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Abstract—Person detection is an important problem in com-
puter vision with many real-world applications. The detection
of a person is still a challenging task due to variations in pose,
occlusions and lighting conditions. The purpose of this study is to
detect human heads in natural scenes acquired from a publicly
available dataset of Hollywood movies. In this work, we have
used state-of-the-art object detectors based on deep convolutional
neural networks. These object detectors include region-based con-
volutional neural networks using region proposals for detections.
Also, object detectors that detect objects in the single-shot by
looking at the image only once for detections. We have used
transfer learning for fine-tuning the network already trained on
a massive amount of data. During the fine-tuning process, the
models having high mean Average Precision (mAP) are used for
evaluation of the test dataset. Experimental results show that
Faster R-CNN [18] and SSD MultiBox [13] with VGG16 [21]
perform better than YOLO [17] and also demonstrate significant
improvements against several baseline approaches.

I. INTRODUCTION

Object detection is a major part of many practical appli-

cations of computer vision such as face detection, pedestrian

detection, vehicle detection, and video surveillance. In clas-

sification, a classifier is trained to categorize and label the

content of the image globally. While in detection, detector not

only categorizes and labels the content but also localize the

bounding box of the object. The object detector faces similar

challenges to that of classification. These challenges include

viewpoint variation, scale changes, illumination changes, oc-

clusion, background clutter, and deformation. Also, a good ob-

ject detector is required to find precise bounding boxes for the

detected objects. Person detection is a popular research topic

due to its applications in safety and security. The technology

has reached its maturity level in face detection and recognition

task. Person detection still poses many challenges due to the

articulated nature of the human body. However, in this paper,

the focus is on head detection in the images taken from video.

The choice of head detection for detecting the number of

people is because it is visible most of the time even when

other body parts are fully occluded. The feature extracted for

head detection are not discriminative enough to be used alone

for person detection. Previously, contextual information in

conjunction with the features extracted for the head is used for

detection [24]. The contextual information provides additional

cues and useful information for detection and recognition. The

use of contextual information is in contrast to the traditional

Fig. 1: Sample images from HollywoodHeads(HH) dataset

overlaid with ground-truth annotations

way of extracting features for an object inside the bounding

box.

Traditionally, machine learning approaches applied to com-

puter vision tasks used hand-crafted features. The features are

less robust and discriminative as compared to the learned fea-

tures. Recently, learned feature using deep learning techniques

had been successfully applied for major computer vision tasks

such as segmentation [14], classification [10], detection and

recognition [18]. The deep learning techniques have been

winning the classification and detection competitions such as

ImageNet [4] for so many consecutive years. The structure of

typical deep Convolutional Neural Network (CNN) consists

of several layers followed by classification layer. However,

object detector based on deep CNN differs in such a way

that it not only classify but also localize the bounding box

containing the object. Each layer in the deep CNN extract

features at different abstraction level. The lower layers extract

features representing more fine details in the image like edges

and texture. As we go across the neural network towards the

final layers, more complex and abstract features are extracted.

By truncating the last layer, most of the previous layers can

represent input images in abstract space of network parameters

or weights. Deep CNNs are data-hungry architectures, to work

properly for particular task requires a massive amount of data.

So in most of the cases, more real data is useful if available.

However, data augmentation is used to fulfill the requirement

for deep CNN. If the last classification layer is removed,



the models obtained can be used as pre-trained models for

other tasks. These models can be generalized to many other

similar tasks. The pre-trained weights/parameters can be used

for fine-tuning the network for a new task. Thus the resultant

network converges faster and performs well instead of training

from scratch. Most of the pre-trained models are available and

trained on a hugely popular dataset such as ImageNet [4]. In

this study, we have extensively carried out experimentation

with state-of-the-art object detectors based on deep learning

to detect head in the videos as shown in the Fig 1.

The remainder of the paper is organized as follows. In

section II, we discuss the current state-of-the-art object detec-

tors. The section III describes the proposed approach which

discusses the use of the pre-trained networks for fine-tuning

the networks for person head detection task. The section IV

describes the experimental results and discussion followed by

conclusion in section V.

II. LITERATURE REVIEW

The efficient object detector needs to detect an object

of different scale and aspect ratio anywhere in the image.

Traditionally, the concept of the image pyramid is used to

represent the image at a different scale and then sliding

window approach is applied to search object of various scale

anywhere in the image. The features are extracted from sliding

window position on the image and passed on to the classifier

for detection. Much of the previous research extract hand-

crafted feature such as LBP [1], HOG [3], and SIFT [15] for

describing the objects. Due to sliding window approach, clas-

sifier detects multiple bounding boxes of an object. Therefore,

a non-maximum suppression is applied to remove redundant

and overlapping bounding boxes [3]. However, all of these

approaches are computationally expensive, and furthermore,

the training process is complex, not end-to-end and often

done in stages. The complex training process makes these

approaches not suitable for real-time applications.

The current resurgence of neural networks especially

CNN has shown remarkable results in image classification

challenges surpassing human-level performance on certain

tasks [20]. The success of the CNN can be attributed to the

availability of huge amount of data as well as the processing

power in the form of GPUs to process the data. The features

extracted from CNN are powerful, robust and expressive as

compared to its traditional counterpart like DPM [7], HOG [3],

SIFT [15]. A series of convolution layers followed by non-

linear activation units constitutes the convolutional neural

network. In CNN, regions in one layer called receptive field

are connected to another layer. A series of filters are applied

to each layer to derive the output. The weights or parameters

of the filter are learned during the training process. In contrast

to the feedforward neural network in which every layer is

fully connected to other layers. The features extracted from

CNN architecture are locally invariant and compositional, in

which higher more complex features like objects and shapes

are constructed from low-level features such as edges. Most of

the popular architectures are based on CNN e.g. AlexNet [12],

ZF [25], GoogLeNet [22], VGG16 [21] and ResNet [10].

In classification, sliding windows applied on image require

much computation for scanning each possible location in

the image. To avoid scanning all possible location, Selective

Search (SS) [23] computes region proposals of different sizes

and start merging from pixel level into objects. The merging

of pixels is based on similarity in low-level features such as

texture and color. The SS is a class agnostic method which

detects multiple foreground objects without knowing the class

of the object. The computation of SS is fast and act as a pre-

processing step for the more highly specialized classifier to

find out the exact class within the bounding box. The initial

implementation of the selective search was not optimized for

GPU based implementation and thus being a major bottleneck

in the object detection framework. Edgeboxes [26] relatively

takes less time to compute region proposal as compared to

Selective Search. A specialized classifier called Region-based

Convolutional Neural Network (R-CNN) [9] is used to classify

an object into their specific classes. The R-CNN expects fixed

size images, i.e., 227X227 as R-CNN uses Alex Net [12] as its

backbone CNN architecture. Therefore, the region proposals

(∼2k) are warped before passing it on to the R-CNN which

uses SVM to classify the object and linear regression to

find out more exact bounding box boundaries for the object.

Despite the fact that R-CNN works very well, however, the

computation is very slow. For each region proposal, the image

has to be passed on through the network. Moreover, the region

proposals are computed in an offline manner. Thus end-to-

end training of R-CNN is very complex. In the next iteration

of the R-CNN called Fast R-CNN [8], there is a change in

network architecture; region proposals are extracted from con-

volutional feature map using Region of Interest Pooling (RoI)

rather than directly from images. The fact that most of the

region proposals are overlapped. Thus convolutional feature

map is computed once and shared across all computation of

the region proposals. This change in architecture drastically

reduces the overall time for detection. Furthermore, the Fast R-

CNN architecture unified the network for extracting the region

proposals followed by its classification and regression to its

tighter boundaries. The SVM classifier is replaced by softmax

layer in Fast R-CNN [8]. In Fast R-CNN [8], Spatial Pyramid

Pooling (SPP) make sure Fully Connected layer (FC) get fixed-

size feature vector. The major shortcoming of Fast R-CNN is

the time taken for region proposals at the test time. Also, the

training pipeline of the architecture is complex. In yet another

iteration of Faster R-CNN [18], a fully convolutional neural

network is used as a Region Proposal Network (RPN). The

cost of computation is very low compared to SS for region

proposals. The use of RPN as region proposal made Faster

R-CNN a streamlined end-to-end trainable network for object

detection.

All the previously discussed methods consider detection

as a classification problem. The detection is carried out in

stages. The first stage computed proposals and classified in

the second stage into object categories. However, there are



some methods, e.g., YOLO [17], SSD MultiBox [13], which

consider detection as a regression problem and glance at an

image once for detections. Therefore called single shot detec-

tors. The YOLO [17] divides the image into a grid of 13x13
resolution. Each cell in the grid predicts the bounding box of

the object along with its confidence score. The bounding boxes

with low confidence score are removed by setting a threshold.

The YOLO [17] performance is fast but not as accurate as its

other counterparts. The reason behind its low accuracy is that

it only predict one type of class in a grid. The Single Shot

Detector MultiBox [13] compute a convolutional feature map

by looking only once at the image and predicts bounding boxes

at multiple of these feature maps for the objects of various

scales.

Previous studies used different models to capture various

aspects of head detection in contextual reasoning [24]. The

Global model predicts the scale and coarsely localize the

object using full image, while Local CNN captures the ob-

ject appearance. Moreover, the Pairwise model captures the

relationship between the objects. All the above models are

jointly optimized for contextual head detection. However, such

models do not provide a real-time unified architecture for head

detection. Similarly, the performance of methods used for face

detection [16] on head detection task is very low. The choice of

particular object detection depends upon the trade-off between

speed and accuracy. The single shot detectors are fast and

suitable for the embedded real-time applications. However,

region proposals technique such as Faster R-CNN [18] is more

accurate and intended for applications where accuracy is more

important than speed. Furthermore, the size of an object is

another consideration for the selection of detector to be used

for detection. Both types of detector perform poorly on the

very small scale objects.

III. PROPOSED METHODOLOGY

Transfer learning is an approach widely used in deep

learning applications in which pre-trained CNN is used as a

feature extractor for a given dataset. The features are typically

extracted from the last layer in the form of activations and

cached to the disk. Then a standard machine learning classifier

such as SVM is used for training and testing on the features.

There is another type of transfer learning, more powerful

than just feature extraction approach is called fine-tuning.

In fine-tuning, the last fully-connected layers are replaced

with the new set of fully-connected layers suitable for a

given task. Typically the added fully-connected start learning

from the previous convolutional layers while keeping the

convolutional layers frozen so that their weights cannot be

modified. However, in this paper, all the layers are included in

the fine-tuning process. The process involves the state-of-the-

art neural network architecture already trained on a large col-

lection of images such as ImageNet [12] and PascalVOC [6].

These network architectures include VGG16 [21], ZF [25],

VGG CNN 1024 [2] which contains rich and discriminative

filters. A very small learning rate is used during retraining

of the architecture making sure that already learned CONV

filters do not deviate dramatically. For Faster R-CNN [18] and

SSD MultiBox [13] detector, experiments have been carried

out in Caffe [11] framework. The first approach proposes

regions in the bounding boxes and then applying the high-

quality classifier to classify into object class categories. These

approaches are called Region-based convolutional Neural net-

work. In Faster R-CNN, the convolutional layers are shared

by both the detection network and by the small Region

Proposal Network (RPN) as shown in Fig. 2. The RPN is a

small network computes region proposal from the last shared

convolutional layers. The RPN consist of few CNN layer

which does not add to the overall computation. The RPN can

be trained in end-to-end fashion for object detection proposals.

The concept of anchor boxes is introduced to cater for the

object of different scale and aspect ratio. In anchor boxes, a

single image and single filter size are used whereas for each

location of feature map several anchor boxes of different scale

and aspect ratio are used. In RPN, the sliding window on the

last shared convolutional feature map encodes the output into

256− d feature vector and 512− d feature vector in the case

of ZF [25] and VGG16 [21] respectively followed by non-

linear activation unit of ReLu [18]. The extracted features are

fed into regression for finding bounding box coordinates and

classification layer for classifying the bounding box region

into one of the class.

The Single Shot detector detects the object by a single

pass of the image through deep Convolutional Neural Network

without explicitly proposing the more probable regions. SSD

MultiBox [13] detector is one of the techniques which uses

the same powerful CNN network architecture VGG16 [21]

generally used for classification. However, the last classifi-

cation layers are truncated, and some auxiliary layers are

added for object detection as shown in Fig. 3. The network

architecture without additional layers is called base network.

For all the experiments, VGG16 [21] has been used as a

base network. The additional layers are organized in such

a way that the CNN feature map size decrease down in

size until the extraction of final feature vector. These layers

produce a fixed-size collection of bounding boxes by applying

a convolutional filter on these feature maps. As a result, there

are some redundant boxes which are suppressed by Non-

Maxima Suppression (NMS) for boxes having Intersection

over Union (IoU) less than 0.7 with the ground-truth bounding

boxes. The usage of all feature map of additional layers serves

an opportunity to predict the detections at various scales.

The usage of several feature maps is in contrast to another

state-of-the-art object detector, YOLO [17], where single fea-

ture map is used as shown in Fig. 4. The feature map is divided

into a grid of cells. The set of default bounding boxes are

associated with each feature map cell position. The position of

default box is fixed relative to the cell. These default boxes act

like anchor boxes in Faster R-CNN [18] to capture the object

of different aspect ratio. At each cell location, position offset

is predicted along with the class score of an object present

in the box. The offset indicates the coordinates how much far

away is the predicted bounding box from one of the default
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IV. EXPERIMENTAL RESULTS AND DISCUSSION

We trained our models with Nvidia Quadro P6000 GPU

with the common implementation settings of weight decay,

momentum, learning rate and batch size of 0.0005, 0.9, 0.0001
and 64 respectively for all the detection frameworks.

A. Datasets

We have carried out several experiments to evaluate the per-

formance of various detectors on publicly available datasets.

In this section, we discuss the two datasets that have been used

for experimentation namely HollywoodHeads (HH) ) [24] and

Casablanca datasets [19].

1) HollywoodHeads (HH) [24]: The HH dataset contains

369, 846 human heads annotated in 224, 740 frames taken

from 21 Hollywood movies [24]. In the annotations, keyframes

are annotated with the bounding box for the head. The

remaining frames are linearly interpolated to head position and

verified manually. However, some of the interpolated frames

are not correctly annotated. Upon visualization, some of the

XML annotation files corresponding to the frames are found

to be empty. Therefore, the empty frames were not included in

the fine-tuning process. The dataset is divided into the splits

of training, test and validation sets of 216719, 1302, and 6719
frames. The training, test and validation sets are taken from

15, 3, and 3 movies respectively.

2) Casablanca [19]: The Casablanca dataset is taken from

the movie Casablanca . The dataset contains 1466 frames in

which head is annotated with bounding boxes [19]. However,

the annotations only consider the frontal face part as a human

head. The annotations were corrected for scale and aspect ratio

like HH. This dataset is mainly used for evaluating the models

fined-tuned on HH dataset.

B. Experimental Results

In Faster R-CNN we have followed the same implemen-

tation setting as that of the original paper [18]. However,

few changes were made while fine-tuning the network from

ImageNet trained models. The images are rescaled to 600
pixels on the shorter-side of dimension. The anchor boxes

of 3 different scale and aspect ratio are used to capture

various scales in the process of region proposals. During

training, the cross-boundary anchors are causing the network

to converge therefore ignored, while in testing phase the

cross-boundary anchors are clipped to the image boundary.

A Non-Maxima Suppression (NMS) approach is applied to

reduce overlapping proposals based on their IoU intersection

with ground-truth bounding boxes. To evaluate the detection

performance, we have adapted the average precision (AP) a

standard metric calculated from the area under the Precision-

Recall (PR) curve [5]. The mean Average Precision (mAP)

is the mean over classes for the set of detections. In true

positive detections, there is more than 70% overlap calculated

as Intersection over Union (IoU) between the detected class

and their corresponding ground-truth bounding box as shown

in Eq. (1) [5]. The remaining detections are considered as

false negative. Similarly, the detections having no overlap

with any corresponding ground-truth box are false negative

or background.

IoU = area (Bpred ∩Bgt) /area (Bpred ∪Bgt) (1)



Where Bpred and Bgt denotes predicted bounding box and

ground truth bounding box respectively. In the first set of

experiments using Faster R-CNN [18], we have used three

architectures ZF [25], VGG16 [21], and VGG CNN 1024 [2].

In the process of fine-tuning, the networks were trained for

100k iterations. The snapshot of fine-tuned models is saved

at an interval of 10k iteration. The performance analysis

of each of these saved models was tested on test dataset

as shown in the Fig. 5, 6, and 7 for Faster R-CNN [18],

SSD MultiBox [13], and YOLO [17] respectively. Faster

R-CNN [18] with VGG16 [21] and VGG CNN 1024 [2]

converge at 70k iteration while ZF [25] converge at 100k
as reported in Table I. These models having high mAP’s

are considered best models later on used for evaluation on

Casablanca dataset. Furthermore, in experiments with Single

Shot Detectors, YOLO [17] has been fine-tuned for HH dataset

according to the original data splits [24]. The performance

of YOLO is worst amongst all the detectors with mAP of

0.63 which is lower by 13.34% than the current baseline of

mAP 0.72 as reported in the Table I. The SSD MultiBox [13]

has also been used for experiments with VGG16 [21] as its

base network architecture. The performance of SSD MultiBox

is comparable with the performance of Faster R-CNN [18]

as reported in Table I. SSD MultiBox with 300X300 input

achieves 0.788 mAP outperforming the current best approach

by 8.4% as reported in Table III. Similarly, Faster R-CNN

achieves 0.791 mAP on HH dataset outperforming the baseline

approach by 8.8% as shown in Table III.The existing baseline

approaches include DPM Face [16] and deep learning based

approach such as R-CNN [9] with a different combination

of local, global, and pairwise models [24].The best-fine-tuned

models for HH dataset are used to evaluate on Casablanca

dataset without fine-tuning on Casablanca. The results are

reported in Table II shows the superior performance and

generalization of Faster R-CNN for the unknown dataset. In

Fig. 8 some detection samples are taken from a test set of HH

and Casablanca datasets for each of the network architectures

used in the experiments.

Fig. 5: Performance of network architectures at every 10k
iteration

Fig. 6: Performance of network architecture at every 10k
iteration

Fig. 7: Performance of network architecture at every 10k
iteration

TABLE I: Testing error on HollywoodHeads Dataset

Detection frameworks CNN architectures Iteration mAP

Faster R-CNN [18] ZF [25] 100k 0.765

VGG16 [21] 70k 0.791

VGG CNN M 1024 [2] 70k 0.791

YOLO v2 [17] 13-layered architecture 46k 0.631

SSD MultiBox [13] VGG16 [21] 40k 0.788

TABLE II: Selected best models fine-tuned on Hollywood-

Heads(HH) dataset performance on Casablanca dataset

Detection frameworks CNN architectures mAP

Faster R-CNN [18] ZF [25] 0.486

VGG16 [21] 0.556

VGG CNN M 1024 [2] 0.513

YOLO v2 [17] 13-layered architecture 0.518

SSD MultiBox [13] VGG16 [21] 0.52

V. CONCLUSION AND FUTURE SCOPE

In this work, state-of-the-art object detectors have been

used for people detection. The detectors were trained and

evaluated on head detection task. It is demonstrated through



TABLE III: Comparative analysis with other approaches

Detection frameworks CNN architectures mAP

DPM Face [16] 0.374

R-CNN [9] 0.671

Local model [24] 0.718

Local+Global+Pairwise model [24] 0.727

Faster R-CNN [18] ZF [25] 0.765

VGG16 [21] 0.791

VGG CNN M 1024 [2] 0.791

YOLO v2 [17] 13-layered architecture 0.631

SSD MultiBox [13] VGG16 [21] 0.788

experiments that Faster R-CNN [18] with VGG16 [21] works

very well for head detection as compared to the single shot

detectors. However, all of the object detectors perform poorly

for the small-scale and high-dense head detections. Moreover,

it is observed that region-based CNN are more suitable for

situations where high accuracy is required. While single shot

detectors are fast although less accurate, thus more suitable for

real-time and mobile applications. This paper investigated the

state-of-the-art object detectors thoroughly for head detection

task. However, head detection is a difficult task and lacks

discriminative features. Therefore there is still room for per-

formance improvement. The future work involves detections

combined with the tracker for enhanced performance.
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pascal visual object classes challenge 2007 (voc2007) results. 2007. 3

[7] P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively
trained, multiscale, deformable part model. In Computer Vision and

Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–
8. IEEE, 2008. 2

[8] R. Girshick. Fast r-cnn. In Proceedings of the IEEE International

Conference on Computer Vision, pages 1440–1448, 2015. 2
[9] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature

hierarchies for accurate object detection and semantic segmentation. In
Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 580–587, 2014. 2, 5, 6
[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image

recognition. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 770–778, 2016. 1, 2

[11] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for
fast feature embedding. In Proceedings of the 22nd ACM international

conference on Multimedia, pages 675–678. ACM, 2014. 3
[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in neural

information processing systems, pages 1097–1105, 2012. 2, 3
[13] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.

Berg. Ssd: Single shot multibox detector. In European Conference on

Computer Vision, pages 21–37. Springer, 2016. 1, 3, 5, 6, 7
[14] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks

for semantic segmentation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 3431–3440, 2015. 1
[15] D. G. Lowe. Object recognition from local scale-invariant features. In

Computer vision, 1999. The proceedings of the seventh IEEE interna-

tional conference on, volume 2, pages 1150–1157. Ieee, 1999. 2
[16] M. Mathias, R. Benenson, M. Pedersoli, and L. Van Gool. Face detection

without bells and whistles. In European Conference on Computer Vision,
pages 720–735. Springer, 2014. 3, 5, 6

[17] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger. arXiv

preprint arXiv:1612.08242, 2016. 1, 3, 5, 6, 7
[18] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time

object detection with region proposal networks. In Advances in neural

information processing systems, pages 91–99, 2015. 1, 2, 3, 4, 5, 6, 7
[19] X. Ren. Finding people in archive films through tracking. In Computer

Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference

on, pages 1–8. IEEE, 2008. 4, 7
[20] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,

Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large
scale visual recognition challenge. International Journal of Computer

Vision, 115(3):211–252, 2015. 2
[21] K. Simonyan and A. Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
1, 2, 3, 5, 6

[22] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 1–9, 2015. 2
[23] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders. Se-

lective search for object recognition. International journal of computer

vision, 104(2):154–171, 2013. 2
[24] T.-H. Vu, A. Osokin, and I. Laptev. Context-aware cnns for person

head detection. In Proceedings of the IEEE International Conference

on Computer Vision, pages 2893–2901, 2015. 1, 3, 4, 5, 6, 7
[25] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional

networks. In European conference on computer vision, pages 818–833.
Springer, 2014. 2, 3, 5, 6

[26] C. L. Zitnick and P. Dollár. Edge boxes: Locating object proposals from
edges. In European Conference on Computer Vision, pages 391–405.
Springer, 2014. 2



Fig. 8: Qualitative Results: The first column shows the sample frames from test sequences overlaid with the ground-truth

annotations. The second, third and fourth column shows the detection results using models fine-tuned on SSD MultiBox [13],

YOLO [17] and Faster R-CNN [18] respectively. The rows from 1− 4 and 5− 7 show the results from HollywoodHeads [24]

and Casablanca [19] respectively.


