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Abstract

Existing person re-identification (re-id) methods depend

mostly on single-scale appearance information. This not

only ignores the potentially useful explicit information of

other different scales, but also loses the chance of mining

the implicit correlated complementary advantages across

scales. In this work, we demonstrate the benefits of learn-

ing multi-scale person appearance features using Convolu-

tional Neural Networks (CNN) by aiming to jointly learn

discriminative scale-specific features and maximise multi-

scale feature fusion selections in image pyramid inputs.

Specifically, we formulate a novel Deep Pyramid Feature

Learning (DPFL) CNN architecture for multi-scale appear-

ance feature fusion optimised simultaneously by concurrent

per-scale re-id losses and interactive cross-scale consen-

sus regularisation in a closed-loop design. Extensive com-

parative evaluations demonstrate the re-id advantages of

the proposed DPFL model over a wide range of state-of-

the-art re-id methods on three benchmarks Market-1501,

CUHK03, and DukeMTMC-reID.

1. Introduction

Person re-identification (re-id) aims at matching identity

classes of person images across non-overlapping camera

views deployed over open surveillance spaces. This is an

inherently challenging task because person visual appear-

ance may change dramatically in different camera views

due to unknown covariates in human pose, view angle, il-

lumination, occlusion, and background clutter [16]. Exist-

ing works focus on designing identity discriminative feature

representation [17, 13, 75, 29, 39, 37] or learning match-

ing distance metrics [22, 69, 78, 65, 41, 73, 63, 64, 66, 8]

or their combination in a deep learning framework [25,

3, 61, 68, 52, 67]. By aligning local body parts for fea-

ture extraction followed by cross-view matching, existing

methods often resize all the person bounding box images

into a single scale as a canonical pre-processing normali-

sation step [33, 27, 79], that is, existing re-id models as-

sume a normalised single-scale based re-id. This, however,

is against that person images are almost always captured in
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Figure 1. Illustration of scale alignment of person bounding boxes

captured at different scales (resolutions) in public space.

open surveillance spaces over a large range of resolutions

(scales) due to the inherent uncontrolled distances between

objects and the cameras (Fig. 1). Object re-id is intrinsically

a multi-scale matching problem.

We argue that the single-scale approach to person re-id

is suboptimal and explicit multi-scale representations are es-

sential. A single-scale representation blurs salient informa-

tion at different scales useful in object matching. Our con-

sideration is partially inspired by the human visual system

that takes into account jointly multi-scale visual informa-

tion including feature representations at both small (global

contextual) and large (local saliency) scales [40, 55]. In

general, object/event/scene representation for recognition

at explicitly different scales is widely adopted in computer

vision [24, 44, 10], in particular the idea of constructing

feature pyramids from image pyramid inputs [2, 24, 35].

A pyramid representation aims to be scale-invariant in the

sense that a scale change in image is counteracted by a scale

shift within the feature pyramids. In this work, we investi-

gate multi-scale deep representation learning optimised for

person re-id. This is under-studied in the literature.

To this end, we address the following problems: (i) Fea-

ture learning behaviours may be different and/or even mu-

tually inconsistent at different scales, therefore a straight-

forward feature concatenation of multi-scales is unlikely

to result in optimal feature fusion; (ii) Any complemen-

tary correlation between different pyramid levels is un-

known and may not be constant for different images, there-

fore must be learned and optimised synergistically across

data; (iii) People’s appearance in open surveillance scenes

is diversely captured at an arbitrary scale (unknown). This

makes it challenging to learn the underlying correlations

among features of different-scales to encode both the finer
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and the coarser appearance information. To formulate an

end-to-end multi-scale deep re-id model, one straightfor-

ward approach is by firstly combining scale-specific fea-

ture layers and then back-propagating the supervised loss

to all scale-specific branches in a joint learning fashion.

This design however ignores the asynchronous learning be-

haviour in different branches and potentially corrupts the

multi-scale feature learning. To ensure synergistically cor-

related feature learning at different scales, we propose a

Deep Pyramidal Feature Learning (DPFL) CNN architec-

ture for learning explicitly multi-scale deep feature rep-

resentation. Specifically, the DPFL consists of m scale-

specific branches each for learning one input image scale

in the pyramid, and an additional scale-fusion branch for

learning complementary combination of multi-scale fea-

tures (Figure 2). Critically, the scale-specific branches are

not independent to each other but synergistically correlated.

This is the joint effect of (i) simultaneously enforcing sep-

arate learning to each branch and (ii) the special design of

a closed-loop cross-branch interactive regularisation mech-

anism. The former aims to maximise scale-specific fea-

ture discriminative capability by subjecting them all to the

same identity label constraint, whilst the latter is designed

to concurrently optimise the underlying complementary ad-

vantages across scales. Under such balance between in-

dividual learning and correlation learning in a closed-loop

form, we allow all branches to be learned concurrently in an

end-to-end fashion so as to maximise scale-specific feature

learning and optimal discriminative feature selection from

multi-scale representations for person re-id.

We make two contributions in this work: (I) We inves-

tigate the multi-scale feature learning problem for person

re-identification. This is significantly different from typi-

cal existing re-id methods considering only a single-scale

person appearance information and therefore likely to be

suboptimal for re-id matching of cross-view person bound-

ing box images captured at intrinsically different scales.

(II) We formulate a novel Deep Pyramidal Feature Learn-

ing (DPFL) CNN architecture design for not only learning

scale-specific discriminative features by optimising multi-

ple classification losses on the same person label informa-

tion concurrently, but also maximising jointly multi-scale

complementary fusion selections by multi-scale consensus

regularisation in a closed-loop form. This design overcomes

the cross-scale feature learning discrepancy challenge by

a principled inter-level feature interaction in the pyramid

whilst achieving cumulatively multi-scale complementary

feature selection over the mini-batch training iterations. Ex-

tensive comparative evaluations demonstrate the superiority

of the proposed DPFL model over a wide range of state-of-

the-art re-id methods on three benchmark datasets Market-

1501 [77], CUHK03 [25], and DukeMTMC-reID [79].

2. Related Work

Existing person re-id works mainly focus on feature rep-

resentations and matching models. Many different hand-

crafted person image feature descriptors [13, 75, 62, 36, 71,

39, 29, 32] have been designed in the past decade. They

have achieved a sequence of continuous re-id performance

boost on benchmarking datasets when integrated with vari-

ous supervised matching models [22, 42, 76, 28, 69, 29, 30,

41, 73, 64, 74, 63, 81, 43, 72]. Recently, deep learning re-id

models [26, 4, 49, 57, 45, 78, 65, 7, 11, 66, 9, 61, 27] start to

take over and have obtained impressive performance. This

approach is largely inspired by the strong representation

auto-learning capacity of deep models benefiting from large

sized labelled training data pools; and the establishment of

large person re-id datasets [26, 77].

However, all these existing methods typically consider

only one resolution scale of person appearance informa-

tion by a standard scale normalisation process. This not

only drops the potentially useful information of other dif-

ferent scales, but also loses the opportunity of mining

the correlated complementary advantage across appearance

scales. One exception is the multi-scale Triplet CNN (MS-

TriCNN) re-id model [34]. In particular, the MS-TriCNN

combines multi-scale features by a hard embedding layer

and learns a multi-branches CNN model by backpropa-

gating the triplet ranking loss. While sharing the high-

level multi-scale feature leaning spirit, the proposed DPFL

significantly differs from the MS-TriNet: (1) Beyond the

scale concatenation based fusion as MS-TriCNN, DPFL

uniquely considers a synergistic cross pyramid scale inter-

action learning and regularisation by consensus propaga-

tion. This is designed to overcome the learning discrep-

ancy challenge in multi-scale feature optimisation. (2) In-

stead of MS-TriCNN’s single loss design, DPFL deploys a

multi-loss concurrent supervision mechanism. This allows

enforcing and improving scale-specific feature individual-

ity learning. (3) Rather than triplet ranking loss, DPFL em-

ploys the Softmax classification loss. This not only reduces

substantially the notorious model training complexity, but

also improves the model learning scalability when large per-

camera imbalanced training data is provided. As shown in

our evaluations, these design considerations will contribute

collectively to the significant re-id matching performance

advantage of our DPFL over the other alternative of multi-

scale learning model (MS-TriNet).

3. Multi-Scale Person Re-Identification

3.1. Problem Statement

We aim to learn a deep representation model for generic

distance (e.g. L1, L2) based person re-identification with-

out any specific metric transformation. We assume a set

of n training images I = {Ii}
n
i=1 with the correspond-
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Figure 2. Overview of the proposed Deep Pyramidal Feature Learning (DPFL). The DPFL consists of m scale-specific re-id feature

learning branches and one multi-scale feature fusion branch. The training of each branch is supervised by the same identity class label

constraint concurrently. Therefore, the multi-scale fusion branch aims to learn the consensus on identity classes across m scales. We call

this “Consensus Learning”. Importantly, the learned consensus is propagated back to all individual scale-specific branches concurrently to

regulate their mini-batch iterative learning behaviour together with groundtruth identity label supervision.

ing identity class labels as Y = {yi}
n
i=1. These train-

ing images capture the visual appearance and variation of

nid (where yi ∈ [1, · · · , nid]) different people under mul-

tiple non-overlapping camera views. A re-id model needs

to learn from these image-identity correspondence relations

and importantly transfer the learned knowledge to recognise

other unseen person identities in deployment. To that end,

we formulate a Deep Pyramidal Feature Learning (DPFL)

CNN model that aims to discover and capture concur-

rently complementary discriminative appearance informa-

tion about person identity from multiple resolution scales

of the bounding box image in order to optimise person re-

id matching under significant viewing condition changes

across distinct locations. This is in contrast to most existing

re-id methods typically depending only on one scale feature

representation alone.

3.2. Deep Multi­Scale Feature Learning

The overall network design of the proposed DPFL model

is depicted in Figure 2. This DPFL model have (m + 1)
feed-forward sub-network branches: (1) m branches of

scale-specific sub-networks with an identical structure for

learning the most discriminative visual features for each in-

dividual pyramid scale of person bounding box images; (2)

One fusion branch responsible for learning the discrimina-

tive feature selection and optimal integration of m scale-

specific representations of the same images. We aim to

concurrently optimise per-scale discriminative feature rep-

resentations and discover correlated complementary combi-

nation between different scale feature selections in the pyra-

mid. This is achieved by designing a Deep Pyramidal Fea-

ture Learning model that subjects both scale-specific and

scale-fused branches to the same identity label supervision

and critically further propagates the multi-scale consensus

as a kind of feedback to regulate the learning behaviour of

scale-specific sub-networks. This design forms a closed-

loop “first multi-scale fusion then consensus propagation”

scheme. In particular, the DPFL model has three parts: (I)

Single Scale Feature Learning; (II) Multi-Scale Consensus

Learning; (III) Feature Regularisation by Consensus Prop-

agation. We describe the detailed architecture components

design below.

(I) Single Scale Feature Learning We construct the scale-

specific branches using the 42-layers Inception-V3 CNN ar-

chitecture design [54] due to its high computational cost-

efficiency (higher modelling capacity at a smaller parame-

ter size) and the capability for learning more discriminative

visual features at varying spatial scales. Other architectures,

e.g. MobileNet [21], ResNet [18] or VGG-Net [50], can be

readily applied. The base network choice is independent of

our DPFL model design.

For single scale model training, we utilise the Softmax

classification loss function so as to optimise person iden-

tity discrimination given training labels of multiple person

classes extracted from pair-wise labelled re-id dataset. For-

mally, we predict the posterior probability ỹi of training im-

age Ii over the given identity label yi:

pi = p(ỹi = yi|Ii) =
exp(w⊤

yi
xi)

∑nid

k=1 exp(w
⊤

k xi)
(1)

where xi refers to the feature vector of Ii from the corre-

sponding branch, and wk the prediction function parameter

of training identity class k. The per-scale model training

loss on a batch of nbs images is computed as:

lbrch = −
1

nbs

nbs
∑

i=1

log
(

p(ỹi = yi|Ii)
)

(2)

Loss Function Choice Instead of the more common pair-

wise or triplet loss functions [25, 3, 52, 9, 19], we select the

classification loss due to: (i) Significantly simplified train-

ing data batch construction, e.g. random sampling with

no notorious tricks required, as shown by seminal deep

classification methods [23, 50] and recent re-id methods

[27, 68]. This makes our DPFL model more scalable in

real-world applications with very large training population
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sizes when available. This also eliminates the undesirable

need for carefully forming pairs and/or triplets in prepar-

ing training splits, as in most existing methods, due to the

inherent imbalanced negative and positive pair size distribu-

tions. (ii) Visual psychophysical findings suggest that repre-

sentations optimised for classification tasks generalise well

to novel categories [12]. We consider that re-id tasks are

about model generalisation to unseen test identity classes

given training data on independent seen identity classes.

The DPFL model learning exploits this general classifica-

tion learning principle beyond the strict pair-wise relative

verification loss in most existing re-id models.

(II) Multi-Scale Consensus Learning We perform multi-

scale consensus learning on person identity classes from

m scale-specific branches. To this end, we firstly per-

form feature fusion across scales. In the DPFL in-

stantiation by Inception-V3, we achieve the feature fu-

sion on the highest convolutional feature maps (of shape

c×c×2048) by an operation of averaging-pooling→vector-

concatenation→dropout. The spacial size c is propor-

tional to the input image resolution scale. This produces

a 2048×m-dimensional fused feature representation for

multi-scale consensus learning. For design simplicity and

cost efficiency, we directly deploy an identity classifica-

tion layer (i.e. consensus learning layer) to the multi-scale

fused feature. We similarly utilise the Softmax classifica-

tion loss (Eq. (2)) for consensus classification learning as in

the scale-specific branches.

(III) Feature Regularisation by Consensus Propagation

We propose regularising the scale-specific and therefore the

entire feature learning by multi-scale person identity con-

sensus in a closed-loop. Specifically, we further propagate

the consensus as extra feedback information to regularise

the batch learning of all scale-specific branches concur-

rently. Inspired by the teacher-student learning spirit [20],

we do this propagation by exploiting the sample-wise prob-

ability prediction P̃ = [p̃1, · · · , p̃i, · · · , p̃nid
] (i.e. person

identity consensus) with the elements defined as:

p̃i = p̃(ỹi = yi|Ii) =
exp( zi

T
)

∑

k exp(
zk
T
)

(3)

where z is the logit (i.e. unnormalised log-probability) and

T is a temperature with higher values giving softer prob-

ability distributions over classes. We set T = 1 (i.e. the

probability prediction over all training identity classes) in

our experiments. More specifically, we utilise the consen-

sus probability P̃ as the teacher signal (called “soft target”

[20] versus the groundtruth one-hot “hard target”) to guide

the learning process of all scale-specific branches (student)

concurrently via enforcing an additional regularisation in

Eq. (2) as:

lscale = lbrch + λH(P̃ , P ) (4)

where the hyperparameter λ controls the importance trade-

off between the two terms. P = [p1, · · · , pi, · · · , pnid
] de-

fines the probability prediction over all nid identity classes

by the corresponding scale-specific branch (Eq. (1)).

H(P̃ , P ) is the consensus regularisation term that denotes

the cross-entropy between two distributions P̃ and P , i.e.

H(P̃ , P ) = −
1

nid

nid
∑

i=1

(

p̃i ln(pi) + (1− p̃i) ln(1− pi)
)

(5)

We fix λ = 1 in Eq. (4) in our evaluations, i.e. both the

“soft targets” and “hard targets” contribute equally to the

learning process of each student (scale-specific) branch1.

Discussion The proposed DPFL model shares some spirit

of Knowledge Distillation (KD) by teacher-student learn-

ing [6, 20]. This is because, the consensus feedback prop-

agation in DPFL can be considered as a kind of knowledge

transfer via aligning higher-entropy soft targets.

The additional knowledge is a result of per-batch multi-

scale consensus learning on-the-fly. However, DPFL differs

significantly from KD in the following perspectives: (a) Ob-

jective: KD aims to achieve model compression by trans-

ferring the knowledge learned by a large teacher model or

ensemble to a small deep model. The rational behind is that,

small models may have similar representation capacity but

are harder to train as compared to large counterparts [5].

In contrast, DPFL aims to obtain the most discriminative

pyramidal representation via interactive multi-scale feature

selection learning. (b) Dynamics: KD requires to explicitly

pre-train a powerful teacher model. In contrast, DPFL col-

lectively exploits the per-batch outputs of all student models

to generate the teacher signals, e.g. a committee of student

models as a whole play a virtual teacher role. Consequently,

DPFL performs knowledge transfer dynamically in an inter-

active manner rather than statically as KD.

3.3. Model Optimisation

The proposed DPFL model can be optimised by back-

propagating the gradients of per-branch loss design by us-

ing the standard Stochastic Gradient Descent algorithm. As

a result, our method can be readily integrated with many ex-

isting deep neural network architectures [54, 50, 21, 23, 18]

without the heavy need for modifying the optimisation algo-

rithm. Since all branches in DPFL are interacted and corre-

lated in a closed-loop form, we need to properly handle the

operation order. We present the entire DPFL optimisation

process in Alg. 1.

3.4. Re­ID by Multi­Scale DPFL Features

After the DPFL model is trained, we deploy the multi-

scale fused (2048×m-D with m the scale number) feature

1More sophisticated balancing ways, e.g. a batch-wise ramp-up func-

tion of quantifying the consensus regularisation term, can be considered

but may lead to unessential distractive complexity to the overall design.
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Algorithm 1 DPFL model optimisation.

Input: Multi-scale training data I, Identity labels Y ,

Training iterations τ ;

Output: Learned DPFL model M;

Initialisation: Randomly initialise M;

for iteration t in [1 : τ ]

Single scale feature extraction

– Feedforward image pyramid inputs;

Multi-scale consensus learning

– Multi-scale feature fusion;

– Multi-scale consensus learning (Eq. (2));

Feature regularisation by consensus propagation

– Align consensus on scale-specific branches (Eq. (5));

Single scale branches update

– Backpropagate identity classification loss

with the consensus regularisation (Eq. (4));

Fusion branch update

– Backpropagate identity classification loss (Eq. (2));

end for

return M.

representation for person re-id. We utilise only a generic

distance metric without camera-pair specific distance metric

learning, e.g. L2 distance. Specifically, given a test probe

image I
p from one camera view and a set of test gallery

images {Ig
i } from other non-overlapping camera views:

(1) We first compute their corresponding 2048×m-D fea-

ture vectors by forward-feeding multi-scale images into the

trained DPFL model, denoted as xp and {xg
i }. (2) We then

compute the cross-camera matching distances between x
p

and x
g
i by some generic matching metric, e.g. L2 distance.

(3) We lastly rank all gallery images in ascendant order by

their matching distances to the probe image. The propor-

tions of true matches (in the galley) of probe person images

in Rank-1 and among the higher ranks indicate the goodness

of the learned DPFL features for person re-id tasks.

4. Experiments

Datasets For comparative evaluations, we utilised 3 bench-

marking person re-id datasets, including Market-1501 [77],

DukeMTMC-reID [79], and CUHK03 [25]. Figure 3

shows some examples of person bounding box images

from these datasets. In particular, different data collec-

tion protocols (including surveillance environments) were

employed in constructing these datasets: (a) Market-1501

has 2∼6, 617 images per person captured by 6 camera

views deployed around a university supermarket, with all

bounding boxes automatically detected by the Deformable

Part Model (DPM) [14]. (b) DukeMTMC-reID contains

2∼426 images per person captured by 8 camera views.

This dataset was constructed from the multi-camera track-

(a) Market-1501 (b) DukeMTMC (c) CUHK03

Figure 3. Example cross-view image pairs of three re-id datasets.

ing dataset DukeMTMC [47] by random selection of manu-

ally labelled tracklet bounding boxes [79]. The raw surveil-

lance video data were captured on a university campus.

(c) CUHK03 consists of 4∼10 images per person from

6 camera views deployed on a university campus. This

dataset was constructed by both manual labelling and auto-

detection (DPM) with the latter posing more re-id challeng-

ing due to more severe bounding box misalignment and

background clutters. These datasets collectively represent

a wide variety of real-world person re-id deployment sce-

narios with different population sizes and image quality in

diverse challenging viewing conditions.

Evaluation Protocol We adopted the standard supervised

person re-id settings to evaluate the proposed DPFL model.

The training/test data splits and testing settings of each

dataset is summarised in Table 1. Specifically, on Market-

1501, we used the standard training/test split (750/751) [77]

and evaluated both single-query and multi-query test evalu-

ation settings. On DukeMTMC-reID, we followed [79] by

splitting all 1,404 person identities into two halves 702/702

for model training and test, respectively and testing re-id

tasks in the single-query setting. On CUHK03, we consid-

ered two identity split settings: (1) Repeating 20 times of

random 1367/100 training/test splits and reported the aver-

aged accuracies [25]; (2) A 767/700 training/test split intro-

duced in [80]. The single-shot evaluation setting is utilised

for both split settings.

For re-id performance measure, we used the cumulative

matching characteristic (CMC) and mean Average Precision

(mAP). The CMC is computed on each individual rank k as

the probe cumulative percentage of truth matches appearing

at ranks ≤k. The mAP is to measure the recall of multiple

truth matches, computed by first computing the area under

the Precision-Recall curve for each probe, then calculating

the mean of Average Precision over all probes [77].

Implementation Details We implemented the proposed

DPFL model in the Tensorflow [1] framework. For model

learning, we pre-train the base network Inception-V3 [54]

on the ImageNet object classification images [48] for model

initialisation warmup before be trained on each target per-

son re-id dataset. By default, we utilised m = 2 resolution

scales in the pyramid: 299 × 299 (large) and 225 × 225
(small). The mini-batch size nbs is set to 8. We trained the

DPFL models until convergence (i.e. the loss value stag-

nates) by setting the maximal iterations 100, 000 for all the
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Table 1. Statistics and evaluation protocol on three person re-id datasets. Two benchmarking split settings: 1,367/100 [25] and 767/700

[80], are considered for CUHK03. SS: Single-Shot; SQ: Single-Query; MQ: Multi-Query.

Dataset Cams IDs Bbox Scales
Identity Split Person Bounding Box Split

Test Setting
Training Test Training Gallery Probe

Market1501 6 1,501 Unknown 751 750 12,936 19,732 3,368 SQ, MQ

DukeMTMC-reID 8 1,404 91×37 to 429×170 702 702 16,522 17,661 2,228 SQ

CUHK03 6 1,467 121×41 to 515×172 1,367/767 100/700 13,132/7,368 489/5,328 475/1,400 SS

datasets. We used the Adam optimiser [46] with an initial

learning rate of 0.0002 and the momentum term β1 = 0.5,

β2 = 0.999.

4.1. Comparisons to State­Of­The­Arts

Evaluation on Market-1501 We compare the re-id perfor-

mance of 17 existing methods against the proposed DPFL

model on the Market-1501 benchmark [77]. Since all per-

son bounding boxes were generated by auto-detection, this

dataset represents a more scalable re-id deployment sce-

nario than other conventional re-id datasets with manually

labelled bounding boxes. Table 2 shows the clear supe-

riority of our DPFL model over all competitors. Specif-

ically, compared to the only multi-scale alternative MS-

TriNet, our model’s performance is substantially better, e.g.

improving Rank-1 by 43.5% (88.6-45.1) for single-query

and 36.8% (92.2-55.4) for multi-query. Our DPFL outnum-

bers the deep local-global joint CNN model JLML [27] by

3.5% (88.6-85.1) for single-query and 2.5% (92.2-89.7) for

multi-query in Rank-1; 7.1% (72.6-65.5) for single-query

and 6.2% (80.7-74.5) for multi-query in mAP. Our method

outperforms TriNet by a clear margin even when they ap-

plied 10 times test-time data augmentation. In contrast to

TriNet profiting effectively (improving Rank-1 by 2.4% and

mAP by 3.6%) from this computation-intensive augmen-

tation scheme at test time, the DPFL gains only marginal

benefits (≤ 0.3% increase in both mAP and Rank-1). This

indicates the favourable robustness of our model against the

inevitable local patch misalignment and background clut-

ter in auto-detected person bounding box images for more

reliable re-id matching.

Evaluation on DukeMTMC-reID We evaluate the perfor-

mance of the DPFL on the large DukeMTMC-reID dataset

in single-query setting2. As opposite to Market-1501, the

person bounding box images were manually cropped in a

labour-intensive manner. While being less scalable in pro-

cessing big video data, this effort is still indispensable in

many deployment scenarios given imperfect auto-detection

performance by enabling to accommodate missing detec-

tions and diverse varying-sized person occurrences in un-

controlled open space. On the contrary, the auto-detected

person bounding boxes can be largely incomplete due to

2 As this dataset was newly constructed for person re-id from the multi-

target multi-camera tracking benchmark DukeMTMC [47], there are only a

small number of results reported in a few unpublished arXiv papers [79, 31,

53]. Following these works, we utilise the single-query evaluation setting.

Table 2. Comparative evaluation on Market-1501 [77]. (m+): Ap-

plying m times test-time data augmentation. ‘*’: Methods from

arXiv papers (unpublished). ‘-’: No reported result available.

Metric (%)
Single-Query Multi-Query

Rank-1 mAP Rank-1 mAP

BoW [77] 34.4 14.1 42.6 19.5

KISSME [22] 40.5 19.0 - -

MFA [70] 45.7 18.2 - -

kLFDA [69] 51.4 24.4 52.7 27.4

SSDAL [51] 39.4 19.6 49.0 25.8

LOMO+XQDA [29] 43.8 22.2 54.1 28.4

DNS [73] 61.0 35.7 71.6 46.0

CAN [33] 60.3 35.9 72.1 47.9

Gated-SCNN [58] 65.9 39.7 76.0 48.5

S-LSTM [59] - - 61.6 35.3

TMA [38] 47.9 22.3 - -

HL [56] 59.5 - - -

CRAFT [8] 68.7 42.3 77.0 50.3

JLML [27] 85.1 65.5 89.7 74.5

MS-TriNet [34] 45.1 - 55.4 -

DeepTransfer* [15] 83.7 65.5 89.6 73.8

TriNet* [19] 82.5 65.5 - -

TriNet(10+)* [19] 84.9 69.1 90.5 76.4

DPFL 88.6 72.6 92.2 80.4

DPFL(2+) 88.9 73.1 92.3 80.7

high missing detection rates especially with small person

appearances or dense crowds. Table 3 shows that the

DPFL outperforms all hand-crafted low-level feature based

and deep CNN feature based alternative methods for re-id

matching. The best competitor SVDNet is surpassed by our

model in Rank-1 and mAP by 2.5% (79.2-76.7) and 3.8%
(60.6-56.8), respectively. This suggests the consistent supe-

riority of the proposed multi-scale pyramidal feature learn-

ing method over existing single-scale feature learning meth-

ods in re-id tasks with more comprehensive person bound-

ing box images and more diverse imaging resolutions.

Evaluation on CUHK03 We evaluate the re-id perfor-

mance of the DPFL in comparisons to 21 existing methods

on CUHK03 with two (1367/100 and 767/700) identity split

settings. Unlike Market-1501 and DukeMTMC-reID, this

dataset provides both manually labelled and auto-detected

(by the DPM model [14]) bounding boxes of the same

people population. This allows a like-to-like comparison

of model generalisation on distinct-quality person images.

Table 4 shows that our DPFL model outperforms clearly
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Table 3. Comparative evaluation on DukeMTMC-reID [79]. ‘*’:

Method from arXiv papers (unpublished). ‘+’: Using additional

per-person semantic attribute annotations.

Metric (%) Rank-1 mAP

BoW+KISSME [77] 25.1 12.2

LOMO+XQDA [29] 30.8 17.0

ResNet50 [18] 65.2 45.0

ResNet50+LSRO* [79] 67.7 47.1

AttIDNet*+ [31] 70.7 51.9

SVDNet* [53] 76.7 56.8

DPFL 79.2 60.6

Table 4. Comparative evaluation on CUHK03 [26].

Setting 1367/100 training/test split

Metric (%) Labelled Detected

Rank-1 mAP Rank-1 mAP

kLFDA [69] 45.8 - - -

LOMO+XQDA [29] 52.2 - 46.3 -

BoW+XQDA [77] - - 23.0 -

MLAPG [30] 58.0 - 51.2 -

GOG+XQDA [39] 67.3 - 65.5 -

HER [63] 60.8 - - -

CRAFT [8] 84.3 - - -

FPNN [26] 20.7 - 19.9 -

CIND-Net [4] 54.7 - 45.0 -

SICI [61] - - 52.2 -

DNS [73] 62.6 - 54.7 -

S-LSTM [60] - - 57.3 46.3

Gated-SCNN [58] - - 61.8 51.3

CAN [33] 77.6 - 69.2 -

Fused Model [52] 72.4 - 72.0 -

FT-JSTL+DGD [68] 75.3 - - -

JLML [27] 83.2 - 80.6 -

DPFL 86.7 82.8 82.0 78.1

Setting 767/700 training/test split

BoW+XQDA [77] 7.9 7.3 6.4 6.4

LOMO+XQDA [29] 14.8 13.6 12.8 11.5

IDE(C) [80] 15.6 14.9 15.1 14.2

IDE(C)+XQDA [80] 21.9 20.0 21.1 19.0

IDE(R) [80] 22.2 21.0 21.3 19.7

IDE(R)+XQDA [80] 32.0 29.6 31.1 28.2

DPFL 43.0 40.5 40.7 37.0

all competitors on both versions of person images under

both split settings. For example, the DPFL outperforms

the JLML by 3.5% (Labelled) / 1.4% (Detected) in Rank-

1 given the 1367/100 split. For the harder split 767/700, our

model achieves more significant advantages over the best

alternative IDE(R)+XQDA: 11.0% (Labelled) / 9.6% (De-

tected) in Rank-1, and 10.9% (Labelled) / 8.8% (Detected)

in mAP. This further validates the performance advantage

of our pyramidal feature learning method over single-scale

feature learning based alternative methods under different

re-id settings. On the other hand, it is observed that auto-

detected person bounding boxes indeed present more re-

id matching challenges than manually labelled ones, with

lower re-id performance on the former obtained across all

methods. This is highly expected, due to more severe mis-

alignment and background noise in auto-detected person

images introduced by inaccurate detection.

4.2. Further Analysis and Discussions

Next, we provide detailed model component analysis in

terms of performance contributions on the DukeMTMC-

reID and Market-1501 in the single-query re-id setting.

Table 5. Evaluating generalisation to different CNN models.

Dataset DukeMTMC-reID Market-1501

Metric (%) Rank-1 mAP Rank-1 mAP

In
ce

p
ti

o
n

-V
3

Scale-299 70.1 48.9 85.7 66.5

Scale-225 65.5 42.8 83.3 62.8

DPFL 79.2 60.6 88.6 72.6

Single-Scale versus Multi-Scale Features We evaluate

the re-id performance advantage of our multi-scale features

over independently learned single-scale features. Results

of models initialised by Inception-V3 in Table 5 show that

the DPFL multi-scale features outperform significantly ei-

ther single-scale features, e.g. surpassing the scale-299 fea-

ture on DukeMTMC-reID and Market-1501 by 9.1% (79.2-

70.1) and 2.9% (88.6-85.7) in Rank-1, 11.7% (60.6-48.9)

and 6.1% (72.6-66.5) in mAP, respectively. This suggests

the effectiveness of our proposed multi-scale consensus reg-

ularised feature learning method in improving open space

re-id matching.

Table 6. Evaluating different multi-scale feature fusion methods.

Dataset DukeMTMC-reID Market-1501

Metric (%) Rank-1 mAP Rank-1 mAP

In
ce

p
ti

o
n

-V
3

Independent-Scales 72.2 50.3 87.2 69.5

Joint-Scales 72.9 51.3 83.4 61.1

DPFL 79.2 60.6 88.6 72.6

Multi-Scale Feature Fusion Approaches We compared

the DPFL with two baseline multi-scale fusion methods:

(a) Independent-Scales: Independently train individual scale-

specific deep CNN models (Figure 4 (a)); and utilise the

concatenation of all scale-specific feature vectors for re-id

matching in deployment. (b) Joint-Scales: A vanilla multi-

scale joint learning CNN framework capable of applying

the identity classification supervision learning on the fusion

of all the scale-specific features in end-to-end training (Fig-

ure 4 (b)). In re-id deployment, we similarly use the fused
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Figure 4. Illustration of two baseline multi-scale feature fusion

CNN model designs: (a) Independent-Scales and (b) Joint-Scales.

feature. This method shares a similar multi-scale fusion de-

sign principle as MS-TriNet [34] although a different loss

function is employed.

From the results shown in Table 6, we have the following

observations: (1) The DPFL outperforms both alternative

multi-scale fusion methods. This suggests a clear advan-

tage of the proposed method in maximising correlated com-

plementary benefits of multi-scale re-id features. (2) On

DukeMTMC-reID, both Independent-Scales and Joint-Scales

improve re-id matching performance but only mildly. On

one hand, this suggests the advantages of multi-scale fea-

tures over single-scale counterparts in re-id matching. On

the other hand, this also indicates that no cross-scale in-

teraction in feature learning (Independent-Scales) or a sim-

ple multi-scale concatenation in joint learning (Joint-Scales)

may result in suboptimal multi-scale feature optimisation.

(3) On Market-1501, Independent-Scales consistently im-

proves over single-scale features, but Joint-Scales even suf-

fers a considerable (-5.4%) mAP drop as compared to the

Scale-299 feature alone. This indicates that multi-scale

joint end-to-end learning is non-trivial and a straightfor-

ward feature fusion alone may bring adversarial effects. A

plausible reason is the underlying learning behaviour dis-

crepancy at different scales. For instance, the large-scale

branch model needs to reason more detailed localised ap-

pearance information from more raw pixels and therefore

probably takes a slower learning pace. (4) The DPFL model

can be considered as a synergistic combination design of

Independent-Scales, Joint-Scales, and importantly the pro-

posed multi-scale consensus propagation mechanism (Fig-

ure 2). Our model is clearly superior on both datasets, in-

dicating that the proposed multi-scale consensus regularisa-

tion is an effective approach to overcoming the limitations

of both alternatives in learning multi-scale re-id discrimina-

tive features.

Generalisation to Different CNN Models We evaluate the

benefits of the DPFL approach when integrated with other

Table 7. Evaluating generalisation to different CNN models.

Dataset DukeMTMC-reID Market-1501

Metric (%) Rank-1 mAP Rank-1 mAP

In
ce

p
ti

o
n

-V
3

Scale-299 70.1 48.9 85.7 66.5

Scale-225 65.5 42.8 83.3 62.8

DPFL 79.2 60.6 88.6 72.6

M
o

b
il

eN
et Scale-224 73.8 53.9 87.5 66.4

Scale-160 72.5 51.7 87.6 63.9

DPFL 77.6 58.6 90.0 70.6

CNN architectures in addition to Inception-V3. We select

the light MobileNet architecture [21] for particularly testing

the potentials in mobile vision applications. Table 7 shows

the generic capability of our DPFL method in extracting the

multi-scale complementary benefits from different scales of

person images when combining with either large Inception-

V3 or small MobileNet CNN architectures.

5. Conclusion

We presented a novel Deep Pyramid Feature Learning

(DPFL) CNN model by aiming to learn multi-scale ap-

pearance information for person re-identification. In con-

trast to existing re-id approaches that only employ single

scale appearance features, the proposed model is capable of

extracting and exploiting discriminative scale-specific fea-

tures and optimal cross-scale complementary benefits by

jointly learning multiple scales of person images in a pyra-

mid subject to individual classification objective functions

with a specially designed cross-scale consensus regularisa-

tion in an end-to-end training deep CNN model. This is

made possible by the proposed multi-scale consensus learn-

ing and propagation mechanism. Extensive comparative

evaluations on three re-id benchmark datasets were con-

ducted to validate the advantages of the proposed DPFL

model over a wide range of state-of-the-art methods on

both manually labelled and auto-detected person bounding

box images. We lastly provided component evaluations and

analysis in terms of re-id performance so as to give the in-

sights into the DPFL model design.
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