV were inoculated
independently at 30 minute intervals, and persisters were
isolated on two MoFlo instruments running in parallel,
with cells harvested in each case at the same time point
during growth. Once sorted, cells were maintained on ice
for several hours until all were collected. In order to con-
centrate the highly dilute suspensions, cells were co-pre-
cipitated by centrifugation with polystyrene beads.

For genome-wide expression profiling, total RNA was
purified from sorted dim and bright cells in three inde-
pendent experiments. cDNA was prepared from total RNA

and hybridized to spotted microarrays representing
~4,400 open reading frames (ORF's) of E. coli [16].
Approximately 5% of the genes in persisters showed sta-
tistically significant differential expression, identified as
described in Materials and Methods, when compared to the
sorted non-persister cells (Fig. 3A). 45 genes showed at
least a two-fold increase in expression, (Fig. 3A), while 5
genes were significantly down-regulated in persisters (see
Additional file 1).

When compared to stationary phase cells, persisters also
showed significant differences in gene expression (Fig.
3B). Nearly ~420 genes are up-regulated in persisters,
while roughly the same number of genes was down-regu-
lated (Fig. 3B). Unexpectedly, persisters appear more sim-
ilar to exponential, than stationary phase cells.

The gene profile of persisters as compared to exponen-
tially dividing cells showed down-regulation of genes
involved in energy production and non-essential func-
tions such as flagellar synthesis, consistent with a dor-
mant state (Fig. 3C). Expression of flagellar genes was
particularly strongly suppressed, indicating that persist-
ence is the opposite of an actively mobile state.

The unique persister transcriptome pointed to genes that
were likely to contribute to dormancy. These were the ele-
ments of the "toxin-antitoxin" (TA) modules dinJ, yoeB,

Isolation of persister cells from an exponentially growing cultureFigure 2
Isolation of persister cells from an exponentially growing culture. E. coli ASV cells containing this reporter cassette 
were grown in LB medium to mid-exponential phase (~1 × 108 cells/ml) at 37°C with aeration and sorted using a high speed 
cell-sorter equipped with a standard GFP filter set. (A) Two populations were detected using forward light-scatter, one that 
fluoresced brightly (R3), and another that did not (R4). (B) The sorted populations were visualized by epifluorescent micros-
copy (bar, 5 μm). (C) Cells were sorted as described in (A-B). Once sorted both populations were treated with ofloxacin (5 
μg/ml) for three hours, diluted and spotted onto LB agar plates for colony counts.
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and yefM. Our previous studies, where persisters were iso-
lated by lysing a population of hipA7 mutants of E. coli
with ampicillin, also indicated overexpression of TA mod-
ules, but apart from dinJ, the prominent overexpressed
genes were relE and MazF, rather than yefM and yoeB [8].
It is possible that hipA7 persisters are similar, but not iden-
tical to the ones formed by wild-type cells, although the
general principle, and perhaps the overall mechanism of
their formation, appears to be the same. "Toxins" [17]
would be uniquely well suited for initiating cell dor-
mancy. RelE and MazF are mRNA endonucleases that
inhibit translation [18-20] and can cause reversible stasis
[9]. YoeB expressed in wild-type persisters is a RelE
homolog, and YefM is its antitoxin. DinJ is the cognate
antitoxin of another RelE homolog, YafQ. The gene most
highly expressed in persisters as compared to non-per-
sisters was ygiU. Based on sequence similarity, ygiU was
predicted to be a cyanide hydratase and also shown to be
induced upon biofilm formation [21,22]. More recently,
ygiU has been described as a global regulator that controls
biofilm formation by inducing motility via the two-com-
ponent regulatory system QseBC [23]. It is unclear how
this may relate to persistence but it is also interesting that
ygiU is part of a two-gene operon along with ygiT, which
is annotated as a transcriptional repressor. In this regard
ygiUT resembles a TA module, in particular higAB, a well
characterized TA module where the toxin is also located
upstream of the antitoxin [24,25]. Note that atitoxins typ-
ically act as transcriptional repressors of their operons. A
null mutant of ygiT cannot be obtained, further suggesting
that ygiUT may also function as a previously undescribed
TA pair (Niilo Kaldalu, unpublished).

It was previously shown that overexpression of RelE [8] or
HipA [26] can cause a dormant, multidrug tolerant state.
In view of the findings described here, it was of interest to
determine whether YgiU had the capability of inducing
persister formation as well. Attempts to clone ygiU into an
expression vector pTOX under the control of a tight arab-
inose promoter were unsuccessful, apparently due to the
small amount of leakage from the promoter. Therefore,
ygiU was then cloned into a strain carrying the antitoxin,
ygiT, under an IPTG-inducible promoter on the pATOX-2
expression vector. A strain of E. coli, MG1655, containing
both plasmids was cultured to mid-exponential phase and
YgiU production was induced by arabinose. Growth
ceased very quickly after the addition of arabinose, and
remained inhibited for the duration of the experiment
(Fig. 4A). To test for tolerance, samples were removed 120
min after arabinose induction, and exposed to high con-
centrations of bactericidal antibiotics [3]. The antibiotic
panel included ofloxacin, cefotaxime, mitomycin C, and
tobramycin. A dramatic increase in tolerance (10,000–
100,000 fold) to ofloxacin and cefotaxime, a β-lactam
antibiotic, was observed in cells overexpressing YgiU (Fig.

Gene expression profile of FACS isolated E. coli persistersFigure 3
Gene expression profile of FACS isolated E. coli per-
sisters. E. coli ASV Cells were sorted as described in legend, 
Fig. 2. cDNA was prepared from the total RNA and hybrid-
ized to spotted E. coli DNA microarrays [16]. Data shown 
are the averages of three independent biological replicates. 
Genes up-regulated in persisters are indicated as red and 
those genes which are repressed as green. The differential 
expressed genes are identified according to the procedures 
described in Materials and Methods. (A) Gene expression and 
spot intensities of sorted persisters (P) compared to sorted 
non-persisters (Q) from an exponential growth phase cell 
culture. (B) Gene expression and spot intensities of sorted 
persisters (P) compared to stationary phase (S) cells. (C) 
Heat map comparison of representative genes differentially 
expressed in persisters (P) or stationary (S) phase cells as 
compared to non-persisters (Q) and exponential growth 
phase cells (L), respectively. Genes are considered differen-
tially expressed if the local intensity-dependent Z-score is 
greater than 1.96 or less than -1.96 and the expression log2 
(ratio) is more than 1 or less than -1. The gene names are 
shown on the right, together with the functional groups.
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4B). This result correlates well with the tolerance of iso-
lated persisters to ofloxacin and a different β-lactam, amp-
icillin, described above. Complete tolerance to cefotaxime
was expected, since β-lactams are ineffective against non-
growing cells. Complete protection from ofloxacin is
unique – expression of other toxins, such as RelE or HipA
protects cells from fluoroquinolones, but not to the same
extent [8]. YgiU did not protect cells from tobramycin, an
aminoglycoside inhibitor of translation, or from mitomy-
cin, which forms DNA adducts. In contrast, RelE was pre-
viously observed to protect cells from aminoglycosides,
and HipA caused tolerance to all antibiotics tested [8]. It
appears that the action of YgiU is strong and selective,
pointing to a possible interaction with DNA gyrase or
topoisomerase IV, the targets of fluoroquinolones. Indeed
known toxins CcdB and ParE act by inhibiting DNA
gyrases [11]. Another interesting example of a protein spe-
cifically protecting cells from fluoroquinolones is QnrA
[27,28], and it was recently reported that its M. tuberculosis

homolog, MfpA acts by directly binding the topoisomer-
ase [29]. The sequestered enzyme can no longer cleave the
DNA in the presence of fluoroquinolones.

A knockout of ygiU, or yoeB, or both, had no effect on per-
sister formation (not shown). This is similar to our previ-
ous findings of the lack of a phenotype in knockouts of
relE or mazF genes, the overexpression of which induces
tolerance. HipA so far is the only toxin whose elimination
decreases the occurrence of persisters, but only under cer-
tain conditions (rich medium, stationary phase) [8]. This
suggests that persister genes are redundant, and multiple
knockouts would be required in most cases to observe a
phenotype. Indeed, in E. coli the number of TA modules
that could contribute to dormancy is >10 [30]. The
number of TA modules in M. tuberculosis that forms a dor-
mant, persistent carrier state is >60 [31,32].

Antitoxins have been found to act as repressors of TA
modules [17], and are susceptible to proteolysis. A
decrease in antitoxin protein level causes an induction in
transcription, which we observed for some of the antitox-
ins in the gene profile of persisters. ygiT was not differen-
tially expressed in persisters. It is possible that much of the
regulation happens at the protein level, transcription pro-
filing is limited in its ability to reflect all TA protein
changes, and as a result is likely to miss some persister
genes. hipBA is a case in point – we did not observe tran-
scriptional overexpression of this element, while a strong
phenotype of the ΔhipBA strain suggests its importance in
persister formation. Future studies are being designed to
track protein levels in persisters, such as toxin/antitoxin
ratios, and we are currently working on obtaining a per-
sister proteome.

The expression profile of persisters is very different from
that of non-growing stationary phase cells (Fig. 3B). We
do not see the characteristic stationary phase genes such as
bolA, katE or osmB expressed in isolated persisters. Con-
versely, TA modules are not highly expressed in stationary
phase (Fig. 3C). This shows that persisters differ from
both exponentially growing and stationary cells, and con-
stitute a distinct physiological state.

We have a relatively good understanding of drug resist-
ance mechanisms, but the nature of persister multidrug
tolerance (MDT) has remained largely unknown. All
resistance mechanisms function by preventing an anti-
biotic from binding to its target (Fig. 5). This allows cells
to grow in the presence of an elevated concentration of
antibiotic and increases its minimal inhibitory concentra-
tion (MIC). We suggested that the mechanism of toler-
ance was based on the non-lethal inhibition of antibiotic
targets by specific MDT proteins [8]. For example,
aminoglycoside antibiotics kill the cell by interrupting

Effects of ygiU overexpression on persister formationFigure 4
Effects of ygiU overexpression on persister forma-
tion. E. coli MG1655 cells were grown in LB medium to mid-
exponential phase (~5 × 107 cells/ml) at 37°C with aeration. 
(A) ygiU expression was induced (squares) from pTOX at T 
= 0 by the addition of 1 mM arabinose, and MG1655 with a 
blank vector (pBAD33) served as the control (diamonds). (B) 
Cells were cultured, and ygiU expression was induced as 
described in (A). After 2 h of ygiU induction, samples were 
removed and treated with either cefotaxime (100 μg/ml), 
mitomycin C (10 μg/ml), ofloxacin (5 μg/ml), or tobramycin 
(20 μg/ml) for 3 h at 37°C with aeration. The control 
(MG1655/pBAD) (red bars) was challenged at a cell density 
similar to that of the ygiU induced cells (blue bars).
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translation and producing toxic misfolded peptides; inhi-
bition of translation by an MDT protein would not inter-
fere with aminoglycoside binding, but would prevent
killing. Other antibiotics kill the cell by similarly corrupt-
ing (rather than merely inhibiting) the target function and
it is possible that inhibition of these targets will also pre-
vent killing without increasing the MIC (Fig. 5). If this is
the case, blocking of essential targets of antibiotics will
produce a partially dormant, multidrug tolerant cell.

The multitude of TA modules that can induce multidrug
tolerance is reminiscent of the many MDR pumps respon-
sible for multidrug resistance. P. aeruginosa, for example,
contains genes coding for 15 MDR pumps belonging to
the resistance-nodulation-cell division (RND) family
alone, of which a single one, MexAb-OprM, is expressed at
a high level under laboratory conditions [33]. Knockouts
of most MDR genes produce no phenotype, while overex-
pression produces a functional MDR pump [34]. It
appears that microbial populations have evolved two
complementary and highly redundant strategies to protect
themselves from antimicrobials – multidrug efflux; and
when this fails, multidrug tolerance of persister cells.

Conclusion
Here, we present a method for isolating naive persisters
from wild-type E. coli. The method relies on the hypo-
thesis that persisters are dormant cells with a low level of
translation and could be applied to all types of bacteria.
Genes coding for toxin-antitoxin module proteins, includ-
ing a novel and previously unidentified toxin, were
expressed in persisters and are likely contributors to this
condition. Based on their unique gene expression profile

we conclude that persisters represent a third physiological
state of bacterial cells, distinct from both exponential and
stationary forms.

Methods
Bacterial strains and growth conditions

Luria-Bertani (LB) broth and LB agar media were used for
culturing. Unless indicated otherwise, cells were grown by
dilution of overnight cultures 1:1,000 in 12 to 25 ml of LB
and incubation in 125-ml baffled culture flasks (Belco)
for 2.5 h with aeration (250 rpm) at 37°C. Overnight cul-
tures were made by dilution of thawed cells from an 8%
dimethyl sulfoxide stock (-80°C) and incubation in LB
medium with aeration for 16 to 20 h. For persister sorting
experiments, E. coli MG1655-ASV(ASV) was diluted 1:100
in two culture tubes (17 by 100 mm), each containing 1.5
ml of LB broth for a total of 3 ml for each replicate, and
incubated at 37°C with aeration for 1 h prior to sorting.
For stationary phase experiments, strains were cultured for
16 to 18 h, thereby reaching stationary state prior to test-
ing. For toxin induction and protection studies, cells were
cultured in LB containing 100 μg of chloramphenicol/ml
and 100 μg of ampicillin/ml, and inducers were added at
appropriate times.

Strain and plasmid construction

Gene deletions were transduced into MG1655 using bac-
teriophage P1 from an ordered library of deletion mutants
that were created replacing corresponding ORF's with a
gene coding for resistance to kanamycin [35]. To create
double-deletion mutants the Kmr cassette was removed by
transformation of cells with pCP20 and selection of amp-
icillin-resistant colonies at 30°C. Colonies were then puri-
fied by reinoculation and growth at 43°C. At the end of
the procedure, the selected colonies were tested on ampi-
cillin and kanamycin plates to verify the loss of all selec-
tive markers. Plasmids pTOX and pATOX-2 were
constructed as follows. Briefly, pTOX was constructed by
amplifying ygiU using primers ygiUP1,
GGGGTACCTAAGGAGATATATGGAATAAT-
GGAAAAACGCACACCACA and ygiUP2, ACATGCAT-
GCTTACTTCTCCTTAAACGAGA and cloning it into the
Kpn I and Sph I site of pBAD33[36]. pATOX-2 was con-
structed by amplifying ygiT using primers ygiTP1,
CGGGGTACCTAAGGAGATATATGGAATAATGAAAT-
GTCCGGTTTGCCA and ygiTP2, CCGGAATTCTTAACG-
GATTTCATTCAATA and cloning it into Kpn I and EcoR I
site of pBRlacItac [37].

ASV Growth/fluorescence assay

E. coli ASV and AGA were diluted 1:1000 in culture tubes
(17 by 100 mm), each containing 1.5 ml of LB broth, and
incubated at 37°C for ~8 hrs. At designated time points
samples were withdrawn, diluted in LB medium and spot-
ted on an LB agar plate for colony counts. Additionally,

Multidrug resistance vs. Multidrug toleranceFigure 5
Multidrug resistance vs. Multidrug tolerance. Antibiot-
ics normally kill cells by corrupting a particular target or 
function, ultimately leading to cell death. Resistance mecha-
nisms function by preventing an antibiotic from binding to its 
target. This allows cells to grow in the presence of an ele-
vated concentration of antibiotic, thereby increasing the 
MIC. It is proposed that the mechanism of tolerance is based 
on the non-lethal inhibition of antibiotic targets by specific 
MDT proteins. If this is the case, blocking of essential targets 
of antibiotics will produce a partially dormant, multidrug tol-
erant cell without increasing the MIC.
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200 μL of culture was transferred to a black 96-well flat-
bottom microtiter plate (NUNC) and fluorescence was
measured with a Spectramax Gemini XS spectrofluorome-
ter (Molecular Devices) at a 475-nm excitation wave-
length and a 515-nm emission wavelength.

Persister sorting

E. coli ASV was diluted 1:100 in culture tubes (17 by 100
mm), each containing 1.5 ml of LB broth, and incubated
at 37°C for 1 h prior to sorting. After 1 h cultures were
sorted using a MoFlo (DakoCytomation) cell sorter
equipped with a 488 nm laser running at 100 mW. A log
scale was used for all parameters measured including side-
scatter (SSC), forward-scatter (FSC) and green fluores-
cence (FL1), which was detected using standard GFP filter
sets. Cells were sorted directly into 50 ml centrifuge tubes
that contained 3 ml phosphate buffered saline (PBS) with
1 mg/ml bovine serum albumin (BSA). Static charge
build-up was dissipated by attaching grounding wires to
the instrument and keeping them in contact with the
buffer in collection tubes. Once sorted, 100 μl aliquots
were removed from the tubes for antibiotic susceptibility
measurements. The remaining cell suspensions were kept
on ice for several hours until they could be pooled and
concentrated. Concentration of cell suspensions was
accomplished by mixing and co-sedimenting cells with
polystyrene beads ranging from 3–5 μM in diameter
(Spherotech, Inc.)

Antibiotic susceptibility measurements

100 μl aliquots of sorted cells were dispensed in culture
tubes (17 by 100 mm) and ofloxacin was added at a final
concentration of 5 μg/ml. The tubes were left at room tem-
perature for 3 hours at which point samples were with-
drawn, diluted in PBS and spotted on an LB agar plate for
colony counts.

Epifluorescent microscopy

Cells were viewed with an epifluorescence microscope
(Zeiss Axioskop 2 plus) with the appropriate filter sets.
Images were captured with an Axiocam HRC and associ-
ated software (Carl Zeiss, Inc.)

DNA microarray analysis

Total RNA from stationary (S) and exponential phase (L)
cells as well as FACS isolated persisters (P) and non-per-
sisters (Q) was purified using the Qiagen RNeasy kits
(Chatsworth, CA) according to the manufacturer's proto-
cols. To identify persister-specific gene expression profiles,
relative mRNA levels were determined by parallel two-
color hybridization at single-gene resolution to whole-
genome E. coli K-12 MG1655 spotted DNA microarrays,
designed, printed and probed as described [38,16,39],
and containing discrete sequence elements corresponding
to 98.8% of all annotated open reading frames (ORF's).

Complementary DNA probes were synthesized using 0.5
μg of total RNA for sorted cells and 15 μg of nonsorted
exponential and stationary phase cells with random hex-
amers and Cy-5-dUTP or Cy-3 dUTPdyes (Amersham),
following hybridization and washing as described previ-
ously [16]. The microarray slides were air dried by brief
centrifugation and scanned with an Axon Genepix 4000B
laser scanner at 10 μm per pixel resolution. The resulting
16-bit TIFF images were analyzed by using the software
Genepix Pro 3.0 (Axon). The fluorescence intensity data
were first normalized globally using an iterative mean-
log2(ratio)-centering approach. Fluorescence intensity
dependent effects in log2(ratio) values were removed by
using locally weighted linear regression (lowess) proce-
dure [40]. The normalized Cy-5/Cy-3 ratio for the median
was taken to reflect the relative gene expression level
changes. The gene functions were obtained from GenPro-
tEc database [41].

Microarray hybridization from 0.5 μg of total RNA yielded
the similar image qualities as starting from conventional
15 μg of total RNA, as indicated by Boccazzi et al. [42].
Spots signal-to-noise ratios were routinely greater than
five from both channels. The experimental error of the
RNA abundances was assessed from at least three inde-
pendent replicates. Each replicate RNA sample corre-
sponds to cells isolated from at least two FACS isolation
experiments. The differentially expressed genes were iden-
tified using an intensity-dependent Z-score threshold
method described previously[40,43]. In brief, in an ratio-
intensity (R-I) plot, using a sliding window of fixed width
in log10(Cy5*Cy3), the local mean and standard deviation
in terms of log2(Cy5/Cy3) were calculated within the win-
dow surrounding each data point. The Z-score simply
measures the number of standard deviation of a particular
array element i is from the mean, defined as

The differentially expressed genes at the 95% confidence

level would be those with a value of | | > 1.96. The P-

value for the paired student's t-test according to normal-

ized fluorescence intensities for each gene was also calcu-

lated. The identified differentially expressed routinely

have a P-value less than 0.1.

Toxin induction

Toxin synthesis from the recombinant expression vector
was induced by adding L-arabinose at a final concentra-
tion of 1 mM to each flask. At the designated time points,
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a sample was removed, diluted, and spotted on LB agar
plates.

Toxin protection assay

Toxin synthesis was induced by adding L-arabinose at a
final concentration of 1 mM to each flask. At the desig-
nated time points, a 1-ml sample was removed from each
flask and placed in culture tubes (17 by 100 mm) with the
appropriate drug concentration, and the tubes were incu-
bated (250 rpm) at 37°C for 3 h. After the antibiotic chal-
lenge, cells were washed once (10,000 × g for 1 min) with
fresh medium to minimize antibiotic carryover effects,
diluted, and spotted onto an LB agar plate for cell count-
ing. A control sample (prior to the addition of antibiotic)
was spotted as well.
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