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Abstract—Most existing works solve the video-based person
re-identification (re-ID) problem by computing the represen-
tation of each frame independently and finally aggregate the
frame-level features. However, these methods often suffer from
the challenging factors in videos, such as serious occlusion,
background clutter and pose variation. To address these issues,
we propose a novel multi-level Context-aware Part Attention
(CPA) model to learn discriminative and robust local part
features. It is featured in two aspects: 1) the context-aware part
attention module improves the robustness by globally capturing
the relationship among different body parts across different video
frames, and 2) the attention module is further extended to multi-
level attention mechanism which enhances the discriminability by
simultaneously considering low- to high-level features in different
convolutional layers. In addition, we propose a novel multi-head
collaborative training scheme to improve the performance, which
is collaboratively supervised by multiple heads with the same
structure but different parameters. It contains two consistency
regularization terms, which considers both multi-head and multi-
frame consistency to achieve better results. The multi-level CPA
model is designed for feature extracting, while the multi-head col-
laborative training scheme is designed for classifier supervision.
They jointly improve our re-ID model from two complementary
directions. Extensive experiments demonstrate that the proposed
method achieves much better or at least comparable performance
compared to the state-of-the-art on four video re-ID datasets.

Index Terms—Person re-identification, multi-level spatial-
temporal attention, context-aware part attention.

I. INTRODUCTION

Person re-identification (re-ID) is the task of identifying the

same person in different images or videos, taken from different

and non-overlapping cameras. It has received increased atten-

tion in recent years due to the increasing demand of public

safety and rapidly growing surveillance camera networks. In

recent years, a large amount of works have been proposed

to tackle this problem under image setting and prominent

progresses have been achieved. Most of these image-based

methods focus on extracting distinctive feature representation

from pedestrian images [1], [2], learning robust distance metric

for similarity measurement [3], [4] or combining both of
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Fig. 1. Visualization of the features learned in different convolutional layers.
It is observed that CNN captures low- to high-level features in shallow to deep
layers in re-ID tasks.

them into an end-to-end deep convolutional neural network

(CNN) [5], [6], [7], [8], [9].

Despite decades of efforts, person re-ID is still a challenging

problem because of the variations in human pose, view angles,

background clutters, occlusions and illumination condition.

Temporal information is useful to resist and eliminate these

complex spatial noise, while it is usually ignored in image-

based re-ID methods. With the emergence of large-scale

video re-identification datasets [10], [11], several studies [12],

[13], [14], [15], [16], [17], [18], [19] focus on solving the

person re-ID problem under video setting. Since a video clip

usually contains much richer spatial-temporal information, it is

beneficial to identify a person under complex environment and

serious appearance variations [10]. In addition, person Re-ID

is mostly applied in video surveillance, where video is usually

the first-hand materials captured by surveillance cameras, so

it is more convenient to deal with this problem directly on

videos. In this paper, we attempt to tackle the person re-ID

task under video setting.

An efficient way to solve person re-ID task on large-scale

video-based datasets is to learn a mapping function to convert

video-clips into lower dimensional feature space, so that

the similarity can be measured by computing the Euclidean

Distance between different video embeddings. The widely-

used technique is to extract the frame-level appearance features

with deep convolutional neural networks and then adopt the

average or maximum pooling [20], [11] to aggregate frame-

level features and obtain the video representation. However,

this strategy is sensitive to outlier noisy frames caused by

detection/tracking error and occlusion. To address these issues,

some works use attention module [14], [15], [16], [21] or

Recurrent Neural Network (RNN) [12], [13] to capture robust

spatial-temporal cues across multiple video frames and weak-

en the influence from corrupted frames (e.g. occlusion). To
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further improve the discriminability, some recent works [18],

[17] utilize part attention to extract discriminative local fea-

tures based on different body parts in multiple video frames.

However, all these methods only utilize the high-level feature

(the output of last convolutional layer) to capture the attention

cues, while such features are easily being contaminated due to

error accumulation in shallow convolutional layers, especially

for large-scale video re-ID tasks with a large amount of noisy

frames, which results in limited robustness. Moreover, the

informative low-level features (the output of shallow convo-

lutional layers) [22] are ignored in their attention module, but

it has been shown that different layers capture different kinds

of discriminative features in Fig. 1. Therefore, it motivates us

to investigate a solution to simultaneously capture the robust

and discriminative multi-level part attention cues in different

layers from both spatial and temporal domains.

In this paper, we propose a novel multi-level context-aware

part attention model for robust and discriminative video feature

representation learning. Specifically, the Context-aware Part

Attention (CPA) module is designed to extract discriminative

local part features by globally considering the spatial-temporal

context information of the local body parts across different

video frames. The CPA module captures the spatial-temporal

context information via fully exploiting the relationship among

multiple local parts across different frames. After that, the

learned contextual knowledge is aggregated to local activation

to facilitate local feature learning. To utilize the informa-

tive multi-level features, we further extend the CPA module

into a multi-level attention mechanism by plugging it into

different convolutional layers of the feature network in a

residual connection manner, which considers simultaneously

the discriminative cues in different feature levels. In this way,

our multi-level CPA framework can also resist the spatial noisy

in an early stage during feature extracting process.

While existing methods capture the most salient features

referring to the training benchmark with one classifier head,

they miss lots of useful and local regions. To overcome this

limitation, we expect to mine these new features with different

classifier heads focusing on different regions. For that, we

propose a multi-head collaborative learning scheme to enhance

the classifier supervision and improve the generalization ability

of the feature network during training. The basic idea is to

adopt multiple heads with the same structure but different

initialization parameters to collaboratively optimize the net-

work parameters. Incorporated with multi-head consistency

regularization, each head can transfer their knowledge to

each other, which collaboratively improves the accuracy but

without extra model architecture design. It also contains a

multi-frame consistency regularization to eliminate the effect

of outlier frames in a video sequence, which improves the

robustness to noisy frames. Feature extracting and classifier

supervision are two most important parts for training a re-ID

model. The multi-level CPA is designed for feature extracting

by improving the backbone’s capacity to model abundant

spatial-temporal information, while the multi-head training

scheme is designed for classifier supervision by incorporating

multiple supervision heads to improve the performance in a

collaborative learning manner. Both of them jointly improve

our re-ID model from two complementary directions.

In summary, our method brings following contributions:

• We propose a novel context-aware part attention (CPA)

module to extract robust and discriminative part features

from multiple video frames by considering the context

information in both spatial and temporal domains, which

can be seamlessly plugged into low-level convolutional

layers with a residual mechanism.

• We further boost the CPA module to multi-level by ex-

ploiting the informative features in different convolutional

layers, which results in much better performance than

existing single layer counterparts.

• We propose a new multi-head collaborative learning

scheme to improve the accuracy without extra model

architecture design. It contains two novel consistency

constraints, which enforces the network to utilize the

multi-head collaboration and multi-frame information.

• We demonstrate the effectiveness of our approach on four

challenging video re-identification datasets. The proposed

method outperforms all the other state-of-the-art methods

under multiple evaluation metrics.

II. RELATED WORK

A. Image-based Person Re-identification.

Person re-ID based on still image has been extensively

explored in the literature [23], [24], [25], [26], [27], [6],

[28], [29], [30] during the past few years. Traditional methods

for image-based re-ID can generally be categorized into two

parts: discriminative feature learning [31], [32], [1], [33], [27]

and robust metric learning [6], [28], [29], [30], [34]. In the

part of discriminative feature learning, researchers focus on

designing hand-crafted appearance feature representation [1],

[35], [36], [37], such as color histograms, local binary patterns

and Gabor features. which are robust to illumination and

viewpoint changes. Besides, the methods of robust metric

learning aim to learn a discriminant subspace or an integrat-

ed metric to encourage the distance of pedestrian from the

same identity be small and those from different identities

be large [38], [4], [29], [3]. With the emergence of deep

learning, convolutional neural networks have been applied to

person re-ID to learn discriminative feature representation and

robust distance metric jointly, which has made great progress.

Contrast loss [5], [39], triplet loss [40], [7], [6] and softmax

loss [41], [42], [43] are available to be used as supervision

and help networks learn robust feature by end-to-end training.

Moreover, recent works integrate part-based features, which

come from uniform partions of image or feature map, with

global feature to form the final feature representation [44],

[45]. To lower the requirement of manually annotated data,

recent unsupervised approaches are investigated through the

strategies of style transfer and clustering [46].

B. Video-based Person Re-identification.

Recently, more and more works pay attention to the video-

based person re-ID [47], [48], [49], [50], [51], which is an

extension of the image-based one. Existing studies [13], [14],
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[20], [12], [15], [16], [19] adopt convolutional neural network

(CNN) to extract the appearance representation of each frame

and mainly focus on different techniques to fuse temporal

information. For examples, McLaughlin et al. [13] adopt

Recurrent Neural Network (RNN) to pass the message among

frame-level features and utilize temporal maximum pooling

to obtain video descriptors. Liu et al. [14] propose a Quality

Aware Network (QAN) to estimate quality score of each frame

automatically and use different weights to fuse frame-level

features. Chen et al. [19] introduce a temporal co-attention

which weights frame features by considering the mutual

influence between gallery and query sequences. Hou et al. [52]

try to mine all the salient parts of one video clip by erasing the

activation parts of previous frames. However, all these methods

focus only on designing temporal model to fuse frame-level

features, and lack the capabilities of discovering discriminative

local body parts in each frame. Although recent works consider

these local parts with hierarchy architecture [53] or graph

model [54], they cannot be deployed flexibly like our method.

C. Attention Models for Video Re-ID.

Attention model is a very popular technique to exploit

discriminative local feature in deep neural network [55], [56],

[57], [58]. Recent works [18], [17], [59], [60] in video-based

person re-ID incorporate spatial-temporal attention to take

advantage of discriminative local features to learn robust video

embeddings. Li et al. [18] propose a diversity regularized

spatial attention model to extract appearance representation

of different parts and then use temporal attention to fuse

part-level representation. Fu et al. [17] propose a parameter-

free spatial-temporal attention (STA) module, which assigns

attention score for each spatial region to achieve discriminative

parts mining and frame selection. Zhang et al. [61] presents

a non-parametric attention mechanism for video re-ID with

a generalized pairwise similarity measurement by the binary

classifier. All these works exploit only the spatial-temporal in-

formation in high-level features, ignoring the abundant spatial-

temporal cues in different semantic levels. Liao et al. [59] use

3D CNN to extract the aggregate representation of spatial-

temporal features and incorporate block as spatial-temporal

attention strategy. However, the stacked 3D CNN layers result

in substantial growth of parameters which not only make

their model computationally expensive, but also leads to the

difficulty in model training and optimization. Also, the non-

local block aims to model the long-range dependency in pixel

level, which further increases the demand of computational

resources. As a result, their model is in demand of training

on eight GTX TITAN X GPUs and obtains an inferior per-

formance. To mitigate the shortcomings of 3D CNN, Li et

al. [60] propose a Multi-scale 3D (M3D) convolution layer

as a more efficient alternative to model the temporal cues

for each local activation. Additionally, a Residual Attention

Layer (RAL) is proposed to jointly learn spatial and temporal

attention masks to further refine the learned temporal cues.

However, their model ignores the relationship of different local

features which is beneficial to learn the context information.

Different from these works, our Context-aware Part At-

tention (CPA) module exploits relationship among different

body parts and aggregates the contextual information in both

spatial and temporal domains, which is quite suitable to learn

part discriminative features for video re-id. We incorporate

CPA to leaned spatial-temporal attention at multi-levels to

extract discriminative part features at different convolutional

layers rather than a single pooling layer. Experiments shown in

Table III, multi-level attention strategy consistently improves

the re-id performance in all the settings. Also, since the

number of body parts is far less than the number of pixels, our

CPA module considers spatial-temporal context information of

different feature levels in a more efficient way, which makes

it more easy and flexible to be incorporated.

D. Collaborative Learning.

An ensemble of multiple instances of a target neural net-

work trained with different random seeds generally yields

better predictions than a single trained instance. However, it is

also very computationally expensive. To lower computational

complexity, several training techniques have been developed

by adding additional networks only in the training graph to

boost accuracy, including auxiliary training [62] and knowl-

edge distillation [63]. In [64], Song et al. propose a collabo-

rative learning scheme, which provides a simple but effective

multi-head training framework for any given architecture to

improve accuracy. The multi-head structure gives a strong

supervision to the shared backbone, and it is demonstrated

robust to noise labels. Inspired by this work, we propose to

use a multi-head collaborative training scheme to improve the

performance of video re-ID, which is supervised by multiple

heads with the same structure but different parameters. It

also contains a multi-head consistency loss and a multi-frame

consistency loss to regularize the ambiguity among multi-

frame feature learning and multi-head identity prediction.

III. OUR APPROACH

The proposed video-based person re-ID method mainly

contains two parts: multi-level context-aware part attention

module (Sec. III-A) and multi-head collaborative learning

scheme (Sec. III-B). The former introduces a backbone net-

work with multi-level context-aware part attention (CPA)

module to enhance the feature extracting, where CPA captures

robust and discriminative part features by utilizing the context

information in both spatial and temporal domains The latter

presents our training scheme with multi-head collaborative

learning framework and two kinds of regularization strategies

to enhance the classifier supervision and improve the general-

ization ability of our re-ID model.

A. Multi-level Context-aware Part Attention

We firstly introduce the proposed Context-aware Part At-

tention (CPA) module, which aims at extracting robust and

discriminative local part features by utilizing the context infor-

mation in both spatial and temporal domains. Given an input

video sequence with T frames, we feed it into residual blocks

and obtain a set of frame-level feature maps. We decompose

the feature map of each person image into M non-overlapping
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Fig. 2. Illustration of Context-aware Part Attention (CPA) module. Given the intermediate feature map V of a person tracklet in a specific layer, we first
divide it into M non-overlapping and equal-size regions vertically, then apply region-based average pooling (RAP) and reshaping to obtain part-level feature
map X . Xu, Xv and Xo are generated by feeding X through three different linear transformations. The context-aware part attention between local parts
can be computed efficiently by matrix multiplication between Xu and the transpose of Xv followed by a row-wise softmax function. By using learned
context-aware part attention as weights to linearly aggregate the part-level representations in Xo, we obtain the refined part features which contain global
context knowledge and encode part relationship. The final part features output from the linear transformation W are reshaped, up-sampled and added back to
original input V through a residual connection.

parts. CPA aims at learning a context-aware attention map with

shape of TM × TM for each local parts cross spatial and

temporal domains. The structure of CPA module is illustrated

in Fig. 2.

The original frame-level feature maps are denoted by V =
{vt|vt ∈ R

h×w×C}Tt=1, where h × w is the resolution of the

feature map, C is the channel dimension and vt can be viewed

as a 3D tensor of activation. Notice that since pedestrian in

images can be decomposed into several body parts from head

to foot, we simply slice each vt into M equal-size and non-

overlapping regions vertically. A region-based average pooling

(RAP) is applied to each region to obtain a set of part-level

features X = {xi|xi ∈ R
C}TM

i=1 , which summarizes the feature

statistics of each local part. X is then fed into three different

linear layers FCu, FCv and FCo to generate three new part-

level feature embeddings.

Xu = {xu
i |x

u
i ∈ R

C

r }TM
i=1

Xv = {xv
i |x

v
i ∈ R

C

r }TM
i=1

Xo = {xo
i |x

o
i ∈ R

C

r }TM
i=1

(1)

Note that three linear layers share the same structure but

with different parameters. And they all reduce the channel

dimensionality of X with ratio r. Xu and Xv are used to

calculate the context-aware part attention A = {ai,j}
TM
i=1,j=1

for each pair of part feature, and Xo serves as a contextual

representation to be transferred to other local parts.

Specifically, the context-aware part attention between part i

and part j is computed by the inner-product between xu
i and

xv
j .

ai,j =
exp((xu

i )
T (xv

j ))
∑T

k=1
M exp((xu

i )
T (xv

k))
(2)

where softmax function is further used to normalize the

value of attention for each body part. Compared to the ℓ2

normalization in STA [17], the softmax normalization enlarges

the attention discrepancy between discriminative parts, which

has better discriminability. The context-aware part attention A

can also be computed more efficiently by performing a matrix

multiplication between Xu and the transpose of Xv followed

a row-wise softmax. Each row of the context-aware attention

map A = {ai,j}
TM
i=1,j=1 indicates the attention from part i to

every other part j. If we calculate A through inner product

of part-level feature from the same branch, then the value of

part attention ai,j will be the same as that of aj,i. However,

the value of part attention ai,j and aj,i should be different.

For example, the noisy patch should pay more attention to

the informative patch to get contextual information for feature

reparation, while the informative patch does not need to pay

attention to the noisy patch. Therefore, we adopt part-level

feature embeddings, Xu and Xv , from two different branches

rather than the same branch to compute the context-aware

attention map A.

With the calculated context-aware part attention, the part

features are updated by the linear combination of the contex-

tual representation from different parts

x̄i =

N∑

j=1

ai,jx
o
j (3)

where x̄i is the weighted summation of contextual rep-

resentation xo
j over all parts guided by the context-aware

part attention. Therefore, the refined part features is able to

consider the global context information and the relationship

between different part features across both spatial and temporal

domains. The “context-aware” in the name of CPA means the

relationship among multiple local parts across different frames

rather than the background information. Note that this process

can be efficiently computed by matrix multiplication between

A and the transpose of Xo without much computation cost.
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Fig. 3. The overview of our approach. It is mainly comprised of two parts: multi-level context-aware part attention feature network and multi-head collaborative
learning scheme. The CPA module is seamlessly plugged into different stages of the backbone network to learn multi-level context-aware part attention. SAP
represents the spatial average pooling to get the frame-level feature vectors and TAP represents the temporal average pooling to get the video-level feature
vector. Several supervision heads are applied to the video-level feature simultaneously to provide more robust supervision. Each learning head consists of
two fully connected layers named embedding layer and classification layer respectively. During training, each head is supervised by an identity classification
loss, hard triplet loss and multi-head consistency loss respectively. Besides, multi-frame consistency loss is used to regularize the frame-level feature after
SAP. During testing, the feature vectors after the embedding layer from all heads are concatenated together as the final descriptor of the input video. The
multi-head framework only leads to minor computational growth during inference as shown in Table VIII.

After we get the re-weighted part features X̄ , we feed it into

a learnable linear transformation W ∈ R
C×C

r . To seamlessly

connect with different residual blocks, we introduce a residual

connection to combine the attention refined part feature maps

and the original feature maps V , which is denoted by

V̄ = V + τ(X̄W ) (4)

where τ(·) denotes the reshape and resize operator to make

sure the resolution being consistent with the input feature

maps. The contextual knowledge of part relationship is brought

back to the original feature map for representation enhance-

ment. The final local representations of different body parts

achieve mutual gains and are more robust to occlusion and

pose variant.

After all these operations, part-level features have a global

contextual effect and selectively aggregate the part features

across spatial and temporal domains according to the context-

aware part attention map. To capture the multi-level attention

cues in different feature levels, we extend the CPA module into

a muti-level attention mechanism by plugging the CPA module

into different stages of the convolutional neural network. In

particular, ResNet-50 has one convolutional block (conv1) and

four residual blocks (conv2 x, 3 x, 4 x, 5 x), and we plug

three CPA modules after conv2 x, 3 x, 4 x respectively. In

addition, other convolutional neural networks are also feasible

to be adopted as backbone network.

Different from the the Non-Local structure [55], which is

designed to capture long-range dependencies between distant

pixels, while our CPA module aims to exploit the relationship

between different body parts. The dependencies between pixel-

level feature is too sensitive to learn in video re-id model,

because the serious background clutter in pedestrian video can

dominate and contaminate the relationship learning process.

While the part-level feature utilizes the prior knowledge of

body structure to summarize the appearance characteristic of

each body part and reduce the effect of background clutter.

Therefore, our scheme shows better robustness against the

background clutter than the Non-Local structure. In addition,

the efficiency is also greatly improved. The number of part-

level feature (T×M×1) is much less than the number of pixel-

level feature (T ×h×w), which makes the relationship easier

to be learnt. Also, the time complexity and space complexity

of our CPA module have been reduced from O(T 2×h2×w2)
to O(T 2 × M2). As shown in Table VIII, the CPA module

performs significant better than Non-Local block with much

less FLOPS and the required GPU memory. Our CPA module

takes a more efficient way to exploit the spatial and temporal

context information, which makes it more computationally

efficient for video re-ID task.

B. Multi-head Collaborative Learning

We now introduce the training scheme with Multi-head Col-

laborative learning (MHC). In Fig. 3, with the output video-

level feature representation of temporal average pooling (TAP)

layer, we propose to use multiple supervision heads rather

than single head to guide the feature learning process. The

main motivation is that training with single head (classification

layer) is easy to overfit to local minima, and the supervision

information from classification layer to backbone is limited.

MHC optimizes the network with randomly initialized multi-

ple classifier layers to avoid overconfident learning on a single

head.

In our multi-head collaborative learning framework, each

head has the same design and supervision but with different

parameters. Each head is consist of two fully connected layers

named embedding layer and classification layer respectively.

A Batch Norm, ReLu and Dropout layer are inserted before

classification layer. For the sake of brevity, we don’t draw

them out in Fig. 3. The multi-head collaborative learning

scheme enables diversity predictions on the same sample, and

each head may focus on different patterns to identify each
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sample, which provides stronger supervision and guides the

backbone feature network to learn more robust and general

deep features. Thus, the overfitting cost caused by the single

identity classification layer are reduced. During testing, the

feature vectors after the embedding layer from all heads are

concatenated together as the final descriptor of the input video.

The learning objective of multi-head collaborative learning

contains two main parts: 1) baseline loss: triplet loss (Ltri)

with hard mining [6] and identity classification loss (Lid)

with softmax cross-entropy; and 2) consistency regularization:

multiple-head consistency loss (Lhl) and multiple-frame con-

sistency loss (Lfl).

1) Baseline Loss: Triplet loss. The triplet loss with online

hard mining aims at capturing the relationship between differ-

ent video sequences [6]. Specifically, we randomly sample P

identities and for each identity randomly sample K tracklets

to form a batch of Nb samples, where Nb = P×K. Typically,

the loss function for each head h is formulated as follows

Lh
tri =

P∑

i=1

K∑

a=1

[

α+

hardest positive
︷ ︸︸ ︷

max
p=1···K

||fh
i,a − fh

i,p||2

− min
n=1···K
j=1···P

j 6=i

||fh
i,a − fh

j,n||2

︸ ︷︷ ︸

hardest negative

]

+

(5)

where [·]+ = max(·, 0), α is the margin between positive and

negative pairs, fh
i,a, fh

i,p and fh
i,n are the feature embeddings

of the anchor, positive and negative samples respectively. We

use positive and negative to denote the samples with same or

different identities from the anchor samples.

Identity loss. The identity loss aims at capturing the identity

invariant component in the learned features. The embedding

feature fh is fed into the classification layer to obtain classifi-

cation prediction logit zh, which is supervised by an identity

classification loss. The identity loss for each head h is denoted

by

Lh
id = −

1

Nb

Nb∑

i=1

Nid∑

k=1

yi,k log
exp(zhi,k)

∑Nid

l=1
exp(zhi,l)

(6)

where yi is the one-hot ground truth label of sample i in a

batch, zhi is the prediction logit and Nid is the total category

number of person identities.

2) Consistency Regularization: Multi-head consistency

loss. The multi-head consistency provides regularization to

each head, which aims at collaboratively improving the fea-

ture learning in multiple heads. The pipeline of multi-head

consistency loss is illustrated in Fig. 4. Since the multi-

head training framework has multiple prediction results, these

results can be averaged to obtain a soft label which presents

the consensus of multiple classifier heads. We use the soft label

to supervise each classifier head as multi-head consistency

loss, encouraging each classifier head to learn from the multi-

head prediction consensus. Specifically, the soft label ȳh is

computed by averaging the identity predictions zh over all

other heads followed by a softmax non-linearity. z̄h and ȳh

are defined by

z̄hk =
1

H − 1

∑

j 6=h

z
j
k (7)

ȳhk =
exp(z̄hk )

∑Nid

l=1
exp(z̄hl )

(8)

where H is the total number of learning heads.

The proposed multi-head consistency regularization mea-

sures the distance between multi-head prediction consensus

and single-head prediction, which aims at transferring the

learned information among multiple heads. Similar to the iden-

tity classification loss, we use the soft label as the supervision

by computing the softmax cross entropy between soft label

ȳhi and the identity prediction zhi . Our multi-head consistency

loss is defined by

Lh
hl = −

1

Nb

Nb∑

i=1

Nid∑

k=1

ȳhi,k log
exp(zhi,k)

∑Nid

l=1
exp(zhi,l)

(9)

During back-propagation, the gradients from multiple heads

are gathered into the backbone extractor to provide more

reliable gradient information and facilitate the extractor to

learn more robust global feature. In the inference stage, we

concatenate the fh from all the heads together as video feature

descriptors.

Multi-frame consistency loss. The multi-frame consistency

provides regularization on the intuition that the feature repre-

sentations of frames from the same video sequence should

be similar to each other, and can therefore help enhance the

robustness against outlier frames. We compute the Euclidean

distance between the frame-level features as multi-frame con-

sistency loss to restrict the differences between frames. Then,

the backbone feature network can focus on the common

patterns across frames rather than the noisy patches during

feature extracting process. The multi-frame consistency loss

for an input video sequence k is denoted by

Lk
fl =

T∑

t=1

T∑

s=1

‖ℓ2(ft)− ℓ2(fs)‖2 (10)

where ft is the features extracted from the tth frame of a

person tracklet after spatial global average pooling as depicted

in Fig. 3. ℓ2(·) denotes ℓ2 normalization.
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(a)

(b)

(c)

(d)

Fig. 5. Illustration of video frames sampled from tracklets in four video
person re-ID datasets: (a) PRID2011; (b) iLIDS-VID; (c) MARS; (d) Duke-
VideoReID.

The multi-frame consistency loss forces backbone extractor

to fully utilize the context information learned from CPA

modules and pay more attention to consistent pattern among

the person video. As a result, the ambiguity among learned

frame-level features caused by some frames’ corrupted regions

is relieved. And the final representation is more discriminative

and robust to occlusion, blur, illumination and pose changes.

3) Total Loss: In our method, the identity loss and triplet

loss are used as baseline loss for jointly representation learning

and metric learning, while the two kinds of consistency

regularization loss are specifically designed for our multi-head

video re-ID training framework. The multi-frame consistency

loss regularizes the feature extracted from different frames,

while the multi-head consistency loss regularizes the identity

prediction from different classifier heads. Both of them are

combined with two baseline loss functions to jointly train

the whole framework. The total loss L for our multi-head

collaborative learning objective framework is defined by

L =
H∑

h=1

(Lh
tri + Lh

id + βLh
hl) +

K∑

k=1

γLk
fl (11)

where β and γ are coefficients to adjust the contribution of

Lh
hl and Lfl to the total loss respectively. K represents the

total number of video sequences in each batch.

IV. EXPERIMENTAL RESULTS

In this section, we thoroughly analyze the effectiveness our

method on four challenging video person re-ID dataset in-

cluding PRID2011, iLIDS-VID, MARS and Duke-VideoReID.

Firstly, to validate the superiority of our method, we compare

our approach with other state-of-the-art video re-ID methods

on four challenging video re-ID datasets. We then conduct ex-

tensive ablation experiments to demonstrate the effectiveness

of each component of our proposed approach. In addition,

we analyze the effect of different parameter setting in our

approach, visualize the learned part attention map and analyze

the computation efficiency of our framework. At last, we also

evaluate the generalization ability of our approach in cross-

dataset experiments.

A. Datasets and Evaluation Protocol

The PRID2011 dataset [65] is a relatively old and small

video-based person re-identification dataset. It is collected in

outdoor scenes with relatively simple backgrounds but large

illumination and viewpoint change, as shown in Fig. 5 (a).
The pedestrian tracklets of this dataset are captured by two

non-overlapping surveillance cameras. The camera A captures

385 identities and the camera B captures 749 identities. There

are 400 tracklets of 200 pedestrians captured by both camera

A and B. Each pedestrian sequence is consisting of 5 to 675

frames with an average number of 100. we only select the

178 identities of which the length of pedestrian tracklet is

more than 27 frames.

The iLIDS-VID dataset [66] is also a relatively old

and small video-based person re-identification dataset which

consists 600 tracklets of 300 distinct individuals under two

non-overlapping cameras, with bounding boxes annotated by

humans. Each tracklets has 23 to 192 frames and the average

number is 73. Some samples of iLIDS-VID are shown in Fig. 5

(b). Following the standard evaluation protocol of iLIDS-VID

and PRID2011, the video clips captured by the first camera

are regard as probe set and those captured by the other are

regard as gallery set. All the identities in dataset are randomly

split into 50% for training and 50% for testing. We repeat

the procedure for 10 times with different test/train splits and

obtain the final average results.

The MARS dataset [10] is one of the largest video-based

person re-identification datasets. It consists of 1,261 pedes-

trians and 20,751 tracklets captured by six non-overlapping

cameras on Tsinghua campus, as shown in Fig. 5 (c). Each

identity is captured by at least 2 cameras and has 13.2

sequences on average. The bounding boxes in MARS dataset

are generated automatically by DPM detector and GMMCP

tracker. 3,248 tracklets are used as distractors due to the failure

of detection or tracking. The 1,261 pedestrians are split into

625 and 636 identities for training and testing.

The Duke-VideoReID dataset [11] is a newly released

large-scale video-based person re-identification dataset derived

from the Duke dataset [67]. Some samples are shown in

Fig. 5 (d). It consists of 4,832 tracklets from 1,812 identities

and each identity only has one tracklet under a camera, with

bounding boxes annotated manually. It is split into 702 identi-

ties for training, 702 identities for testing and 408 identities as

the distractors. Totally, there are 2,196 tracklets for training,

and 2,636 tracklets for testing and distractors.

Evaluation Metrics. We employ the Cumulative Matching

Characteristic curve (CMC) and the mean Average Precision

score (mAP) as evaluation criteria. CMC considers re-ID as

a ranking problem and represents the accuracy of the person

retrieval with each given query. Since the tracklets of both
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TABLE I
PERFORMANCE COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE PRID-2011 AND ILIDS-VID DATASET. DS REPRESENTS THE SENSE

SAMPLING STRATEGY DURING EVALUATION STAGE. THE RANK-1, -5, -10, -20 ACCURACY SCORES (%) ARE REPORTED. OF IS SHORT FOR OPTICAL

FLOW.

Classes Method
PRID-2011 iLIDS-VID

R1 R5 R10 R20 R1 R5 R10 R20

Traditional

DVDL [34] 40.6 69.7 77.8 85.6 25.9 48.2 57.3 68.9

DVR [66] 48.3 79.4 87.3 94.4 41.3 63.5 72.7 83.1

TDL [20] 58.6 80.8 87.4 93.3 56.2 88.2 95.3 97.8

STFV3D+KISSME [68] 62.5 83.6 88.1 89.9 44.3 71.7 83.7 91.7

RFANet+RSVM [12] 58.2 85.8 93.4 97.9 49.3 76.8 85.3 90.0

LMKDCCA [69] 86.4 97.5 99.6 100 73.3 90.5 94.7 98.1

DL-based

CNN+Kiss.+MQ [10] 70.0 81.4 - 95.1 53.0 81.4 - 95.1

CNN-RNN[13] 70.0 90.0 95.0 97.0 58.0 84.0 91.0 96.0

SeeForest [15] 79.4 94.4 - 99.3 55.2 86.5 - 97.0

ASTPN [16] 77.0 95.0 99.0 99.0 62.0 86.0 94.0 98.0

QAN [14] 90.3 98.2 99.3 99.8 68.0 86.8 95.4 97.4

RQEN [70] 91.8 98.4 99.3 99.8 77.1 93.2 97.7 99.4

CSACSE [19] 88.6 99.1 - - 79.8 91.8 - -

CSACSE [19]+OF† 93.0 99.3 100 100 85.4 96.7 98.8 99.5

Ours 91.8 98.9 100 100 85.2 96.8 98.8 99.8

Ours+DS 92.2 99.1 100 100 85.8 97.1 98.9 99.8

† It achieves slightly better performance by adding the optical flow information, which is quite time-consuming and unsuitable for real applications.

TABLE II
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON MARS AND

DUKE-VIDEOREID DATASETS. DS REPRESENTS THE SENSE SAMPLING

STRATEGY DURING EVALUATION STAGE. THE MAP (%) AND RANK-1, -5,
-20 ACCURACIES (%) ARE REPORTED. OF IS SHORT FOR OPTICAL FLOW.

Method
MARS

mAP R1 R5 R20

CNN+Kiss.+MQ [10] 49.3 68.3 82.6 89.4

SeeForest [15] 50.7 70.6 90.0 97.6

QAN [14] 51.7 73.7 84.9 91.6

Latent Parts [71] 56.1 71.8 86.6 93.0

DuATM [72] 62.3 78.7 90.9 95.8

TriNet [6] 67.7 79.8 91.4 -

K-reciprocal [73] 68.5 73.9 - -

RQEN [70] 71.1 77.8 88.8 94.3

STAN [18] 65.8 82.3 - -

CSACSE [19] 69.4 81.2 92.1 -

Part-Aligned [31] 75.9 84.7 94.4 97.5

CSACSE [19]+OF 76.1 86.3 94.7 98.2

STA [17] 80.8 86.3 95.7 98.1

NVAN [53] 82.8 90.0 - -

Ours 83.4 88.2 96.4 98.5

Ours+DS 84.1 88.2 96.6 98.5

Method
Duke-VideoReID

mAP R1 R5 R20

ETAP(supervised) [11] 78.3 83.6 94.6 97.6

STA [17] 94.9 96.2 99.3 99.6

NVAN [53] 94.9 96.3 - -

Ours 94.7 96.0 98.9 99.7

Ours+DS 95.8 96.6 99.1 99.7

MARS dataset and Duke-VideoReID dataset are captured from

multiple cameras, there may be multiple correct matching

results in the ranking list. In this case, mAP is a more suitable

and robust metric. The mAP considers person re-ID task as a

retrieval problem. We first calculate the average precision (AP)

for each query. Then, the mean value of APs of all queries is

calculated as the mAP.

B. Implementation details

Sampling strategy. During training, to model more abun-

dant spatial-temporal information and reduce the GPU re-

source occupy at the same time, we apply the restricted

random sampling strategy [18] to generate a compact summary

of the pedestrian video sequence. Concretely, given an input

video, we first divide it into several segments of equal length,

then we randomly sample a frame from each segment to

form our input video sequences. In this case, the input video

clips enable our model to utilize visual information from the

entire video and avoid the redundancy between sequential

and neighboring frames. During testing, we use two sampling

strategies: in the First Sampling (FS) strategy, only the first

frame from each segment is used as the test sample to form the

input video sequence; in the Dense Sampling (DS) strategy,

the ith frame from each segment is used as the test sample

to form the ith input video sequence, and we average the

embedding of all the inputs video sequence to obtain the

final video descriptor. DS strategy consider full-scale spatial-

temporal information and result more robust video descriptor.

However, it’s less efficient than FS. For the sake of efficiency

and simplicity, we use FS as default sampling strategy unless

stated in our experiments.

Network parameter settings. All of our experiments are

implemented on the PyTorch platform on Linux with NVIDIA

1080Ti GPU. ResNet-50 pretrained on ImageNet is employed

as our baseline model and backbone network. Three CPA mod-

ules are further inserted after conv2 x, conv3 x, conv4 x

respectively. The spatial size of each video frame is set as

256 × 128 pixels in both training and testing stages. The

number of spatial regions of each frame in CPA module is

set to M = 4, and the length of input video sequence is

set to T = 4 as well. The dimensionality reduction ratio of

CPA module is set to r = 2. The number of the collaborative

learning heads H is set to 6. We recommend to set the margin

constant α of the hard-mining triplet loss in Eqn. 5 to 0.3.
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The coefficients β and γ are set as 0.3 and 5.0 respectively in

Eqn. 11 based on their magnitudes. Dropout rate in each head

is set to 0.5.

Training strategy. We randomly sample 8 identities with

4 video sequences to form a mini-batch with batch size 32.

Random cropping and random horizontal flipping are used

as data augmentation. Stochastic Gradient Descent (SGD)

with momentum 0.9 is adopted as the optimizer to train the

model for totally 300 epochs. The weight decay factor for

L2 regularization is set to 0.0005. We set the initial learning

rate as 0.01 and decrease it by 10 times at 100 epochs and

200 epochs respectively. The parameters in BatchNorm layers

are also updated in the training phase. The consensus loss is

added to the total loss only after 200 epochs, which ensures

each head to produce reliable identity predictions.

C. Comparison with State-of-the-art Methods

We compare with the state-of-the-art methods on two large-

scale video re-ID dataset, MARS and Duke-VideoReID, and

two datasets, PRID2011 and iLIDS-VID, as shown in Table II

and Table I. Noted that our results are not refined by any

post-processing techniques such as re-ranking. And we only

take pedestrian image sequences as input, no other extra

information like optical flow is utilized. On each dataset,

our approach outperforms all the previous state-of-the-arts

on both mAP and Rank-1 accuracy. The results suggest that

our approach is very effective for video-based person re-

identification in challenging scenarios.

Results on MARS. We report the comparison of our

approach with twelve state-of-the-art methods, including C-

NN+Kissme+MQ [10], SeeForest [15], QAN [14], Laten-

t Parts [71], DuATM [72], TriNet [6], K-reciprocal [73],

RQEN [70], STAN [18], Part-Aligned [31], CSACSE [19] and

STA [17]. As shown in Table II, our approach achieves 84.1%

in mAP and 88.2% in Rank-1 accuracy, which obtains 3.3%

and 1.9% improvement in terms of mAP and Rank-1 accuracy

respectively compared to previous best results. The prominent

improvement demonstrates the effectiveness and superiority of

our proposed framework for video person re-ID on large-scale

dataset. It also indicates that the multi-level context-aware part

attention mechanism and the multi-head collaborative learning

are superior to deal with video person re-ID dataset captured

under complex environment, such as large gallery set and

seriously occlusion.

Results on Duke-VideoReID. The comparison of video re-

ID performance on Duke-VideoReID is shown in Table II.

Duke-VideoReID is newly released, and there are only two

published works, ETAP [11] and STA [17], evaluated on this

dataset. Our approach achieves 95.8% in mAP and 96.6%

in Rank-1 accuracy, which outperforms both of previous two

works. By exploiting spatial and temporal information in

multi-level of convolution neural network rather than utilizing

spatial-temporal attention only after last convolution layer in

STA [17], our approach achieves superior performance, with

0.9% improvement in mAP and 0.4% improvement in Rank-1

accuracy respectively.

Results on PRID2011 and iLIDS-VID. On the PRID2011

and iLIDS-VID dataset, we compare our proposed method

TABLE III
EVALUATION OF THE MULTI-LEVEL CONTEXT-AWARE PART ATTENTION

MODULE COMPARING TO THE SINGLE-LAYER ATTENTION MECHANISM

AND OTHER ATTENTION BASED METHODS. CPA IS PLUGGED INTO A

SINGLE RESIDUAL BLOCK (CPA c2, CPA c3, CPA c4) RESPECTIVELY

AND ALL THREE BLOCKS (CPA all) AT THE SAME TIME. * DENOTES THAT

THE ATTENTION MODULE IS REPRODUCED BY US ON THE SAME

BASELINE. THE MAP AND RANK-1 ACCURACY (%) ARE REPORTED.

Method
MARS Duke-VideoReID

mAP R1 mAP R1

Baseline 77.7 83.8 89.0 91.3

STA* [17] 78.8 84.7 90.4 92.6

TA* [21] 78.0 84.0 89.7 92.2

TSA* [74] 77.7 85.1 89.4 91.7

MSTA* [75] 78.8 84.9 90.0 92.6

CPA c2 78.3 84.8 90.0 92.3

CPA c3 78.8 84.9 90.4 92.3

CPA c4 78.8 84.5 90.7 92.6

CPA all 80.1 86.3 91.8 93.2

with fourteen existing state-of-the-art video-based person re-

ID methods, including DVDL [34], DVR [66], TDL [20],

STFV3D+KISSME [68], RFANet+RSVM [12], LMKDC-

CA [69], CNN+Kiss.+MQ [10], CNN-RNN [13], SeeFor-

est [15], ASTPN [16], QAN [14], RQEN [70], STAN [18]

and CSACSE [19]. Among all these approaches, the first

six methods are traditional methods which uses hand-crafted

features, while the others are deep learning based methods

and adopt convolutional network to extract frame-level feature.

Table I shows the comparison results. Our approach achieves

competitive results compared to the most recent work on Rank-

1, -5, -10 and -20 accuracy scores on both PRID2011 and

iLIDS-VID dataset. Notice that CSACSE [19]+OF achieves a

very high performance by incorporating optical flow as extra

information to capture the motion information. However, it

brings more computation and makes the whole network unable

to be trained end-to-end. Comparing to CSACSE [19] without

incorporating optical flow, our approach improves the Rank-

1 accuracy by 3.6% and 6.0% on PRID2011 and iLIDS-

VID respectively. Even without utilizing any extra information,

our approach still outperforms all previous methods and sets

a new state-of-the-art on iLIDS-VID, and achieves state-of-

the-art performance on PRID2011. It should be noted that

both PRID2011 and iLIDS-VID are relatively old and small,

the deep model are overfitting to these two dataset and the

performance are almost saturated, especially on PRID2011.

D. Ablation Study

To validate the effectiveness of our proposed method, we

conduct extensive ablation experiments to investigate the im-

provement brought by each component of our framework,

Effectiveness of Each Component. To evaluate the ef-

fectiveness of each component in our approach, we conduct

several analytic experiments on MARS and Duke-VideoReID

datasets. The results are shown in Table IV. We set our

baseline model B to be Resnet50 without multi-level CPA as

backbone network and single head with two baseline loss in

section III-B1 as supervision. B w/o TL indicates training

the baseline model without hard triplet loss. Compare to B,

our multi-level CPA module in B+CPA improves mAP and
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TABLE IV
COMPONENT ANALYSIS OF THE PROPOSED APPROACH ON MARS AND DUKE-VIDEOREID DATASETS. B REPRESENTS THE BASELINE MODEL TRAINED

ONLY WITH IDENTITY CLASSIFICATION LOSS AND HARD TRIPLET LOSS (TL). CPA IS OUR PROPOSED MULTI-LEVEL CONTEXT-AWARE PART ATTENTION

MODULE, FL IS THE MULTI-FRAME CONSISTENCY REGULARIZATION LOSS, MHC IS THE MULTI-HEAD COLLABORATIVE LEARNING FRAMEWORK. HL
PRESENTS THE MUTLI-HEAD CONSISTENCY REGULARIZATION LOSS FOR EACH HEAD. DS REPRESENTS THE DENSE SAMPLING STRATEGY DURING

EVALUATION STAGE. THE MAP (%) AND RANK-1, -5, -10, -20 ACCURACY SCORES (%) ARE REPORTED.

Method
MARS Duke-VideoReID

mAP R1 R5 R10 R20 mAP R1 R5 R10 R20

B w/o TL 75.0 82.4 93.0 95.5 96.8 87.5 90.6 97.3 98.6 99.0

B 77.7 83.8 94.7 96.0 97.2 89.0 91.3 97.9 98.4 99.0

B+FL 78.9 84.9 95.3 96.7 97.4 90.6 92.0 98.9 99.1 99.4

B+CPA 80.1 86.3 95.2 96.7 97.9 91.8 93.2 98.3 99.0 99.7

B+CPA+FL 80.7 86.8 95.4 97.1 97.8 92.6 93.7 98.7 99.0 99.6

B+CPA+FL+MHC 82.7 87.5 96.1 97.6 98.2 94.4 95.3 98.9 99.4 99.6

B+CPA+FL+MHC+HL 83.4 88.2 96.4 97.6 98.3 94.7 96.0 98.9 99.6 99.7

B+CPA+FL+MHC+HL+DS 84.1 88.2 96.6 97.8 98.5 95.8 96.6 99.1 99.4 99.7

Rank-1 accuracy by 2.4% and 2.5% respectively on MARS, as

well as 2.8% and 1.9% on Duke-VideoReID. These prominent

improvement demonstrates that the CPA module are very

useful to boost re-ID performance by considering the multiple

level features in different convolutional layers. FL means the

multi-frame consistency loss, which further brings about 0.7%
improvement in both mAP and Rank-1 accuracy compared

to B+CPA by restricting the ambiguity among frame-level

features and weakening the influence of noisy frames. MHC

refers to the multi-head collaborative learning framework. The

multi-head learning framework brings huge improvement. We

then add the multi-head consistency loss HL to each head

to demonstrate the benefit from the knowledge transferring

and regularization provided by the prediction consensus of

head population, which results 0.7% improvement in both

mAP and Rank-1 accuracy in MARS dataset. Both the multi-

frame consistency loss and multi-head consistency loss con-

tribute to the overall performance gain on two datasets. This

demonstrates that the regularization process is really helpful

for training a video re-ID model. By further employing the

dense sampling (DS) strategy during testing, our approach

fully utilizes the information from the whole original video

sequence and achieves a very high performance. The DS

strategy usually requires much more time than the FS strategy

as discussed in Sec. IV-B.

Effectiveness of Multi-Level Attention. We first evalu-

ate the multi-level attention strategy on MARS and Duke-

VideoReID datasets in Table III. Compared to the widely

used single layer attention module, the proposed multi-level

attention method achieves better performance consistently on

both datasets. The superiority verifies the proposed idea to

utilize the multi-level features in different convolutional layers.

Besides, we also demonstrate the superiority of our method

in camparison with STA [17], which only employs spatial-

temporal attention before final global average pooling layer.

Both STA [17] and our proposed method utilize the spatial-

temporal attention. However, rather than simply using it as a

weighted pooling strategy in pooling layer [17], we introduce

a multi-level attention module by exploring the attention cues

in multiple different convolution layers to capture discrimina-

tive local features. Results in Table III demonstrate that our

proposed strategy consistently performs better than STA [17],

(a)

(b)

Fig. 6. (a) Performance comparison between variants of B+CPA with
different number of spatial regions M . (b) Performance comparison between
variants of B+CPA+FL+MHC with different number of collaborative learning
heads (H). The mAP (%) and Rank-1 accuracy (%) on MARS and Duke-
VideoReID datasets are reported.

typically with 2% improvement in both mAP and Rank-1

accuracy. Several other attention based video re-ID methods

are also reproduced and compared, including Temporal At-

tention (TA) [21] and Temporal Self Attention (TSA) [74] ,

Multi-scale Spatial-Temporal Attention (MSTA) [75]. All of

these attention mechanisms, including CPA, are implemented

on the same baseline for fair comparison. These attention

mechanisms also only pay attention to the discriminative frame

or patch at the end of CNN for feature aggregating. Our

multi-level CPA model performs significantly better than other

attention mechanisms. The experimental results demonstrate

our multi-level CPA has stronger capability to model spatial-

temporal information and learn discriminative features.
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TABLE V
ANALYSIS OF DIFFERENT HYPER-PARAMETERS ON MARS AND

DUKE-VIDEOREID DATASETS. THE MAP AND RANK-1 ACCURACY (%)
ARE REPORTED.

Parameter
MARS Duke-VideoReID

mAP R1 mAP R1

r

1 83.4 88.1 94.5 95.9

2 83.4 88.2 94.7 96.0

4 82.6 87.8 94.2 95.6

β

0.1 82.9 87.6 94.2 95.7

0.3 83.4 88.2 94.7 96.0

0.5 83.1 87.9 93.9 95.2

γ

1 83.1 88.0 94.4 95.8

5 83.4 88.2 94.7 96.0

10 82.5 87.4 93.7 95.1

E. Parameter Analysis.

In this section, we conduct experiments on MARS and

Duke-VideoReID dataset to analyze the effect of different

parameter settings of CPA and MHC modules respectively:

the number of spatial region M in CPA, the number of head

H in MHC, and the number of hyper-parameter.

Different number of spatial region M . We analyze the

effect with different spatial regions M in CPA module on two

datasets. As shown in Fig. 6(a), five different numbers of M :

1, 2, 4, 8 and 16 are evaluated. Here, M = 4 corresponding to

the B+CPA model in Table IV. Notice that when M = 1, the

CPA module only models the temporal dependency of frame-

level features rather than part-level ones. As M increases,

the CPA module is able to capture more fine-grained context-

aware part attention and aggregate the spatial-temporal context

information more flexibly. However, a large M means each

region can be too small to contain enough information to

present body part, and the relationship between local parts

is too complicated to learn. Empirically, we choose M = 4 in

all the experiments.

Different number of head H . We evaluate the performance

with different head numbers H (from 1 to 12) on two datasets,

as shown in Fig. 6 (b). Notice that H = 6 corresponding to

the B+CPA+FL+MHC model in Table IV. It is shown that

the performance of our model first increases when the head

number H increases, and it achieves the best when H = 6
or H = 8. However, when the head number H continues

increasing, the performance begins falling slightly, which may

be caused by the increasing variance of the gradients to the

backbone network.

Different number of hyper-parameter We conduct a

set of experiments on three different hyper-parameters r, γ,

and β on two datasets, as reported in Table V. When the

channel dimension of CPA keeps constant, i.e. r = 1, the

performance is similar to our setting r = 2 that reduces the

running memory. However, the smaller dimension makes the

performance drop like r = 4. Besides, the table shows that

the performance is insensitive to the weights β and γ of loss

function except for γ = 10. This phenomenon means that the

higher multi-frame consistency loss brings unstable learning

and it should be carefully set. We choose the setting β = 0.3
and γ = 5 according to the best results.

TABLE VI
ANALYSIS OF DIFFERENT NORMALIZATION METHODS AND MULTI-HEAD

CONSISTENCY LOSS FUNCTIONS ON MARS AND DUKE-VIDEOREID
DATASETS. THE MAP AND RANK-1 ACCURACY (%) ARE REPORTED.

Method
MARS Duke-VideoReID

mAP R1 mAP R1

ℓ2 Norm 83.2 87.9 94.1 95.5

Softmax Norm 83.4 88.2 94.7 96.0

Mean Square Error 82.7 87.5 93.4 94.8

Cross Entropy 83.4 88.2 94.7 96.0

Fig. 7. Performance analysis of CPA and MHC with different backbones
(ResNet50, ResNet101, DenseNet121 and MobileNetV2) on MARS and
Duke-VideoReID datasets. The mAP (%) and Rank-1 (%) are reported.

F. Normalization and Multi-head Consistency Loss

We also investigate the performance of different normal-

ization methods and multi-head consistency loss functions on

two datasets, as shown in Table VI. For the feature normal-

ization, the softmax normalization performs better than the ℓ2
normalization method, meaning better discriminability. As the

identity loss uses the cross-entropy loss to learn features, we

naturally use it in multi-head consistency loss. For experiment

completeness, we also check the mean square loss [76],

showing that the cross-entropy loss is more suitable for multi-

head consistency due to its performance improvement.

G. Backbone Analysis.

To demonstrate the generality of our re-ID method, we

conduct more experiments to validate the effectiveness of both

multi-level CPA model and multi-head collaborative learning

scheme in several different backbone architectures, including

ResNet50, ResNet101, DenseNet121 and MobileNetV2. The

comparison results are shown in Fig. 7. Botch multi-level CPA

model and multi-head collaborative learning scheme brings

consistent improvement in these different architectures.

H. Application of Other Collaborative Learning Methods.

We also implement another two state-of-the-art collabora-

tive learning methods, EnsembleNet [77] and Feature Fusion
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TABLE VII
COMPARISON WITH THE STATE-OF-THE-ART COLLABORATIVE LEARNING

METHODS APPLIED ON VIDEO RE-ID TASK. RANK-1 ACCURACY AND MAP
(%) ARE REPORTED ON MARS AND DUKE-VIDEOREID DATASETS.

Datasets MARS Duke-VideoReID

Methods mAP R1 mAP R1

EnsembleNet [77] 80.9 86.9 92.0 93.2

FFL [78] 80.9 87.0 91.2 92.7

MHC+FL+HL 81.4 87.1 93.6 94.4

Learning (FFL) [78], and apply them on the same video

re-ID baseline model for fair comparison with our multi-

head collaborative learning framework. The comparison results

are shown in Table VII. EnsembleNet is also constructed

from a multi-head supervision structure, but it adopts the

co-distillation loss function to jointly train multiple classifier

heads. FFL employs two sub-networks to extract the feature

representation respectively and then adopt a fused classifier

to supervise the backbone network collaboratively with other

individual classifiers. Both EnsembleNet and FFL bring signif-

icant improvements on two datasets compared to the baseline

model. The performance of EnsembleNet and FFL can be

further improved after more effort on tuning the coefficient

of the distillation loss and structure. The experimental results

indicate that the collaborative learning based methods are

really helpful to improve the performance.

I. Part Attention Visualization.

We show the learned spatial and temporal attention weights

for different parts on MARS dataset in Fig. 8. It is obtained by

first averaging the feature maps along the channel dimension,

then applying softmax to normalize the sum of value in each

body part. The attention weights reflect the quality of each

part region, and our approach is robust to noisy frames such

as occlusion, pose variation, background clutter and spatial

misalignment. Specifically, our model pays less attention to the

self-occlusion frame caused by pose variation in the first row.

Moreover, in the second row, thanks to the learned context-

aware knowledge in early stage of convolutional neural net-

work, our model eliminate effect of the noisy frame rather

than focus on the girl with black backpack, where the target

man in white shirt is partially occluded by another girl.

J. Efficiency Analysis.

We adopt the floating-point operations (FLOPs) in num-

ber of multiply-adds and the required GPU memory during

training to measure the computational cost of CNN model.

Both the FLOPS and GPU memory of our method is listed

in Table VIII. The input to the network is a single tracklet of

4 frames with spatial resolution 256× 128. The classification

layers are ignored when calculating FLOPS, since they are

not used in the inference stage. The batch size is set to be 32

when measuring the GPU memory during training. Both our

proposed CPA and MHC increase less than 1% computational

cost for FLOPS compared to the baseline model. There is only

1.4% increment of GPU memory when training our model.

We also compare the efficiency and effectiveness between

Non-Local block [55] and our CPA module. We simply

TABLE VIII
EFFICIENCY ANALYSIS OF MULTI-LEVEL CPA AND MHC FRAMEWORK.

NL INDICATES THE NON-LOCAL BLOCKS. FLOPS DENOTES THE

FLOATING POINT OPERATIONS. MEM. DENOTES THE REQUIRED GPU
MEMORY DURING TRAINING. INC. DENOTES THE RELATIVELY

INCREMENT. MAP (%) ON MARS DATASET IS REPORTED.

Method FLOPS Inc. Mem. Inc. mAP Inc.

Baseline 10.81G - 9.49G - 77.7 -

Baseline+CPA 10.82G 0.1% 9.54G 0.5% 80.1 3.1%

Baseline+MHC 10.90G 0.8% 9.58G 0.9% 80.6 3.7%

Baseline+NL [55] 14.05G 29.9% 23.92G 152.1% 78.9 2.0%

Ours 10.91G 0.9% 9.62G 1.4% 83.4 7.3%

Fig. 8. Visualization of the learned spatial and temporal part attention weights
for different parts. The brighter the part, the higher the weight. The four
pedestrian tracklets are sampled from MARS dataset.

replace all the CPA modules with Non-Local blocks to realize

baseline+NL for fair comparison. The CPA module achieves

better performance with much less FLOPS and GPU memory

compared to Non-Local block. It indicates that our CPA

module is a more efficient and effective attention mechanism

for video re-ID task compared to Non-Local structure. The

comparison results demonstrate that the performance is sig-

nificantly improved by our approach, due to the excellent

network structure. Considering that our CPA module is both

time-efficiency and memory-efficiency, it will bring more

improvement by inserting more CPA modules in the backbone

network as our future work.

K. Generalization Ability Analysis.

Different re-ID datasets are usually collected under different

environments and introduce bias of data distribution. The

model trained on one dataset has a drop in performance when

evaluated on other datesets. The cross-dataset performance

can indicate the performance when applying a method in

real surveillance system. In addition, it can also evaluate

the generalization ability of model. To further investigate

the generalization ability of our full approach, we conduct

cross-dataset experiment between PRID2011 and iLIDS-VID

datasets. We compare our full approach with other state-of-the-

art works, including CNN-RNN [13], ASTPN [16], TRL [79]
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TABLE IX
EVALUATION OF OUR FULL APPROACH WITH OTHER STATE-OF-THE-ART METHODS UNDER CROSS-DATASET SETTING. THE RANK-1, -5, -10, -20

ACCURACY SCORES (%) ARE REPORTED.

Method
PRID2011 to iLIDS-VID iLIDS-VID to PRID2011

R1 R5 R10 R20 R1 R5 R10 R20

CNN-RNN [13] - - - - 28.0 57.0 69.0 81.0

ASTPN [16] - - - - 30.0 58.0 71.0 85.0

TRL [79] 8.9 22.8 - 48.8 29.5 59.4 - 82.2

SCAN [61] 9.7 27.5 36.9 48.6 42.8 71.6 80.2 88.9

Ours 19.3 33.3 42.7 57.3 51.7 76.4 86.5 93.3

and SCAN [61], of which the comparison results is listed in

Table IX. The performance drops a lot when evaluting the

model on other dataset. When training on PRID2011 dataset,

our method achieves 19.3% Rank-1 accuracy. When training

on iLIDS-VID dataset, the Rank-1 accuracy of our method is

51.7%. In both cases, our method outperforms other state-of-

the-art methods by a large margin. The results suggest that our

proposed approach has more powerful generalization ability in

comparison with other methods.

V. CONCLUSION

In this work, we have proposed a novel multi-level context-

aware part attention model to tackle the video-based person re-

ID problem by exploiting the informative features in different

convolutional layers. The context-aware part attention module

extracts robust and discriminative part features by considering

the context information in both spatial and temporal domains.

To further improve the performance, we propose a new multi-

head collaborative learning scheme with two novel consistency

regularization terms. The multi-head collaborative learning

framework improves the generalization ability of backbone

feature network by stronger supervision from a resemble of

learning heads initialized differently. We conduct extensive

experiments to demonstrate the effectiveness of each com-

ponent in our method. The experimental results demonstrate

that our video-based person re-ID approach achieves superior

performance comparing to previous state-of-the-arts. We are

exploring to design a light-weight architecture to capture more

precise and informative regions for better person re-ID in the

future work.
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