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Abstract

Human salience is distinctive and reliable information

in matching pedestrians across disjoint camera views. In

this paper, we exploit the pairwise salience distribution re-

lationship between pedestrian images, and solve the person

re-identification problem by proposing a salience matching

strategy. To handle the misalignment problem in pedes-

trian images, patch matching is adopted and patch salience

is estimated. Matching patches with inconsistent salience

brings penalty. Images of the same person are recognized

by minimizing the salience matching cost. Furthermore, our

salience matching is tightly integrated with patch match-

ing in a unified structural RankSVM learning framework.

The effectiveness of our approach is validated on the VIPeR

dataset and the CUHK Campus dataset. It outperforms the

state-of-the-art methods on both datasets.

1. Introduction

Person re-identification is a task of matching persons ob-

served from non-overlapping camera views based on im-

age appearance. It has important applications in video

surveillance including threat detection, human retrieval, hu-

man tracking, and activity analysis. It saves a lot of hu-

man efforts on exhaustively searching for a person from

large amounts of video sequences. Nevertheless, person

re-identification is a very challenging task. A person ob-

served in different camera views often undergoes signifi-

cant variations on viewpoints, poses, appearance and illu-

mination, which make intra-personal variations even larger

than inter-personal variations. Background clutters and oc-

clusions cause additional difficulties. Our work is mainly

motivated by the following several aspects.

Misalignments are caused by variations of viewpoints

and poses, which are commonly exist in person re-

identification. For example in Figure 1, the shoulder of (b1)
close to the left boundary becomes a backpack at the same

location in (b2). Most existing methods [19, 23, 12, 4, 18]

match pedestrian images by directly comparing misaligned

features. In our approach, salience matching is integrated

with patch matching, and both show robustness to spatial

query correct match incorrect match
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gallery in camera Bprobe in camera A

(p1) (p2) (p3) (p4)

Figure 1. Illustration of human salience and salience matching

with examples. In the first row, some salient parts of pedestrians

are highlighted with yellow dashed regions. The second row and

the third row show examples of salience matching. The salience

map of each pedestrian image is shown. Best viewed in color.

variation and misalignment.

Some local patches are more distinctive and reliable

when matching two persons. Some examples are shown in

the first row of Figure 1, person (p1) carries a red hand bag,

(p2) has an orange cap and a yellow horizontal stripe on his

jacket, (p3) wears a white dress, and (p4) is dressed in red

sweater with floral texture. Human eyes can easily pick up

these persons from other candidates because of these dis-

tinctive features. These features can be reliably detected

across camera views. If a body part is salient in one camera

view, it usually remains salient in another view. However,

most existing approaches only consider clothes and trousers

as the most important regions for person re-identification.

Some distinct features (such as the red bag in (p1)) may be

considered as outliers to be removed, because they do not

belong to body parts. Also, these features may only take up

small regions in body parts. If global features are adopted

by existing approaches, those small regions have little ef-

fect on person matching. In contrast, our approach can
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well estimate distinctiveness of patches as salience. Patches

with high salience values gain large weights in person re-

identification, because such patches not only have good dis-

criminative power but also can be reliably detected during

patch matching across camera views.

We observe that images of the same person captured

from different camera views have some invariance property

on their spatial distributions on salience, like pair (a1, a2)
in Figure 1. Since the person in image (a1) shows salience

in her dress while others in (a3)-(a6) have salient blouses.

They can be well distinguished simply from the spatial dis-

tributions of salience. Therefore, human salience distribu-

tions provide useful information in person re-identification.

Such information can be encoded during patch matching.

If two patches from two images of the same person are

matched, they are expected to have the same salience value;

otherwise such matching brings salience matching penalty.

In the second row in Figure 1, the query image (b1) shows

a similar salience distribution as those of gallery images. In

this case, visual similarity needs to be considered. This mo-

tivates us to relate salience matching penalty to the visual

similarity of two matched patches.

Based on above considerations, a new person re-

identification approach by salience matching is proposed.

This work has three major contributions.

First, a probabilistic distribution of salience is reli-

ably estimated with our approach. Different from general

salience detection [6], our salience is especially designed

for person re-identification. The estimated human salience

is robust across disjoint camera views and is used as a mean-

ingful representation of human appearance in recognition.

Second, we formulate person re-identification as a salience

matching problem. Dense correspondences between local

patches are established based on visual similarity. Matching

patches with inconsistent salience brings cost. Images of

the same person are recognized by minimizing the salience

matching cost, which not only depends on the locations of

patches but also the visual similarity of matched patches.

Third, salience matching and patch matching are tightly in-

tegrated into a unified structural RankSVM learning frame-

work. Structural RankSVM has good training efficiency

given a very large number of rank constraints in person re-

identification. Moreover, our approach has transformed the

original high-dimensional visual feature space to a much

lower dimensional salience feature space (80 times lower

in this work) to further improve the training efficiency and

also avoid overfitting.

The effectiveness of our approach is validated on the

VIPeR dataset [7] and the CUHK Campus dataset [12]. It

outperforms the state-of-the-art methods on both datasets.

2. Related Works

Existing methods on person re-identification generally

fall into two categories: unsupervised and supervised. Our

proposed approach is supervised.

Unsupervised Methods. This category mainly fo-

cuses on feature design. Farenzena et al. [5] proposed

the Symmetry-Driven Accumulation of Local Features

(SDALF) by exploiting the symmetry property in pedes-

trian images to handle view variation. Ma et al. [16] de-

veloped the BiCov descriptor based on the Gabor filters and

the covariance descriptor to handle illumination change and

background variations. Cheng et al. [3] utilized the Pictorial

Structures to estimate human body configuration and also

computed visual features based on different body parts to

cope with pose variations. Lu et al. [15] employed assem-

bly of part templates to handle the articulation of human

body. Zhao et al. [22] proposed an unsupervised salience

learning method to exploit discriminative features, but they

did not consider salience itself as an important feature for

patch matching and person re-identification.

Supervised Methods. Distance metric learning has been

widely used in person re-identification [23, 4, 12, 13, 18,

24]. They learn metrics by minimizing the intra-class dis-

tances while maximizing the inter-class distances. Their

performance is limited by the fact that metric is based on

the subtraction of misaligned feature vectors, which causes

significant information loss and errors. Li and Wang [11]

learned a mixture of cross-view transforms and projected

features into a common space for alignment. In contrast,

our approach handles the problem of feature misalignment

through patch matching. Liu et al. [14] allowed user feed-

back in the learning procedure, which achieved significant

improvement over metric learning methods. Some other

models have also been employed to extract discriminative

features. Gray et al. [8] used boosting to select a subset of

optimal features for matching pedestrian images. Prosser

et al. [19] formulated person re-identification as a rank-

ing problem, and learned global feature weights based on

an ensemble of RankSVM. RankSVM optimizes over the

pairwise differences. In this paper, we employ structural

RankSVM [10], which considers the ranking difference

rather than pairwise difference.

General image salience has been extensively studied [6].

In the context of person re-identification, human salience is

different than general image salience in the way of drawing

visual attentions.

3. Human Salience

We compute the salience probability map based on dense

correspondence with a K-nearest neighbors (KNN) method.
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Algorithm 1 Compute human salience.

Input: image xA,u and a reference image set R =
{xB,v, v = 1, . . . , Nr}

Output: salience probability map P (lA,u
m,n = 1 | xA,u

m,n)

1: for each patch xA,u
m,n ∈ X do

2: compute XNN (xA,u
m,n) with Eq. (1)

3: compute score(xA,u
m,n) with Eq. (2)

4: compute P (lA,u
m,n = 1 | xA,u

m,n) with Eq. (3)

5: end for

3.1. Dense Correspondence

Dense Features. Before building dense correspondence,

local patches on a dense grid are extracted. The patch size is

10×10 and the grid step is 5 pixels. 32-bin color histogram

in each of LAB channels and 128-dimensional SIFT fea-

tures are then computed for each patch. To robustly capture

the color information, color histograms are also computed

on two other downsampled scales for each patch. The color

histograms and SIFT features are normalized with L2 norm,

and are concatenated to form the final dense local features,

i.e. a 672-dimensional (32×3×3+128×3) feature vector

for each local patch.

Adjacency Constrained Search. Dense local features

for an image are denoted by xA,u = {xA,u
m,n}, and xA,u

m,n

represents the feature of a local patch at the m-th row and

n-th column in the u-th image from camera view A. When

patch xA,u
m,n searches for its corresponding patch in the v-

th image from camera view B, i.e. xB,v = {xB,v
i,j }, the

search set of xA,u
m,n in xB,v is S(xA,u

m,n,x
B,v) = {xB,v

i,j |j =
1, . . . , N, i = max(0,m− l), . . . ,min(M,m+ l)}, where

l denotes the halft height of adjacency search space, M is

the number of rows, and N is the number of columns. If

all pedestrian images are well aligned and there is no verti-

cal pose variation, l shall be set zero. However, misalign-

ment, camera view change, and vertical articulation result

in vertical movement of the human body in the image. Thus

the relaxed adjacency search is necessary to handle spatial

variations. Smaller search space cannot tolerate large spa-

tial variation, while larger search space will increases the

chance of mismatch. We choose l = 2 in our experiment

setting.

Patch matching is widely used, and many off-the-

shelf methods [1] are available. We simply do a k-

nearest-neighbor search for patch xA,u
m,n in its search set

S(xA,u
m,n,x

B,v). For each patch xA,u
m,n, a nearest neighbor

is sought from its search set in every image within a refer-

ence set. The adjacency constrained search is illustrated in

Figure 2.

Figure 2. Illustration of adjacency constrained search. Green re-

gion represents the adjacency constrained search set of the patch

in yellow box. The patch in red box is the target match.

3.2. Unsupervised Salience Learning

Human salience is computed based on previously-built

dense correspondence. We utilize the KNN distances to

find patch samples in minority, i.e. they are unique and spe-

cial. In the application of person re-identification, we find

salient patches that possess property of uniqueness among

a reference set R. Denote the number of images in the ref-

erence set by Nr. For an image xA,u = {xA,u
m,n}, a nearest-

neighbor (NN) set of size Nr is built for every patch xA,u
m,n,

XNN (xA,u
m,n) ={x| argmin

x
B,v
i,j

d(xA,u
m,n, x

B,v
i,j ), (1)

xB,v
i,j ∈ S(xA,u

m,n,x
B,v), v = 1, . . . , Nr},

where S(xA,u
m,n,x

B,v) is the adjacency search set of patch

xA,u
m,n, and function d(·) computes the Euclidean distance

between two patch features.

Our goal of computing human salience is to identify

patches with special appearance. We use the KNN distances

to define the salience score:

score(xA,u
m,n) = dk(XNN (xA,u

m,n)), (2)

and the probability of xA,u
m,n being a salient patch is

P (lA,u
m,n = 1 | xA,u

m,n) = 1− exp(−score(xA,u
m,n)

2/σ2
0), (3)

where dk denotes the distance of the k-th nearest neighbor,

lA,u
m,n is a binary salience label and σ0 is a bandwidth param-

eter. We set k = Nr/2 in the salience learning scheme with

an empirical assumption that a patch is considered to have

special appearance such that more than half of the people in

the reference set do not share similar patch with it. Nr ref-

erence images are randomly sampled from training set, and

we set Nr = 100 in our experiments. Enlarging the refer-

ence dataset will not deteriorate salience detection, because

the salience is defined in the statistical sense. It is robust as

long as the distribution of the reference dataset well reflects

the test scenario. Our human salience learning method is

summarized in algorithm 1.

4. Supervised Salience Matching

One of the main contributions of this work is to match

pedestrian images based on the salience probability map. In
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contrast with most of the works on person re-identification,

which focus on feature selection, feature weighting, or dis-

tance metric learning, we instead exploit the consistence

property of human salience and incorporate it in person

matching. This is based on our observation that person in

different camera views shows consistence in the salience

probability map, as shown in Figure 1.

4.1. Matching based on Salience

Since matching is applied for arbitrary image pairs, we

omit the image index in notation for clarity, i.e. change

xA,u to xA and xB,v to xB . Also, the patch notations are

changed accordingly, i.e. xA,u
m,n to xA

pi
and xB,v

i,j to xB
p′

i
,

where pi is the patch index in image xA and p′i is the cor-

responding matched patch index in image xB produced by

previously built dense correspondence. To incorporate the

salience into matching, we introduce lA = {lApi
| lApi

∈

{0, 1}} and lB = {lBp′

i
| lBp′

i
∈ {0, 1}} as salience labels for

all the patches in image xA and xB respectively. If all the

salience labels are known, we can perform person matching

by computing salience matching score as follows:

fz(x
A,xB , lA, lB ;p, z) = (4)
∑

pi

{

zpi,1l
A
pi
lBp′

i
+ zpi,2l

A
pi
(1− lBp′

i
)

+ zpi,3(1− lApi
)lBp′

i
+ zpi,4(1− lApi

)(1− lBp′

i
)
}

,

where p = {(pi, p
′

i)} are dense correspondence patch index
pairs, and z = {zpi,k}k=1,2,3,4 are the matching scores for
four different salience matching results at one local patch.
zpi,k is not a constant for all the patches. Instead, it de-
pends on the spatial location pi. For example, the score
of matching patches on the background should be different
than those on legs. zpi,k also depends on the visual similar-

ity between patch xA
pi

and patch xB
p′

i
,

s(xA
pi
, xB

p′
i
) = exp

(

−
d(xA

pi
, xB

p′
i
)2

2σ2
0

)

, (5)

where σ0 is bandwidth of the Gaussian function. Instead of

directly using the Euclidean distance d(xA
pi
, xB

p′

i
), we con-

vert it to similarity to reduce the side effect in summation

of very large distances in incorrect matching, which may be

caused by misalignment, occlusion, or background clutters.

Therefore, we define the matching score zpi,k as a linear

function of the similarity as follows,

zpi,k = αpi,k · s(xA
pi
, xB

p′

i
) + βpi,k, (6)

where αpi,k and βpi,k are weighting parameters. Thus

Eq.(4) jointly considers salience matching and visual simi-

larity.

Since the salience label lApi
and lBp′

i
in Eq.(4) are hidden

variables, they can be marginalized by computing the ex-
pectation of the salience matching score as

f∗(xA,xB ;p, z)

=
∑

lA,lB

fz(x
A,xB , lA, lB ;p, z)p(lA, lB |xA,xB)

=
∑

pi

4
∑

k=1

[

αpi,k · s(xA
pi
, xB

p′
i
) + βpi,k

]

cpi,k(x
A
pi
, xB

p′
i
), (7)

where cpi,k(x
A
pi
, xB

p′

i
) is the probabilistic salience matching

cost depending on salience probabilities P (lApi
= 1 | xA

pi
)

and P (lBp′

i
= 1 | xB

p′

i
) given in Eq.(3),

cpi,k(x
A
pi
, xB

p′
i
) (8)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

P (lApi = 1 | xA
pi
)P (lBp′

i
= 1 | xB

p′
i
), k = 1,

P (lApi = 1 | xA
pi
)P (lBp′

i
= 0 | xB

p′
i
), k = 2,

P (lApi = 0 | xA
pi
)P (lBp′

i
= 1 | xB

p′
i
), k = 3,

P (lApi = 0 | xA
pi
)P (lBp′

i
= 0 | xB

p′
i
), k = 4.

To better formulate this learning problem, we extract out

all the weighting parameters in Eq.(7) as w, and have

f∗(xA,xB ;p, z) = wTΦ(xA,xB ;p) (9)

=
∑

pi

wT
pi
φ(xA

pi
, xB

p′

i
),

where

Φ(xA,xB ;p) = [φ(xA
p1 , x

B
p′
1
)T, . . . , φ(xA

pN
, xB

p′
N
)T]T, (10)

w = [wp1 , . . . , wpN ]T,

wpi = [{αpi,k}k=1,2,3,4, {βpi,k}k=1,2,3,4].

Φ(xA,xB ;p) is the feature map describing the matching

between xA and xB . For each patch pi, the matching fea-

ture φ(xA
pi
, xB

p′

i
) is an eight dimensional vector:

φ(xA
pi
, xB

p′
i
) = (11)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

s(xA
pi
, xB

p′
i
)P (lApi = 1 | xA

pi
)P (lBp′

i
= 1 | xB

p′
i
)

s(xA
pi
, xB

p′
i
)P (lApi = 1 | xA

pi
)P (lBp′

i
= 0 | xB

p′
i
)

s(xA
pi
, xB

p′
i
)P (lApi = 0 | xA

pi
)P (lBp′

i
= 1 | xB

p′
i
)

s(xA
pi
, xB

p′
i
)P (lApi = 0 | xA

pi
)P (lBp′

i
= 0 | xB

p′
i
)

P (lApi = 1 | xA
pi
)P (lBp′

i
= 1 | xB

p′
i
)

P (lApi = 1 | xA
pi
)P (lBp′

i
= 0 | xB

p′
i
)

P (lApi = 0 | xA
pi
)P (lBp′

i
= 1 | xB

p′
i
)

P (lApi = 0 | xA
pi
)P (lBp′

i
= 0 | xB

p′
i
)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

As shown in Eq.(11), the pairwise feature map

Φ(xA,xB ;p) combines the salience probability map with

appearance matching similarities. For each query image

xA, the images in the gallery are ranked according to the

expectations of salience matching scores in Eq.(7). There
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are three advantages of matching with human salience : (1)

the human salience probability distribution is more invari-

ant than other features in different camera views; (2) be-

cause the salience probability map is built based on dense

correspondence, so it inherits the property of tolerating spa-

tial variation; and (3) it can be weighted by visual similar-

ity to improve the performance of person re-identification.

We will present the details in next section by formulating

the person re-identification problem with Φ(xA,xB ;p) in

structural RankSVM framework, and the effectiveness of

salience matching will be shown in experimental results.

4.2. Ranking by Partial Order

We cast person re-identification as a ranking problem for
training. The ranking problem will be solved by finding
an optimal partial order, which will be mathematically de-
fined in Eq.(12)(13)(16). Given a dataset of pedestrian im-
ages, DA = {xA,u, idA,u}Uu=1 from camera view A and
DB = {xB,v, idB,v}Vv=1 from camera view B, where xA,u

is the u-th image, yu is its identity label, and U is the to-
tal number of images in DA. Similar notations apply for
variables of camera view B. Each image xA,u has its rele-
vant images (same identity) and irrelevant images (different
identities) in dataset DB . Our goal is to learn the weight pa-
rameters w that order relevant gallery images before irrele-
vant ones. For the image xA,u, the orders in its groundtruth
ranking are not all known, i.e., we rank the relevant im-
ages before irrelevant ones, but no information of the or-
ders within relevant images or irrelevant ones is provided in
groundtruth. The partial order yA,u is denoted as,

y
A,u = {yA,u

v,v′}, yA,u

v,v′ =

{

+1 xB,v ≺ xB,v′

,

−1 xB,v ≻ xB,v′

,
(12)

where xB,v ≺ xB,v′

(xB,v ≻ xB,v′

) represents that xB,v is

ranked before (after) xB,v′

in partial order yA,u.
The partial order feature [9, 17] is appropriate for our

goal and can well encode the difference between relevant
pairs and irrelevant pairs with only partial orders. The par-
tial order feature for image xA,u is formulated as,

Ψpo(x
A,u,yA,u; {xB,v}Vv=1, {p

u,v}Vv=1) =

∑∑

xB,v
∈S

+

x
A,u

xB,v′

∈S
−

x
A,u

yA,u

v,v′

Φ(xA,u,xB,v;pu,v)− Φ(xA,u,xB,v′

;pu,v′

)

|S+

xA,u | · |S
−

xA,u |
,

(13)

S+

xA,u = {xB,v | idB,v = idA,u}, (14)

S−

xA,u = {xB,v | idB,v �= idA,u}, (15)

where {pu,v}Vv=1 are the dense correspondences be-

tween image xA,u and every gallery image xB,v , S+

x
A,u

is relevant image set of xA,u, S−

x
A,u is irrelevant im-

age set, Φ(xA,u,xB,v;pu,v) is the feature map defined

in Eq.(10), and the difference vector of two feature maps

Φ(xA,u,xB,v;pu,v) − Φ(xA,u,xB,v′

;pu,v′

) is added if

xB,v ≺ xB,v′

and subtracted otherwise.

A partial order may correspond to multiple rankings.
Our task is to find a good ranking satisfying the optimal

partial order y
A,u
∗ that maximizes following score function,

y
A,u
∗ = argmax

yA,u∈YA,u

w
TΨpo(x

A,u,yA,u; {xB,v}Vv=1, {p
u,v}Vv=1),

(16)

where YA,u is space consisting of all possible partial

orders. As discussed in [9, 21], the good ranking

can be obtained simply by sorting gallery images by

{wTΦ(xA,u,xB,v;pu,v)}v in descending order. The re-

maining problem is how to learn w.

4.3. Structural RankSVM

In this work, we employ structural SVM to learn the

weighting parameters w. Different than many previous

SVM-based approaches optimizing over the pairwise dif-

ferences (e.g., [2, 19]), structural SVM optimizes over rank-

ing differences and it can incorporate non-linear multivari-

ate loss functions directly into global optimization in SVM

training.

Objective function. Our goal is to learn a linear model
and the training is based on n-slack structural SVM [10].
The objective function is as follows,

min
w,ξ

1

2
‖w‖2 + C

U
∑

u=1

ξu, (17)

s.t . w
TδΨpo(x

A,u,yA,u, ŷA,u; {xB,v}Vv=1, {p
u,v}Vv=1)

≥ Δ(yA,u, ŷA,u)− ξu,

∀ŷA,u ∈ YA,u
�y

A,u, ξu ≥ 0, for u = 1, . . . , U,

where δΨpo is defined as

δΨpo(x
A,u,yA,u, ŷA,u; {xB,v}Vv=1, {p

u,v}Vv=1)

= Ψpo(x
A,u,yA,u; {xB,v}Vv=1, {p

u,v}Vv=1)

−Ψpo(x
A,u, ŷA,u; {xB,v}Vv=1, {p

u,v}Vv=1), (18)

w is the weight vector, C is a parameter to balance between

the margin and the training error, yA,u is a correct partial or-

der that ranks all correct matches before incorrect matches,

and ŷA,u is an incorrect partial order that violates some of

the pairwise relations, e.g. a correct match is ranked after an

incorrect match in ŷA,u. The constraints in Eq. (17) force

the discriminant score of correct partial order yA,u to be

larger than that of incorrect one ŷA,u by a margin, which

is determined by a loss function Δ(yA,u, ŷA,u) and a slack

variable ξu.
AUC loss function. Many loss functions can be ap-

plied in structural SVM. In the application of person re-
identification, we choose the ROC Area loss, which is also
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Figure 3. We normalize the learnt weight vector w to a

2-dimensional importance map for different spatial location.

Eight importance maps correspond to {αpi,k}k=1,2,3,4 and

{βpi,k}k=1,2,3,4 in Eq. (7).

known as Area Under Curve (AUC) loss. It is computed
from the number of swapped pairs,

Nswap = {(v, v′) : xB,v ≻ x
B,v′

and (19)

w
TΦ(xA,u,xB,v ;pu,v) < w

TΦ(xA,u,xB,v′

;pu,v′

)},

i.e. the number of pairs of samples that are not ranked in
correct order. In the case of partial order ranking, the loss
function is

Δ(yA,u, ŷA,u) = |Nswap|/|S
+

xA,u | · |S
−

xA,u |, (20)

=
∑

v,v′

(1− ŷA,u

v,v′)/(2 · |S
+

xA,u | · |S
−

xA,u |).

We note that there are an exponential number of constraints

in Eq.(17) due to the huge dimensionality of YA,u. [10]

shows that the problem can be efficiently solved by a cut-

ting plane algorithm. In our problem, the discriminative

model is learned by structural RankSVM algorithm, and the

weight vector w in our model means how important it is

for each term in Eq.(11). In Eq.(11), {αpi,k}k=1,2,3,4 cor-

respond to the first four terms based on salience matching

with visual similarity, and {βpi,k}k=3,4 correspond to the

last four terms only depending on salience matching.

We visualize the learning result of w in Figure 3, and

find that the first four terms in Eq.(11) are heavily weighted

in the central part of human body which implies the im-

portance of salience matching based on visual similarity.

{βpi,k}k=1,2 are not relevant to visual similarity and they

correspond to the two cases when lApi
= 1, i.e. the patches

on the query images are salient. It is observed that their

weighting maps are highlighted on the upper body, which

matches to our observation that salient patches usually ap-

pear on the upper body. {βpi,k}k=3,4 are not relevant to vi-

sual similarity either, but they correspond to the cases when

lApi
= 0, i.e. the patches on the query images are not salient.

We find that their weights are very low on the whole maps.

It means that non-salient patches on query images have lit-

tle effect on person re-identification if the contribution of

visual similarity is not considered.

5. Experimental Results

We evaluate our approach on two public datasets, i.e.

the VIPeR dataset [7], and the CUHK Campus dataset

[12]. The VIPeR dataset is the mostly used person re-

identification dataset for evaluation, and the recently pub-

lished CUHK Campus dataset contains more images than

VIPeR (3884 vs. 1264 specifically). Both are very chal-

lenging datasets for person re-identification because they

contain significant variations on viewpoints, poses, and il-

luminations, and their images are in low resolutions, with

occlusions and background clutters. All the quantitative re-

sults are reported in standard Cumulated Matching Charac-

teristics (CMC) curves [20].

Evaluation Protocol. Our experiments on both datasets

follow the evaluation protocol in [8], i.e. we randomly par-

tition the dataset into two even parts, 50% for training and

50% for testing, without overlap on person identities. Im-

ages from camera A are used as probe and those from cam-

era B as gallery. Each probe image is matched with every

image in gallery, and the rank of correct match is obtained.

Rank-k recognition rate is the expectation of correct match

at rank k, and the cumulated values of recognition rate at all

ranks is recorded as one-trial CMC result. 10 trials of eval-

uation are conducted to achieve stable statistics, and the ex-

pectation is reported. We denote our salience matching ap-

proach by SalMatch. To validate the usefulness of salience

matching, we repeat all the training and testing evaluation

on our approach, but without using salience. This control

experiment is denoted by PatMatch.

VIPeR Dataset [7]. The VIPeR dataset 1 contains im-

ages from two cameras in outdoor academic environment.

It contains 632 pedestrian pairs, and each pair contains

two images of the same person observed from different

camera views. Most of the image pairs show viewpoint

change larger than 90 degrees. All images are normalized

to 128× 48 for experiments.

On VIPeR dataset, comparing PatMatch and

SalMatch with several existing unsupervised meth-

ods, i.e. SDALF [5], CPS [3], eBiCov [16] and eSDC [22],

experimental results show significant improvements in

Figure 5 (a).

We also compare our approaches with six alternative su-

pervised learning methods, including four benchmarking

distance metric learning methods, i.e. PRDC [23], LMNN-

R [4], PCCA [18], and attribute-based PRDC (aPRDC)

[13], a boosting approach (ELF) [8] and Rank SVM

(RankSVM) [19]. As seen from the the comparison results

in Figure 5 (a), our approach SalMatch achieves 30.16%
at rank one with standard deviation 1.23%, and outperforms

all these methods. The control experiment PatMatch
achieves 26.90%, which shows the effectiveness of integrat-

ing salience matching into patch matching. For distance

metric learning methods, they ignore the domain knowl-

edge of person re-identification that pedestrian images suf-

1The VIPeR dataset is available to download at: http://vision.

soe.ucsc.edu/?q=node/178

25332533



(a) VIPeR dataset

(b) CUHK Campus dataset

Figure 4. Some interesting examples of salience matching in our experiments. This figure shows four categories of salience probability

types: salience in upper body (in blue dashed box), salience of taking bags (in green dashed box), salience of lower body (in orange dashed

box), and salience of stripes on human body (in red dashed box). Best viewed in color.
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Figure 5. CMC statistics on the VIPeR dataset and the CUHK Campus dataset. (a) On VIPeR dataset, our approach (PatMatch and

SalMatch) is compared with benchmarking methods including SDALF [5], CPS [3], eBiCov [16], eSDC [22], ELF [8], PRSVM [19],

PRDC [23], LMNN-R [4], aPRDC [13], and PCCA [18]; (b) On CUHK Campus dataset, our approach is compared with L1-norm

distance, L2-norm distance, SDALF, LMNN [12], and ITML [12]. All the rank-1 performances are marked in the front of method names.

Unsupervised methods are drawn in dashed lines while supervised method in solid lines.

fer spatial variation caused by misalignment and pose vari-

ation, as discussed in Section 2. Among these metric learn-

ing approaches, although the aPRDC also tries to find the

unique and inherent appearance property of pedestrian im-

ages, our approach is almost more than doubled on rank-1

accuracy against aPRDC. aPRDC weights global features

instead local patches based on their distinctiveness. It did

not consider the consistency of salience distribution as a cue

or matching pedestrian images. ELF gains a lower perfor-

mance since it selects features in original feature space in

which features of different identities are highly correlated.

The RankSVM also formulate person re-identification as a

ranking problem, but ours shows much better performance

because it adopts discriminative salience matching strategy

for pairwise matching, and the structural SVM incorporates

ranking loss in global optimization. This implies the impor-
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tance of exploiting human salience matching and the effec-

tiveness of structural SVM training.

CUHK Campus Dataset [12]. The CUHK Campus dataset
2 is also captured with two camera views in a campus envi-

ronment. Different than the VIPeR dataset, images in this

dataset are of higher resolution and are more suitable to

show the effectiveness of salience matching. The CUHK

Campus dataset contains 971 persons, and each person has

two images in each camera view. Camera A captures the

frontal view or back view of pedestrians, while camera B

captures the side views. All the images are normalized to

160× 60 for evaluations.

Since no unsupervised methods are published on the

CUHK Campus dataset, so we compare with L1-norm and

L2-norm distances of our dense features introduced in Sec-

tion 3.1. Features of all local patches are directly concate-

nated regardless of spatial misalignment problem (there-

fore, patch matching is not used), and the pairwise distance

is simply computed by L1-norm and L2-norm. Also, we

compare with the result of a benchmarking unsupervised

method, i.e. SDALF [5], which is obtained by running the

original implementation3 on the CUHK Campus dataset. As

shown in Figure 5 (b), our approach greatly outperforms

these unsupervised methods.

Our approach is also compared with available results

of distance learning methods including LMNN [12], and

ITML [12]. On the CUHK Campus dataset, SalMatch
obtains a matching rate of 28.45% at rank one with

standard deviation 1.02% while PatMatch achieves

20.39%. Apparently, our salience matching approach

outperforms the others methods, and similar conclusions

as in the VIPeR dataset can be drawn from the comparisons.

6. Conclusion

In this paper, we formulate person re-identification as a

salience matching problem. The dense correspondences of

local patches are established by patch matching. Salience

probability maps of pedestrian images are reliably esti-

mated to find the distinctive local patches. Matching

patches with inconsistent salience brings penalty. Images of

the same person are recognized by minimizing the salience

matching cost. We tightly integrate patch matching and

salience matching in the partial order feature and feed

them into a unified structural RankSVM learning frame-

work. Experimental results show our salience matching

approach greatly improved the performance of person re-

identification.

2The CUHK Campus is available to download at: http://www.ee.

cuhk.edu.hk/˜xgwang/CUHK_identification.html
3The implementation of SDALF method is provided by authors at the

website: http://www.lorisbazzani.info/code-datasets/

sdalf-descriptor/
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