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Abstract

Matching people across non-overlapping camera views,
known as person re-identification, is challenging due to the
lack of spatial and temporal constraints and large visual ap-
pearance changes caused by variations in view angle, light-
ing, background clutter and occlusion. To address these
challenges, most previous approaches aim to extract visual
features that are both distinctive and stable under appear-
ance changes. However, most visual features and their com-
binations under realistic conditions are neither stable nor
distinctive thus should not be used indiscriminately. In this
paper, we propose to formulate person re-identification as
a distance learning problem, which aims to learn the op-
timal distance that can maximises matching accuracy re-
gardless the choice of representation. To that end, we intro-
duce a novel Probabilistic Relative Distance Comparison
(PRDC) model, which differs from most existing distance
learning methods in that, rather than minimising intra-class
variation whilst maximising intra-class variation, it aims
to maximise the probability of a pair of true match hav-
ing a smaller distance than that of a wrong match pair.
This makes our model more tolerant to appearance changes
and less susceptible to model over-fitting. Extensive experi-
ments are carried out to demonstrate that 1) by formulating
the person re-identification problem as a distance learning
problem, notable improvement on matching accuracy can
be obtained against conventional person re-identification
techniques, which is particularly significant when the train-
ing sample size is small; and 2) our PRDC outperforms not
only existing distance learning methods but also alternative
learning methods based on boosting and learning to rank.

1. Introduction

There has been an increasing interest in matching peo-
ple across disjoint camera views in a multi-camera system,
known as the person re-identification problem [10, 7, 14, 8,
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Figure 1. Typical examples of appearance changes caused by
cross-view variations in view angle, lighting, background clutter
and occlusion. Each column shows two images of the same per-
son from two different camera views.
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3]. For understanding behaviour of people in a large area of
public space covered by multiple no-overlapping cameras,
it is critical that when a target disappears from one view,
he/she can be identified in another view among a crowd of
people. Despite the best efforts from computer vision re-
searchers in the past 5 years, the person re-identification
problem remains largely unsolved. Specifically, in a busy
uncontrolled environment monitored by cameras from a
distance, person verification relying upon biometrics such
as face and gait is infeasible or unreliable. Without ac-
curate temporal and spatial constraints given the typically
large gaps between camera views, visual appearance fea-
tures alone, extracted mainly from clothing, are intrinsically
weak for matching people (e.g. most people in winter wear
dark clothes). In addition, a person’s appearance often un-
dergoes large variations across different camera views due
to significant changes in view angle, lighting, background
clutter and occlusion (see Fig. 1), resulting in different peo-
ple appearing more alike than that of the same person across
different camera views (see Figs. 4 and 5).

Most existing studies have tried to address the above
problems by seeking a more distinctive and stable fea-
ture representation of people’s appearance, ranging widely
from color histogram [10, 7], graph model [4], spatial co-
occurrence representation model [14], principal axis his-
togram [8], rectangle region histogram [2], to combina-
tions of multiple features [7, 3]. After feature extraction,
existing methods simply choose a standard distance mea-



sure such as [{-norm [14], l>-norm based distance [8], or
Bahattacharyya distance [7]. However under severe view-
ing condition changes that can cause significant intra-object
appearance variation (e.g. view angle, lighting, occlusion),
computing a set of features that are both distinctive and sta-
ble under all condition changes is extremely hard if not im-
possible under realistic conditions. Moreover, given that
certain features could be more reliable than others under a
certain condition, applying a standard distance measure is
undesirable as it essentially treats all features equally with-
out discarding bad features selectively in each individual
matching circumstance.

In this paper, we propose to formulate person re-
identification as a distance learning problem which aims to
learn the optimal distance metric that can maximise match-
ing accuracy regardless the choice of representation. To
that end, a novel Probabilistic Relative Distance Compar-
ison (PRDC) model is proposed. The objective function
used by PRDC aims to maximise the probability of a pair
of true match (i.e. two true images of person A) having a
smaller distance than that of a pair of related wrong match
(i.e. two images of person A and B respectively). This is
in contrast with that of a conventional distance learning ap-
proach, which aims to minimise intra-class variation in an
absolute sense (i.e. making all images of person A more
similar) whilst maximising inter-class variation (i.e. mak-
ing all images of person A and B more dissimilar). Our
approach is motivated by the nature of our problem. Specif-
ically, the person re-identification problem has three charac-
teristics: 1) the intra-class variation can be large and impor-
tantly can be significantly varied for different classes as it
is caused by different condition changes (see Fig. 1); 2) the
inter-class variation also varies drastically across different
pairs of classes; and 3) annotating matched people across
camera views is tedious and typically only limited num-
ber of classes (people) are available for training with each
class containing only a handful of images of a person from
different camera views (i.e. under-sampling for building a
representative class distribution). By exploring a relative
distance comparison model probabilistically, our model is
more tolerant to the large intra/inter-class variation and se-
vere overlapping of different classes in a multi-dimensional
feature space. Furthermore, due to the third characteristics
of under-sampling, a model could be easily over-fitted if it
is learned by minimising intra-class distance and maximis-
ing inter-class distance simultaneously by brutal force. In
contrast, our approach is able to learn a distance with much
reduced complexity thus alleviating the over-fitting prob-
lem, as validated by our extensive experiments.

Related work—-Although it has not been exploited for per-
son re-identification, distance learning is a well-studied
problem with a large number of methods reported in the
literature [16, 5, 17, 7, 17, 12, 15, 9, 1]. However, most
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of them suffer from the over-fitting problem as explained
above. Recently, a few approaches attempt to alleviate the
problem by incorporating the idea of relative distance com-
parison as our PRDC model [12, 15, 9]. However, in these
works, the relative distance comparison is not quantified
probabilistically, and importantly is used as an optimisation
constraint rather than objective function. Therefore these
approaches, either implicitly [12, 9] or explicitly [15] still
aim to learn a distance by which each class becomes more
compact whilst being more separable from each other in
an absolute sense. We demonstrate through experiments
that they remain susceptible to over-fitting for person re-
identification.

There have been a couple of feature selection based
methods proposed specifically for person re-identification
[7, 11]. Gray et al. [7] proposed to use boosting to select
a subset of optimal features for matching people. How-
ever, in a boosting framework, good features are only se-
lected sequentially and independently in the original fea-
ture space where different classes can be heavily over-
lapped. Such selection may not be globally optimal. Rather
than selecting features individually and independently (lo-
cal selection), we aim to learn an optimal distance measure
for all features jointly via distance learning (global selec-
tion). An alternative global selection approach was devel-
oped based on RankSVM [11]. By formulating the person
re-identification as a ranking problem, the RankSVM ap-
proach shares the spirit of relative comparison in our model.
Nevertheless, our approach is more principled and tractable
than the RankSVM in that 1) PRDC is a second-order fea-
ture selection approach whereas RankSVM is a first-order
one which is not able to exploit correlations of different
features; 2) although RankSVM alleviates the over-fitting
problem by fusing a ranking error function with a large
margin function in its objective function, the probabilistic
formulation of our objective function makes PRDC more
tolerant to large intra- and inter-class variations and data
sparsity; 3) tuning the critical free parameter of RankSVM
that determines the weight between the margin function and
the ranking error function is computationally costly and can
be sub-optimal given limited data. In contrast, our PRDC
model does not such a problem. We demonstrate the ad-
vantage of our approach over both the Boosting [7] and
RankSVM [11] based methods through experiments.

The main contributions of this work are two-fold. 1) We
formulate the person re-identification problem as a distance
learning problem, which leads to noteworthy improvement
on re-identification accuracy. To the best of our knowl-
edge, it has not been investigated before. 2) We propose
a probabilistic relative distance comparison based method
that overcomes the limitations of existing distance learning
methods when applied to person re-identification.



2. Probabilistic Relative Distance Comparison
for Person Re-identification

Let us formally cast the person re-identification problem
into the following distance learning problem. For an image
z of person A, we wish to learn a re-identification model
to successfully identify another image z’ of the same per-
son captured elsewhere in space and time. This is achieved
by learning a distance function f(-,-) so that f(z,z') <
f(z,z"), where z” is an image of any other person ex-
cept A. To that end, given a training set {(zi, yi)}, where
z; € Z is a multi-dimensional feature vector representing
the appearance of a person in one view and y; is its class
label (person ID), we define a pairwise set O = {Q; =
(x?,xI)}, where each element of a pair-wise data Q) itself
is computed using a pair of sample feature vectors. More
specifically, x? is a difference vector computed between a
pair of relevant samples (of the same class/person) and x}'
is a difference vector from a pair of related irrelevant sam-
ples, i.e. only one sample for computing x;' is one of the
two relevant samples for computing x? and the other is a
mis-match from another class. The difference vector x be-
tween any two samples z and z’ is computed by

x =d(z,7), z,2 € Z (1)
where d is an entry-wise difference function that outputs a
difference vector between z and z’. The specific form of
function d will be described in Sec. 2.3.

Given the pairwise set O, a distance function f can be
learned based on relative distance comparison so that a dis-
tance between a relevant sample pair (f(x%)) is smaller
than that between a related irrelevant pair (f(x})). That
is f(x?) < f(x!) for each pair-wise data @;. To this end,
we measure the probability of the distance between a rele-
vant pair being smaller than that of a related irrelevant pair
as:

P(f(x}) < f(x) = (1+exp { F(=D)— F(x)}) . @)
We assume the events of distance comparison between a
relevant pair and an irrelevant pair, i.e. f(x}) < f(x}),
are independent'. Then, based on the maximum likelihood
principle, the optimal function f can be learned as follows:

f = argmin(f.0)

r(£,0) = —log([ ], P(F(x}) < f(x}))-
The distance function f is pa;ameterised as a Mahanalobis
(quadratic) based distance function:

f(x) =x"Mx, M >0 4)
where M is a semidefinite matrix. The distance learning
problem thus becomes learning M using Eqn. (3). Directly
learning M using semidefinite program techniques is com-
putationally expensive for high dimensional data [15]. In
particular, we found out in our experiments that given a di-

3)

'Note that we do not assume the data are independent.
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mensionality of thousands, typical for visual object repre-
sentation, a distance learning method based on learning M
becomes intractable. To overcome this problem, we per-
form eigenvalue decomposition on M:

M= AAAT = WW', W = AA:Z, (5)
where the columns of A are orthonormal eigenvectors of
M and the diagonals of A are the corresponding eigen-
values. Note that W is orthogonal. Therefore, learning a
function f is equivalent to learning an orthogonal matrix
W = (wy, - ,wy,- -+ ,wr) such that

W = argrg\ifnr(W,@), st wiw;=0,Vi#j

r(W,0) = Z@v log(1 + exp {[|[WTxZ[|* — [[Wx}'[|*}).
(6)
2.1. An Iterative Optimisation Algorithm

It is important to point out that our optimisation criterion
(6) may not be a convex optimisation problem against the
orthogonal constraint due to the relative comparison mod-
elling. It means that deriving an global solution by directly
optimising W is not straightforward. In this work we for-
mulate an iterative optimisation algorithm to learn an opti-
mal W, which also aims to seek a low rank (non-trivial) so-
lution automatically. This is critical for reducing the model
complexity thus overcoming the overfitting problem given
sparse data.

Starting from an empty matrix, after iteration ¢, a new
estimated column wy is added to W. The algorithm ter-
minates after L iterations when a stopping criterion is met.
Each iteration consists of two steps as follows:

Step 1. Assume that after / iterations, a total of £ orthog-
onal vectors wq, - -- , wy have been learned. To learn the
next orthogonal vector wy, 1, let

14
041 T _p,j 2
Al = ey [w X )

where we define wy = 0, and x? * and x;"" are the differ-
ence vectors at the /-th iteration defined as follows:

WTXT_LJ

2
" = llwj x;

)

¥

sl s, 0—1 ~ ~ T s,4—1
Xy =X — We1Wy_1 X, )
SE{p,n},i:1,~~~,|@|,€21, (8)
where V~Vg_1 = Wg_1/||Wg_1||.

Note that we define x5"° = x?, s € {p,n}, and W = 0.

Step 2. Obtain x*“™!, x*! by Eqn. (8). Let Ot! =
{QAH =(xP*F x™*1)1 Then, learn a new optimal pro-
jection w1 on Q“*! as follows:

®

W1 = argminreq1(w, @Hl), where
w

’f’g+1(W, ®Z+l)

041 T _p,0+1(2 T n,0+1(2
= 3 o lo(1 +al T exp {|[w X2 — w2,
We seek an optimal solution by a gradient descent method:

a7“18+1
Wepl — Wop1 — A- ,
8Wz+1

A>

0, (10)



041 L1 41
Orer1 2 ai+ 'eXP{HwéTJrle 12 - HWZTHX? 12}
- 041 L+1 O+1
OwWpy1 e 1+ai+ ~exp{||wf+1xi 12 — ||WZ+1X;L 12}
i
t4+1_pe+1T L+1_ne+1T
X (xf’ + x¥ + —-x + X + )Wg+1.

where ) is a step length automatically determined at each
gradient update step. According to the descent direction in
Eqn. (10) the initial value of w4 for the gradient descent
method is set to

041 —1 41 41
wepr = [0 § @Hl(X? L xP),
7

1)

Note that the update in Eqn. (8) deducts information
from each sample x"* ! affected by wy_1 as w7 _ x>
0, so that the next learned vector w, will only quantify the
part of the data left from the last step, i.e. xf’z. In addition,
a“™ indicates the trends in the change of distance measures
for x? and x!* over previous iterations and serve as a priori
weight for learning wy.

The iteration of the algorithm (for ¢ > 1) is terminated
when the following criterion is met:

re(wp, OY) — rop1(weyr, 1) < e (12)

where ¢ is a small tolerance value set to 10~ in this work.
The algorithm is summarised in Algorithm 1.

Algorithm 1: Learning the PRDC model

Data: @ = {@z = (Xf7le)}7 € > 0
begin

wo «— 0, wg «—— 0;

x:,o — x3,s € {p,n}, 0° — O

{+— 0;

while / do
Compute af'“ by Eqn. (7);
Compute x| s € {p,n} by Eqn. (8);
O — (O = (< X,
Estimate wy; using Eqn. (9);
Wep1 = vawilu;

04+1
if (£ > 1)&(re(we, 0°) — rop1(werr, 01 < g)
then
| break;

end
0 +— {4+ 1;

end

end

Output: W = [W1, e 7Wz}

2.2. Theoretical Validation

The following two theorems validate that the proposed
iterative optimisation algorithm learns a set of orthogo-
nal projections {wy} that iteratively decrease the objective
function in Criterion (6).

Theorem 1. The learned vectors wy, £ = 1,--- | L, are
orthogonal to each other:
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Proof. Assume that £ — 1 orthogonal vectors {w; }?;% have
been learned. Let wy be the optimal solution of Criterion
(9) at the ¢ iteration. First, we know that wy is in the range
space? of {x?"*} U {x"*} according to Eqns. (10) and (11),
ie. w, € span{zi*)i = 1,---,]0|,s € {p,n}}. Second,
according to Eqn. (8), we have

wfxf,j+1:07 se{p7n},j:17--- 76_1
span{xf’z,i = la e 7|©|73 S {p7n}} (13)
g span{x?’ZAJ = 17' o 7|©‘78 € {p/l’L}}
g g span{m?oai = 17 7|@‘78 € {pan}}
Hence, wy is orthogonal tow;,j =1,--- , £ — 1. O]

Theorem 2. (W' Q') < r(W* 0°), where W*
(W1, -+, W), £> 1. That is, the algorithm iteratively decreases
the objective function value.

Proof. Let wyy, be the optimal solution of Eqn. (9). By
Theorem 1, it is easy to prove that for any j > 1, wi'x}7 =

wix?? =wlx;, s € {p,n}. Hence we have

ror1(weyr,0FD)

0+1 T L1 T L+1
= Y log(1+a; ™ exp {|lwiyxfHI2 — [[wi xR
®£+1
i

=r(W0)

Also 7¢11(0,01) = 7(W* Q). Since wy is the mini-
mal solution, we have 7, 1 (wy 1, O1) < 7py1(0,0F1),
and therefore r(W*T1 Q) < r(W*, Q). O

Since Criterion (9) may not be convex, a local optimum
could be obtained in each iteration of our algorithm. How-
ever, even if the computation was trapped in a local mini-
mum of Eqn. (9) at the ¢ + 1 iteration, Theorem 2 is still
valid if o1 (wey 1, 0°TY) < ro(wy, 0Y), otherwise the algo-
rithm will be terminated by the stopping criterion (12). To
alleviate the local optimum problem at each iteration, mul-
tiple initialisations could also be deployed in practice.

2.3. Learning in an Absolute Data Difference Space

To compute the data difference vector x defined in
Eqn. (1), most existing distance learning methods use the
following entry-wise difference function

x=d(z,z)=2z—-17 (14)
to learn M = WW? in the normal data difference space
denotedby DZ = {xij = zi—zj|zi,zj € Z}. The learned
distance function is thus written as:

f(xij) = (20 — 25)"M(z; — z;) = [[WTxy[[%. (15

In this work, we compute the difference vector by the
following entry-wise absolute difference function:

x=d(z,2') = |z — 2|, x(k) = |z(k) — 2'(k)|. (16)

21t can be explored by Lagrangian equation for Eqn. (9) for a non-zero wy.



where z(k) is the k-th element of the sample feature vector.
M is thus learned in an absolute data difference space, de-
noted by |DZ| = {|x;;| = |2z — 2;||zi,z; € Z}, and our
distance function becomes:
Fxis]) = |2 — 25" Mlz; — 2] = |[W x5 [ (17)
We now explain why learning in an absolute data dif-
ference space is more suitable to our relative comparison
model. First, we note that:

|2i (k) — 2 (k)| — [(2i(k) — 2z ()|

(18)
< [(zi(k) — 2 (k) = (2i(k) — 25 (K))],
hence we have |x;;| — |x;;/|. < |x;; — x;5/|, where ©. <’ is
an entry-wise ‘<’. As |x;;], |x;/| > 0, we thus can prove
151 = eage || < [ |eis — i | (19)

This suggests that the variation of |x;;| given the same sam-
ple space Z is always less than that of x;;. Specifically, if
z;,Zj,z; are from the same class, the intra-class variation
is smaller in |DZ| than in DZ. On the other hand, if z;
and z; belong to a different class as z;, the variation of
inter-class differences is also more compact in the absolute
data difference space. Since the variations of both relevant
and irrelevant sample differences x? and x™ are smaller, the
learned distance function using Eqn. (6) would yield more
consistent distance comparison results therefore benefitting
our PRDC model. Specially, for the same semidefinite ma-
trix M, the Cauchy inequality suggests

upper(||WT (|xij|—xij )| |) < upper(|[W7 (xi;—x;)

where upper(-) is the upper bound operation. This indicates
that in the latent subspace induced by W, the maximum
variation of [x;;|" M|x;;| is lower than that of x Mx;;.
We show notable benefit of learning PRDC in an absolute
data difference space in our experiments.

2.4. Feature Representation

Our PRDC model can be applied regardless of the choice
of appearance feature representation of people. However,
in order to benefit from different and complementary infor-
mation captured by different features, we start with a mix-
ture of colour and texture histogram features similar to those
used in [7] and let our model automatically discover an op-
timal feature distance. Specifically, we divided a person
image into six horizontal stripes. For each stripe, the RGB,
YCbCr, HSV color features and two types of texture fea-
tures extracted by Schmid and Gabor filters were computed
and represented as histograms. In total 29 feature chan-
nels were constructed for each stripe and each feature chan-
nel was represented by a 16 dimensional histogram vector.
Each person image was thus represented by a feature vector
in a 2784 dimensional feature space Z. Since the features
computed for this representation include low-level features
widely used by existing person re-identification techniques,
this representation is considered as generic and representa-
tive.

),
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3. Experiments

Datasets and settings. Two publically available person
re-identification datasets, i-LIDS Multiple-Camera Track-
ing Scenario (MCTS) [18, 13] and VIPeR [6], were used
for evaluation. In the i-LIDS MCTS dataset, which was
captured indoor at a busy airport arrival hall, there are 119
people with a total 476 person images captured by multiple
non-overlapping cameras with an average of 4 images for
each person. Many of these images undergo large illumina-
tion change and are subject to occlusions (see Fig. 4). The
VIPeR dataset is the largest person re-identification dataset
available consisting of 632 people captured outdoor with
two images for each person. Viewpoint change is the most
significant cause of appearance change with most of the
matched image pairs containing one front/back view and
one side-view (see Fig. 5).

In our experiments, for each dataset, we randomly se-
lected all images of p people (classes) to set up the test
set, and the rest were used for training. Each test set was
composed of a gallery set and a probe set. The gallery set
consisted of one image for each person, and the remaining
images were used as the probe set. This procedure was re-
peated 10 times. During training, a pair of images of each
person formed a relevant pair, and one image of him/her
and one of another person in the training set formed a re-
lated irrelevant pair, and together they form the pairwise set
O defined in Sec. 2.

For evaluation, we use the average cumulative match
characteristic (CMC) curves [6] over 10 trials to show the
ranked matching rates. A rank r matching rate indicates the
percentage of the probe images with correct matches found
in the top r ranks against the p gallery images. Rank 1
matching rate is thus the correct matching/recognition rate.
Note that in practice, although a high rank 1 matching rate is
critical, the top r ranked matching rate with a small r value
is also important because the top matched images will nor-
mally be verified by a human operator [6].

PRDC vs. Non-Learning based Distances. We first com-
pared our PRDC with non-learning based /;-norm distance
and Bhattacharyya distance which were used by most exist-
ing person re-identification work. Our results (Figs. 2 and 3,
Tables 1 and 2) show clearly that with the proposed PRDC,
the matching performance for both datasets is improved no-
tably, more so when the number of people in the test pool in-
creases (i.e. training set size decreases). The improvement
is particularly dramatic on the VIPeR dataset. In particu-
lar, Table 2 shows that a 4-fold increase in correct matching
rate (r = 1) is obtained against both /;-norm and Bhat-
tacharyya distances when p = 316. The results validate the
importance of performing distance learning. Examples of
matching people using PRDC for both datasets are shown
in Figs. 4 and 5 respectively.
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Figure 2. Performance comparison using CMC curves on i-LIDS MCTS dataset.

Methods p =30 p =50 p = 80
r=1|r =5{r =10|r = 20(r = 1|r = 5|r = 10|r = 20|r = 1|{r = 5|r = 10|r = 20
PRDC |44.05|72.74 | 84.69 | 96.29 |37.83 |63.70 | 75.09 | 88.35 |32.60 | 54.55 | 65.89 | 78.30
Adaboost| 35.58 | 66.43 | 79.88 | 93.22 |29.62 | 55.15| 68.14 | 82.35 [22.79 |44.41 | 57.16 | 70.55
LMNN | 33.68 | 63.88 | 78.17 | 92.64 |27.97 |53.75| 66.14 | 82.33 |23.70 | 45.42| 57.32 | 70.92
ITM [36.37]67.99| 83.11 | 95.55 |28.96 |53.99 | 70.50 | 86.67 |21.67|41.80| 55.12 | 71.31
MCC |40.24 |73.64 | 85.87 | 96.65 |31.28 | 59.30 | 75.62 | 88.34 |12.00|33.66 | 47.96 | 67.00
Xing’s | 31.80|62.62| 77.29 | 90.63 |27.04 |52.28 | 65.35 | 80.70 |23.18 |45.24 | 56.90 | 70.46
Ll-norm|35.31 | 64.62 | 77.37 | 91.35 |30.72 | 54.95| 67.99 | 82.98 |26.73 | 49.04 | 60.32 | 72.07
Bhat. |31.77 |61.43| 74.19 | 89.53 |28.42|51.06 | 64.32 | 78.77 |24.76 | 45.35| 56.12 | 69.31

Table 1. Top ranked matching rate (%) on i-LIDS MCTS. p is size of the gallery set (larger p means smaller training set) and r is the rank.

PRDC vs. Alternative Learning Methods. We also com-
pared PRDC with 5 alternative discriminant learning based
approaches. These include 4 popular distance learning
methods, namely Xing’s method [16], LMNN [15], ITM
[1] and MCC [5], and a method specifically designed for
person re-identification based on Adaboost [7]. Among
the 4 distance learning methods, only LMNN exploits rel-
ative distance comparison. But as mentioned in Sec. 1, it
is used as an optimisation constraint rather than the main
objective function which is also not formulated probabilis-
tically,. MCC is similar to PRDC in that a probabilistic
model is used but it is not a relative distance comparison
based method. Note that since MCC needs to select the best
dimension for matching, we performed cross-validation by
selecting its value in {[1 : 1 : 10], d}, where d is the maxi-
mum rank MCC can learn. Among the 5, the only method
that learns in an absolute data different space is Adaboost.
Our results (Figs. 2 and 3, Tables 1 and 2) show clearly
that our model yields the best rank 1 matching rate and over-
all much superior performance compared to the compared
models. The advantage of PRDC is particularly apparent
when a training set is small (learning becomes more dif-
ficult) and a test set is large indicated by the value of p
(matching becomes harder). Table 2 shows that on VIPeR
when 100 people are used for learning and 532 people for
testing (p = 532), the correct matching rate for PRDC (and
MCC) is almost more than doubled against any alternative
distance learning methods. Particularly, benefiting from be-
ing a probabilistic model, MCC gives the most comparable
results to PRDC when the training set is large. However, its
performance degrades dramatically when the size of train-
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ing data decreases (see columns under p = 80 in Table 1
and p = 532 in Table 2). This suggests that over-fitting to
limited training data is the main reason for the inferior per-
formance of the compared alternative learning approaches.
PRDC vs. RankSVM. Different from PRDC, RankSVM
has a free parameter which determines the relative weights
between the margin function and the ranking error function
[11]. In our experiment, we cross-validated the parameter
in {0.0001, 0.005, 0.001, 0.05, 0.1, 0.5, 1, 10, 100, 1000}.
As shown in Tables 3 and 4, the two methods all perform
very well against other compared algorithms and our PRDC
yields overall better performance especially at lower rank
matching rate and given less training data. The better per-
formance of PRDC is due to the probabilistic modelling and
a second-order rather than first-order feature selection. It is
also noted that tuning the free parameter for RankSVM is
not a trivial task and the performance can be sensitive to the
tuning especially given sparse data, while PRDC does not
have this problem. In addition RankSVM is computation-
ally more expensive (see details later).

Effect of learning in an Absolute Data Difference Space.
We have shown in Sec. 2.3 that in theory our relative dis-
tance comparison learning method can benefit from learn-
ing in an absolute data difference space. To validate
this experimentally, we compare PRDC with PRDC,.,,,
which learns in the normal data difference space DZ (see
Sec. 2.3). The result in Table 5 indicates that learning in
an absolute data difference space does improve the match-
ing performance. Note that most existing distance learning
models are based on learning in the normal data difference
space DZ. It is possible to reformulate some of them in
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Figure 3. Performance comparison using CMC curves on VIPeR dataset.
Methods p = 316 p =432 p = 532
r=1|r =5[r =10|r =20|r = 1|r = 5|r = 10|r = 20{r = 1|r = 5|r = 10|r = 20
PRDC |15.66 | 38.42 | 53.86 | 70.09 |12.64 | 31.97 | 44.28 | 59.95 | 9.12 | 24.19 | 34.40 | 48.55
Adaboost| 8.16 | 24.15| 36.58 | 52.12 | 6.83 | 19.81 | 29.75 | 43.06 | 4.19 | 12.95| 20.21 | 30.73
LMNN | 6.23 [ 19.65| 32.63 | 52.25 | 5.14 | 13.13 | 20.30 | 3391 | 4.04 | 9.68 | 14.19 | 21.18
I™ 11.61|31.39| 4576 | 63.86 | 8.38 |24.54| 36.81 | 52.29 | 4.19 | 11.11 | 17.22 | 24.59
MCC |15.19 | 41.77 | 57.59 | 73.39 | 11.30 | 32.43 | 47.29 | 62.85 | 5.00 |16.32| 25.92 | 39.64
Xing’s | 4.65 | 11.96 | 16.61 | 24.37 | 4.12 | 10.02 | 14.70 | 20.65 | 3.63 | 8.76 | 12.14 | 18.16
Ll-norm| 4.18 | 11.65| 16.52 | 22.37 | 3.80 | 9.81 | 13.94 | 19.44 | 355 | 8.29 | 12.27 | 17.59
Bhat. 4.65 | 11.49| 16.55 | 23.83 | 4.19 | 10.35| 14.19 | 20.19 | 3.82 | 9.08 | 12.42 | 17.88

Table 2. Top ranked matching rate (%) on VIPeR. p is the number of classes in the testing set; r is the rank.

Rank PRDC RankSVM
r = 1[r = 5]r = 10[r = 20[r = I[r = 5]r = 10[r = 20
p = 30[44.05|72.74 | 84.69 | 96.29 [42.96 | 71.30 | 85.15 | 96.99
p = 50| 37.83|63.70 | 75.09 | 88.35 |37.41|63.02| 73.50 | 88.30
p = 80| 32.60 | 54.55| 65.89 | 78.30 |31.73|55.69 | 67.02 | 77.78
Table 3. PRDC vs. RankSVM (%) on i-LIDS.
Rank PRDC RankSVM
r=1{r =5|r =10|r =20[r = 1|r = 5|r = 10|r = 20
p = 316]15.66 | 38.42 | 53.86 | 70.09 |16.27 | 38.23 | 53.73 | 69.87
p = 432]12.64 | 31.97 | 44.28 | 59.95 | 10.63|29.70 | 42.31 | 58.26
p = 532] 9.12 |24.19 | 34.40 | 48.55 | 8.87 | 22.88 | 32.69 | 45.98

Table 4. PRDC vs. RankSVM (%) on VIPeR.

Methods i-LIDS, (p = 50) VIPeR (p = 316)
r=1|r =5|r = 10|r = 20|r = 1|r = 5|r = 10|r = 20
PRDC |37.83|63.70 | 75.09 | 88.35 | 15.66 | 38.42 | 53.86 | 70.09
PRDCqqp | 19.92]50.19 | 68.29 | 86.40 | 12.28 [37.28 | 53.83 | 71.77
ITMgps |29.16|53.01 | 66.75 | 82.53 | 5.44 | 14.43 | 22.53 | 33.35
MCCgps | 5.59 |23.01| 43.59 | 70.47 | 1.20 | 3.51 5.6 9.68

Table 5. Effect of learning in an absolute data difference space.

Methods i-LIDS MCTS VIPeR
p = 30]p = 50[p = 80[p = 316]p = 432[p = 532
rank(W)| 32 | 24 | 23 | 29 | 32 | 37

Table 6. Average Rank of W Learned by PRDC.

order to learn in an absolute data difference space. In Ta-
ble 5 we show that when ITM and MCC are learned in the
absolute data difference space |DZ|, termed as ITM s and
MCC,;s respectively, their performances become worse as
compared to their results in Tables 1 and 2. This indicates
that the absolute different space is more suitable for our rel-
ative comparison distance learning.

Computational cost. Though PRDC is iterative, it has rel-
atively low cost in practice. In our experiments, for VIPeR
with p = 316, it took around 15 minutes for an Intel dual-
core 2.93GHz CPU and 48GB RAM to learn PRDC for each
trial. We observed that the low cost of PRDC is partially
due to its ability to seek a suitable low rank of W (i.e. con-
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verge within very few iterations) as shown in Table 6. For
comparison, among the other compared methods, Adaboost
is the most costly and took over 7 hours for each trial. For
the 4 compared distance learning methods, PCA dimension-
ality reduction must be performed otherwise they becomes
intractable given the high dimensional feature space. For
the RankSVM method, each trial took around 2.5 hours due
to parameter tuning.

4. Conclusion

We have proposed a new approach for person re-
identification based on probabilistic relative distance com-
parison which aims to learn an suitable optimal distance
measure given large intra and inter-class appearance varia-
tions and sparse data. Our experiments demonstrate that 1)
by formulating person re-identification as a distance learn-
ing problem, clear improvement in matching performance
can be obtained and the improvement is more significant
when training sample size is small, and (2) our PRDC out-
performs not only existing distance learning methods but
also alternative learning methods based on boosting and
learning to rank.
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