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ABSTRACT 
This paper presents a multi-expert person identification system 
based on the integration of three separate systems employing 
audio features, static face images and lip motion features 
respectively.  Audio person identification was carried out using a 
text dependent Hidden Markov Model methodology. Modeling of 
the lip motion was carried out using Gaussian probability density 
functions.  The static image based identification was carried out 
using the FaceIt system. Experiments were conducted with 251 
subjects from the XM2VTS audio-visual database. Late 
integration using automatic weights was employed to combine the 
three experts. The integration strategy adapts automatically to the 
audio noise conditions.  It was found that the integration of the 
three experts improved the person identification accuracies for 
both clean and noisy audio conditions compared with the audio 
only case.  For audio, FaceIt, lip motion, and tri-expert 
identification, maximum accuracies achieved were 98%, 93.22%, 
86.37% and 100% respectively.  Maximum bi-expert integration 
of the two visual experts achieved an identification accuracy of 
96.8% which is comparable to the best audio accuracy of 98%. 

Categories and Subject Descriptors 
I.5.2 [Computing Methodologies]: Pattern Recognition, Design 
Methodology– Classifier design and evaluation. 

 

General Terms 
Algorithms, Reliability, Experimentation, Security. 

Keywords 
Person identification, multi-expert, audio, face, lips, late 
integration, automatic weighting. 

1. INTRODUCTION 
Biometrics is a field of technology devoted to verification or 
identification of individuals using biological traits.  Verification, a 
binary classification problem, involves the validation of a claimed 
identity whereas identification, a multi class problem, involves 
identifying a user from a set of subjects.  Hence person 
identification is inherently a more difficult task, particularly when 
the number of registered subjects is large. 

Person identification systems based on the analysis of audio 
signals achieve high performance when the signal to noise ratio 
(SNR) of the audio signal is high.  However the performance 
degrades quickly with decreasing SNR values.  It is expected that 
the integration of the audio expert (in the context of this paper, the 
term expert refers to a particular audio or visual based person 
identification system) with a visual expert will improve upon the 
audio scores for clean audio conditions and increase robustness to 
the presence of audio noise.  In [5] and [24] the audio expert was 
fused with the visual expert to improve the robustness of speech 
recognition to audio noise.  In [4] multi-expert person 
identification experiments showed that the integration of visual 
experts, incorporating visual features from the eyes, nose and 
mouth, with the audio expert, significantly improved the scores.  
In [13] and [2] person identification was found to be more robust 
to audio noise when the audio and lip motion experts are 
integrated. 

Previous studies have shown that the FaceIt [9] person 
identification system places a lot of emphasis on the eye region.  
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In [7] FaceIt experiments were carried out for different face 
occlusions and it was shown that the performance of FaceIt 
degrades significantly for a high level of eye occlusion.  The lip 
motion system described in this paper uses lip features extracted 
from a sequence of lip region of interest (ROI) images.  It is 
expected that the integration of these two visual person 
identification systems, one emphasizing the eyes and the other 
emphasizing the lips will lead to a synergistic improvement. 

Most systems for person identification use a single expert, such as 
speech or facial features. In this paper we investigated the relative 
performance of three approaches to person identification – speech, 
lip motion, and facial features – and the benefits or improvements 
possible by combining them in a multi-expert classifier under 
conditions of varying time-delays between training and testing 
sets, number of training sessions, and audio noise.  Results are 
then presented for the integration of these experts in four 
experiments, namely the integration of: 1) FaceIt and the lip 
motion experts, 2) FaceIt and audio experts, 3) lip motion and 
audio experts, and 4) all three experts. 

2. THE XM2VTS AV DATABASE 
The XM2VTS Audio-Visual (AV) database [14], [16] was 
employed for the experiments described in this paper. The 
database consists of video data recorded from 295 subjects in four 
sessions, spaced monthly. The first recording per session of the 
third sentence (“Joe took fathers green shoe bench out”) was used 
for this research. The start and end of some sentences were 
clipped. Due to this and other errors in the sentences, only 251 
out of a possible 295 subjects were used for our experiments.  Lip 
motion features were extracted from the mouth ROI.  The ROI 
was identified manually for every 10th frame, and the ROI for the 
intermediate frames determined by interpolation.  To identify the 
ROI manually, the midpoint between the two labial corners was 
identified and a 98×98 pixel block centered on this midpoint was 
extracted as the ROI. The FaceIt system processes an entire visual 
frame taken from the video sequence. 

3. FACE RECOGNITION: FACEIT 
Most current face recognition algorithms can be categorized into 
two classes, image template-based or geometry feature-based. The 
template-based methods compute the correlation between a face 
and one or more model templates to estimate the face identity.  
Statistical tools such as Support Vector Machines (SVM) [26], 
Linear Discriminant Analysis (LDA) [16, 1], Principal 
Component Analysis (PCA) [23, 25], Kernel Methods [12], and 
Neural Networks  [11] have been used to construct a suitable set 
of face templates.  While these templates can be viewed as 
features, they mostly capture global features of the face images. 
Facial occlusion is often difficult to handle in these approaches.  

The geometry feature-based methods analyze explicit local facial 
features, and their geometric relationships.  Cootes et al. have 
presented an active shape model in [10] extending the approach 
by Yuille [29].  Wiskott et al. developed an elastic bunch graph 
matching algorithm for face recognition in [27].  Penev et. al [18] 
developed PCA into Local Feature Analysis (LFA) which is the 
basis for the commercial face recognition system FaceIt. LFA 
addresses two major problems of PCA.  The application of PCA 
to a set of images yields a global representation of the image 
features that is not robust to variability due to localized changes in 

the input. Furthermore the PCA representation is non topographic, 
so nearby values in the feature representation do not necessarily 
correspond to nearby values in the input. LFA overcomes these 
problems by using localized image features in form of multi-scale 
filters. The feature images are then encoded using PCA to obtain a 
compact description.  

FaceIt was among the top performing systems in a number of 
independent evaluations [7, 3, 19]. It has been shown to be robust 
against variations in lighting, facial expression and lower face 
occlusion. FaceIt can handle pose variations of up to 35 degrees 
from frontal. However, performance drops significantly for larger 
pose changes and for occlusion of the eyes (dark sunglasses) [7]. 

4. AUDIO PERSON IDENTIFICATION 
The audio signal was first pre-emphasized to increase the acoustic 
power at higher frequencies using the filter H(z) =1/(1-0.97z -1).  
The pre-emphasized signal was divided into frames using a 
Hamming window of length 20 ms, with overlap of 10 ms to give 
an audio frame rate, FA,, of 100 Hz.  Mel-frequency cepstral 
coefficients (MFCC’s) [6] of dimension 16 were extracted from 
each frame.  The energy [28] of each frame was also calculated 
and used as a 17th static feature. Seventeen first order differences 
or delta features were calculated between adjacent frames and 
appended to the static audio features to give an audio feature 
vector of dimension 34.  The number of MFCC’s employed was 
determined empirically to give the best performance.  Cepstral 
mean normalization was performed on the audio feature vector 
[28] in order to compensate for long term spectral effects of the 
audio channel. 

A text dependent person ID expert was used. For text dependent 
modeling [13], the subject says the same utterance for both 
training and testing.  It was employed, as opposed to text 
independent modeling [21], because it was suited to the database 
used in this study. Also, text dependence has been found to out-
perform text independence [15]. 

Subject Si , i = 1 …N, was modeled by a single audio sentence 
subject dependent HMM, where N = 251 here.  There was one 
background HMM.  Three sessions were used for training and one 
session for testing.  The background HMM was trained using 
three of the sessions for all N subjects.  This background model 
captures the audio speech variation over the entire database.  
Since there were only three training utterances per subject, there 
was insufficient training data to train a subject dependent HMM, 
which was initialized with a prototype model.  Hence the 
background model was used to initialize the training of the subject 
dependent models. 

A sentence observation, O, was tested against all N subjects, Si, 
and the subject that gave the maximum score was chosen as the 
identified subject.  To score an observation O against subject Si, 
P(Si/O) is calculated  and is normalized by dividing by F, the 
number of frames in the sentence observation. 

5. IDENTIFICATION  BY LIP MOTION 
Transform based features were used to represent the visual 
information based on the Discrete Cosine Transform (DCT) which 
was used because of its high energy compaction [17].  The 98×98 
color pixel blocks were converted to gray scale values.  The gray 
scale ROI was then histogram equalized and the mean pixel value 



 

 

was subtracted.  This image pre-processing was carried out to 
account for varying lighting conditions across sessions and 
subjects.  The DCT was applied to the gray scale pixel blocks.  
The first 15 coefficients were used, taken in a zigzag pattern to 
form the visual frame observation feature vector.  However only 
14 of these features were used for modeling since the first feature 
corresponds to the mean of the ROI, and due to the mean removal, 
was zero valued for the feature vector of each frame. 

A Gaussian model consisting of a single probability density 
function was used to model the lip motion of each subject.  The 
entire visual sentence was modeled by the Gaussian model.  The 
mean feature vector and diagonal covariance matrix was 
calculated from the training data.  The log likelihood probability 
was calculated for each frame of the test sentence and these scores 
were summed over the entire sentence.  The summation score was 
then normalized by dividing by the number of frames in the test 
sentence.  This was done for the N subject models and the model 
giving the highest score chosen as the identified subject. 

6. LATE INTEGRATION 
The various “experts” (audio, FaceIt, lip motion) were integrated 
using late integration (LI).  The advantages of LI include the 
ability to account for the expert reliabilities, small feature vector 
dimensions per expert and ease of adding other experts to the 
system. For LI the expert scores are weighted to account for the 
reliability of each mode. The scores may be integrated via 
addition or multiplication as shown in Equations (1a) and (1b) 
respectively, for bi-expert LI.  Both LI methods were investigated 
and it was found that the results achieved for both were similar.  
Hence the results for additive integration only, are presented in 
this paper. Prior to LI, all expert scores were normalized to fall 
into the range of 0 to 1. 
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The fusion parameter c varies with the audio SNR. Figure 1 shows 
how the expert weights, α and β, depend on the fusion parameter 
c.  Higher values of c (>0) place more emphasis on the audio 
expert whereas lower values (<0) place more emphasis on the 
visual expert.  For c ≥ 1, α = 1 and β = 0, hence the decision is 
based entirely on the audio expert, whereas, for c ≤ -1, α = 0 and 
β = 1, hence the decision is based entirely on the visual expert.  

For automatic integration a mapping, c(ρ), between the audio 
reliability measure, ρ, and the fusion parameter c is employed.  
The reliability measure employed is the sum of the difference 

between the top two highest scores and the difference between the 
second and third highest scores for each person test.  As the audio 
SNR decreases, this reliability measure decreases because the 
audio scores become less discriminatory.  To determine the 
mapping c(ρ), the values of c which provided for optimum fusion, 
copt, were found by exhaustive search for the N tests at each SNR 
value.  The mean reliability measure, ρmean, across the N tests at 
each SNR value was also found.  A sigmoidal function  
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was employed to provide a mapping between copt and ρmean, where 
the parameters cos, h, d and ρos were determined empirically to 
give the best performance.  Hence, for automatic integration, ρ is 
calculated from the N scores for each test and c is determined 
using c = c(ρ).  This integration approach is similar to that used in 
[8]. 
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Figure 1. Variation of the expert weigths αααα and ββββ, with the 
fusion parameter c. 

7. EXPERIMENTS 
In all the experiments, the probe images used for testing were 
obtained from the final (fourth) session.  The FaceIt galleries used 
for training were formed from the first three sessions according to 
Table 1. Five trials were constructed to test how the performance 
of FaceIt varied when 1) the time difference between the gallery 
and the probe set varied between one and three months and 2) 
multiple sessions were used to form the gallery.  Testing of the lip 
motion feature person identification system was also carried out 
for the five trials in Table 1. 

Table 1. Outline of the five visual trials performed 

Trial # Gallery\Train Probe\Test
1 3 4
2 1 4
3 2 4
4 2,3 4
5 1,2,3 4  

 



 

 

The audio models were tested according to trial 5 of Table 1.  
Additive white Gaussian noise was applied to the clean audio at 
signal-to-noise ratios (SNR) ranging from 0dB  to 48dB in steps 
of 4dB. All audio models were trained using clean speech and 
tested using speech containing noise. 

The evaluation of the FaceIt system on the selected subjects of the 
XM2VTS database proceeded as follows. For trials 1 through 3 a 
single gallery image was chosen at random from the image 
sequence of each subject and compared to a randomly chosen 
probe image of each subject. FaceIt produces a matching score 
between 0.0 and 10.0 for each gallery/probe image pair. For each 
probe image the gallery image with the highest score was selected 
as recognition result. For trials 4 and 5 FaceIt was given two and 
three randomly chosen gallery images respectively that where 
internally combined by FaceIt to determine a matching score. In 
all cases original, unprocessed images were used. In a separate 
experiment it was verified that FaceIt's face finding module was 
able to reliably locate the face in each image. 

Four integration experiments were carried out using the three 
experts.  

7.1 Integrating FaceIt with Lip motion 
The two visual experts were integrated to test if their fusion led to 
a synergistic improvement.  The fusion was carried out according 
to Equation (1a) with fusion parameter c = 0, i.e. equal weighting 
of the two experts. 

7.2 Integrating FaceIt with Audio 
Under noise-free audio conditions an audio person identification 
system can achieve high accuracies.  However in the presence of 
audio noise the performance can degrade significantly.   The 
scores of FaceIt trial 5 were integrated with the audio scores at 
various audio SNR’s in order to investigate if the audio accuracies 
can be improved upon at low SNR’s.  The expert weighting was 
determined automatically as described in Section 6. 

7.3 Integrating Lip motion with Audio 
The same tests described in Section 7.2 were carried out using the 
lip motion trial 5 scores in place of the FaceIt scores. 

7.4 Integrating all Three Experts 
All three experts were integrated.  The visual weight, β, was 
divided equally between the two visual experts as shown in 
Equation (4). 
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8. RESULTS 
Left to right HMM’s with a twelve state, two mixture topology 
were used in the audio classification experiments.  The audio 
models were trained using the Baum Welch algorithm and tested 
using the Viterbi algorithm [20], implemented using the HMM 
toolkit, HTK [24]. The audio features were calculated using HTK. 
The background models were trained using three sessions. This 
gave 3*N (753) training examples per background model.  This 
HMM topology, was found by exhaustive search to give the best 
result.  The audio results versus SNR are presented in Table 2.   

Table 2. Audio, audio with FaceIT, audio with lip motion and 
tri-expert scores (trial 5) 

SNR Audio Audio & Audio & 3 Experts
(%) FaceIt (%) Lip Motion (%) (%)

48 98.01 100.00 98.80 100.00
44 98.41 100.00 98.80 100.00
40 97.61 99.20 98.41 100.00
36 95.22 99.20 98.01 100.00
32 91.63 98.41 96.02 98.41
28 79.28 97.61 93.23 98.41
24 54.58 96.81 90.04 96.81
20 27.49 94.82 88.84 95.62
16 10.36 93.23 86.06 94.02
12 5.98 93.63 86.06 92.83
8 1.99 94.02 86.06 96.41
4 1.99 93.23 86.06 96.41
0 1.20 93.23 86.06 96.81  

 

 

The results of the five FaceIt and lip motion trials are presented in 
Table 3.  The results are presented as percentage accuracy and 
number of correctly identified subjects out of the possible 251 
subjects. 

 

 
Table 3. FaceIt, lip motion and FaceIt integrated with lip 

motion scores for the 5 trials 
FaceIT Lip Motion FaceIT & 

Trial # (%) (%) Lip Motion (%)
1 84.86 47.41 90.04
2 79.28 29.08 82.87
3 84.06 25.10 85.66
4 90.44 75.30 93.23
5 93.23 86.06 96.81

Mean 86.37 52.59 89.72  
 
 

8.1 Integrating FaceIt with Lip motion 
The results of late integration of the FaceIt and lip motion experts 
are presented in Table 3.  The integrated scores presented are for 
equal weights.  

8.2 Integrating FaceIt with Audio 
The results of late integrating FaceIt trial 5 with the audio expert 
for the thirteen audio noise levels using automatic weights are 
presented in Table 2.  The same results are also shown in Figure 
3. The sigmoidal fit between copt and the reliability measure is 
shown in Figure 2. 
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Figure 2. Sigmoidal fit for audio and FaceIt trial 5. 
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Figure 3. Integration of FaceIt trial 5 with audio versus SNR. 

 
 

8.3 Integrating Lip motion with Audio 
The results of late integrating lip motion trial 5 with the audio 
expert for the thirteen audio noise levels using automatic weights 
are presented in Table 2.  The same results are also shown in 
Figure 5. The sigmoidal fit between copt and the reliability 
measure is shown in Figure 4. 
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Figure 4. Sigmoidal fit for audio and lip motion trial 5. 
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Figure 5. Integration of lip motion trial 5 with audio versus 

SNR. 

 

8.4 Integrating all Three Experts 
The results of tri-expert late integration of trial 5 for the thirteen 
audio noise levels using automatic weights are presented in Table 
2 and Figure 7.  The sigmoidal fit between copt and the reliability 
measure is shown in Figure 6. 
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Figure 6. Sigmoidal fit for tri-expert integration. 

 

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

%

Noise Level (dB)

Audio
Lip Motion
FaceIT
3 Experts

Tri-Expert Integration

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

%

Noise Level (dB)

Audio
Lip Motion
FaceIT
3 Experts

Audio
Lip Motion
FaceIT
3 Experts

Tri-Expert Integration

 
Figure 7. Integration of the 3 experts versus SNR. 

 

9. DISCUSSION 
The person recognition rates using the audio expert only (Table 2) 
were very high for high SNR’s. The highest recognition rate was 
98% attained at a SNR of 48dB.  As the SNR decreased, the 
recognition rate decreased. There was a large change in 
recognition rate between a SNR of 32db (91.6%) and a SNR of 24 
dB (54.6%).  At a SNR of 0dB and lower the recognition rate was 
equal to recognition rate of random guessing (0.4%).  The steep 
roll off of the recognition performance with respect to SNR was 
due to the mismatched audio testing conditions, i.e. training on 
noise-free audio and testing on audio of a lower SNR.  It is 
expected that the roll off would be less steep if matched testing 
was employed, i.e. training and testing using audio of the same 
SNR. 

Table 2 also shows that the lip motion expert only performs well 
when all three training sessions are used (trial 5), giving a 
recognition rate of 86%. This rate was obtained using manual ROI 
determination, which may have positively biased the results. An 
automatic ROI detection system will need to be used in order to 
test for such a bias.  The lip motion scores for trials 1 to 3, 47.4%, 
29%, 25% respectively, show a large variance.  This may indicate 

that the Gaussian models were poorly trained or that test session 3 
used in trial 1 provided for more person discrimination.  However, 
trial 1 had the least time difference between training and testing 
and this may be the reason why it performed better than trials 2 
and 3.  Trial 1 also was the best of the FaceIt trials 1 to 3.  
However the score variance was less than that for the lip motion 
trials.  

The FaceIt recognition rate for trials 1 to 3 decreased from 
84.86% to 79.3% as the time difference increased between the 
training and testing data.  This decrease in recognition rate may 
become more apparent in a practical system when the time 
difference between the training phase and the identification phase 
exceeds three months. Addition of more gallery sessions improved 
the FaceIt scores, with the use of all three sessions in trial 5 giving 
a score of 93.23%.  Adding up to 5 additional gallery images from 
session 1 to trial 2 improved the recognition accuracy to 84.4% 
(from 79.28%), but falls far short of the 93.23% accuracy 
achieved in trial 5. We therefore conclude that the increase in 
performance is mostly due to the availability of gallery images 
over time. 

9.1 Integrating FaceIt with Lip motion 
Combining the two visual experts resulted in comparable 
performance to the audio expert. As shown in Table 2 the best 
result for combining the two image experts resulted in a 
recognition rate of 96.81% which was only 1.19% lower than the 
best recognition rate from the audio expert.  This suggests that the 
visual experts are of a comparable importance as the audio expert 
for person identification.  It is worth noting that the XM2VTS 
visual data is of extremely high quality with little variation in 
illumination, pose and emotion during and across the four 
recording sessions. A practical system may not produce such high 
quality visual data and hence a person recognition system would 
have a greater reliance on the audio expert. 

For the five trials combining the two visual experts, employing 
equal weightings, resulted in an improvement in recognition rate 
over using either visual expert alone. 

9.2 Integrating FaceIt with Audio 
The integration of FaceIt and audio shown in Table 2 resulted in a 
perfect recognition rate (100%) for SNR greater than 40dB.  The 
recognition rate did not decrease as rapidly with respect to SNR as 
the audio only expert (see Table 2).  The integrated system 
performed better for all noise levels and is less sensitive to audio 
noise. 

9.3 Integrating Lip motion with Audio 
The integration of the lip motion expert and the audio expert 
shown in Table 2 was not as successful as the integration in 
Section 9.2.  However, an improvement on the audio only scores 
was achieved for all noise levels.  The recognition rate decreased 
more rapidly with respect to SNR than the equivalent rates for 
Section 9.2. 

9.4 Integrating all Three Experts 
A perfect recognition rate was achieved when the three experts 
were integrated when the SNR of the audio signal exceeded 32dB. 
The tri-expert integration also outperformed the bi-expert and uni-



 

 

expert recognition rates for most noise levels except at 12dB.  The 
tri-modal scores between 25dB and 10dB decline and rise again to 
the level achieved by purely integrating the two visual experts.  
The poor performance between 25dB and 10dB is due to the 
sigmoidal fit (shown in Figure 6) which is trained using the 
reliability parameters ρopt .  The ρopt values are determined 
globally across all N person tests (see Section 6), and may have a 
large variance.  The sigmoidal fit does not take this variance  
about ρopt into account.  Hence a different curve fit or a different 
reliability parameter exhibiting a lower variance, may improve 
upon the tri-expert scores of Figure 6. 

As further work we aim to investigate the effect of image 
degradations on the identification performance. 

9.5 Automatic determination of integration 
weights 
It is important to note that the automatic weight sigmoidal 
mapping functions are trained and tested on the same data and this 
may have resulted in slightly optimistically biased performance 
results.  Ideally the sigmoidal mapping functions should be 
trained and tested on the different data sets.  It should also be 
noted that the reliability measure employed in this paper may 
behave differently w.r.t. SNR for different noise types.  It would 
be interesting to carry out the same experiments using different 
noise types other than additive white Gaussian noise use here, and 
also employ other reliability measures such as dispersion, score 
variance, entropy and voicing index [8]. 

The automatic weights employed here do not take the reliability of 
the visual experts into account.  This was not a major issue for the 
experiments carried out in this study, since the visual data was of 
a constant high quality.  However, in the presence of varying 
visual degradations, the expert weights should depend on some 
visual expert reliability measure. 

10. CONCLUSION 
The integration of the two visual experts resulted in higher 
identification performance than the performance obtained using 
either visual expert alone. These results show that the two visual 
experts provide complementary information and hence are 
emphasizing different visual cues.  Visual experiments, such as 
the performance of the system in the presence of eye occlusion 
would provide further insight.   

The results showed that a system integrating the audio and either 
visual expert was more accurate for noise-free audio and is more 
robust to audio noise compared to the performance of the audio 
only system.   

The use of automatically determined experts weights leads to 
synergistic integration.  The integration method is efficient and 
not computationally expensive to carry out.   

The tri-expert results show that the integration of all available 
experts leads to the best recognition rates.  An advantage of a 
multi-expert system is that subjects that are difficult to identify 
with one expert may be more easily identified with another expert. 
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