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Person Re-identification:
Past, Present and Future
Liang Zheng, Yi Yang, and Alexander G. Hauptmann

Abstract—Person re-identification (re-ID) has become increasingly popular in the community due to its application and research

significance. It aims at spotting a person of interest in other cameras. In the early days, hand-crafted algorithms and small-scale

evaluation were predominantly reported. Recent years have witnessed the emergence of large-scale datasets and deep learning systems

which make use of large data volumes. Considering different tasks, we classify most current re-ID methods into two classes, i.e.,

image-based and video-based; in both tasks, hand-crafted and deep learning systems will be reviewed. Moreover, two new re-ID tasks

which are much closer to real-world applications are described and discussed, i.e., end-to-end re-ID and fast re-ID in very large galleries.

This paper: 1) introduces the history of person re-ID and its relationship with image classification and instance retrieval; 2) surveys a

broad selection of the hand-crafted systems and the large-scale methods in both image- and video-based re-ID; 3) describes critical

future directions in end-to-end re-ID and fast retrieval in large galleries; and 4) finally briefs some important yet under-developed issues.

Index Terms—Large-scale person re-identification, hand-crafted systems, Convolutional Neural Network, literature survey.

✦

1 INTRODUCTION

A CCORDING to Homer (Odyssey iv:412), Mennelaus was
becalmed on his journey home from the Trojan War;

He wanted to propitiate the gods and return safely home.
He was told that he should capture Proteus and force him to
reveal the answer. Although Proteus transformed to a lion,
a serpent, a leopard, water and also a tree, Mennelaus then
succeeded in holding him as he emerged from the sea to sleep
among the seals. Proteus was finally compelled to answer to
him truthfully.

Perhaps this is one of the oldest stories about re-
identifying a person even after intensive appearance changes.
In 1961, when discussing the relationship between mental
states and behavior, Alvin Plantinga [1] provided one of the
first definitions of re-identification:

“To re-identify a particular, then, is to identify
it as (numerically) the same particular as one
encountered on a previous occasion”.

Person re-identification had thus been studied in various
research and documentation areas such as metaphysics [1],
psychology [2], and logic [3]. All these works are grounded
on Leibniz’s Law which claims that “there cannot be separate
objects or entities that have all their properties in common.”

In the modern computer vision community, the task of
person re-ID shares similar insights with the old times. In
video surveillance, when being presented with a person-of-
interest (query), person re-ID tells whether this person has
been observed in another place (time) by another camera. The
emergence of this task can be attributed to 1) the increasing
demand of public safety and 2) the widespread large camera
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networks in theme parks, university campuses and streets,
etc. Both causes make it extremely expensive to rely solely
on brute-force human labor to accurately and efficiently spot
a person-of-interest or to track a person across cameras.

Technically speaking, a practical person re-ID system in
video surveillance can be broken down into three modules,
i.e., person detection, person tracking, and person retrieval.
It is generally believed that the first two modules are
independent computer vision tasks, so most re-ID works
focus on the last module, i.e., person retrieval. In this survey,
if not specified, person re-ID refers to the person retrieval
module. From the perspective of computer vision, the most
challenging problem in re-ID is how to correctly match
two images of the same person under intensive appearance
changes, such as lighting, pose, and viewpoint, which has
important scientific values. Given its research and application
significance, the re-ID community is fast growing, evidenced
by an increasing number of publications in the top venues
(Fig. 1).

1.1 Organization of This Survey

Some person re-ID surveys exist [4], [5], [6], [7]. In this survey,
we mainly discuss the vision part of re-ID, which is also a
focus in the community, and refer readers to the camera
calibration and view topology methods in [5]. Another
difference from previous surveys is that we focus on different
re-ID subtasks currently available or likely to be visible in the
future, instead of very detailed techniques or architectures.
Special emphasis is given deep learning methods, end-to-
end re-ID and very large scale re-ID, which are currently
popular topics or reflect future trends. This survey first
introduces a brief history of person re-ID in Section 1.2 and
its relationship with classification and retrieval in Section
1.3. We then describe previous literature in image-based
and video-based person re-ID in Section 2 and Section 3,
respectively. Both sections categorize methods into hand-
crafted and deeply-learned systems. In Section 4, since the
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Fig. 2: Milestones in the person re-ID history.
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Fig. 1: Percentage of person re-ID papers on top conferences
over the years. Numbers above the markers indicate the
number of re-ID papers.

relationship between detection, tracking, and re-ID has not
been extensively studied, we will discuss several previous
works and point out future research emphasis. In Section
5, large-scale re-ID which resorts to state-of-the-art retrieval
models will be introduced, which is also an important future
direction. Some other open issues will be summarized in
Section 6, and conclusions will be drawn in Section 7.

1.2 A Brief History of Person Re-ID

Person re-ID research started with multi-camera tracking [8].
Several important re-ID directions have been developed since
then. In this survey, we briefly introduce some milestones in
person re-ID history (Fig. 2).

Multi-camera tracking. In the early years, person re-ID,
as a the term without being formally raised, was tightly
twined with multi-camera tracking, in which appearance
models were integrated with the geometry calibration among
disjoint cameras. In 1997, Huang and Russell [9] proposed a
Bayesian formulation to estimate the posterior of predicting
the appearance of objects in one camera given evidence
observed in other camera views. The appearance model
includes multiple spatial-temporal features such as color,
vehicle length, height and width, velocity, and time of obser-
vation. A comprehensive survey of multi-camera tracking
can be accessed in [8].

Multi-camera tracking with explicit “re-identification”.
To our knowledge, the first work on multi-camera tracking
where the term “person re-identification” is proposed, was
published in 2005 by Wojciech Zajdel, Zoran Zivkovic and

Ben J. A. Kröse from the University of Amsterdam [10]. In
their ICRA’05 paper entitled “Keeping track of humans: Have
I seen this person before?”, Zajedel et al. aims to “re-identify
a person when it leaves the field of view and re-enters later”.
In their method, a unique, latent label is assumed for every
person, and a dynamic Bayesian network is defined to encode
the probabilistic relationship between the labels and features
(color and spatial-temporal cues) from the tracklets. The
ID of an incoming person is determined by the posterior
label distributions computed by an approximate Bayesian
inference algorithm.

The independence of re-ID (image-based). One year
later in 2006, Gheissari et al. [11] employed only the visual
cues of persons after a spatial-temporal segmentation algo-
rithm for foreground detection. Visual matching based on
color and salient edgel histograms is performed by either an
articulated pedestrian model or the Hessian-Affine interest
point operator. Experiments are conducted on a dataset with
44 persons captured by 3 cameras with moderate view
overlap. Note that, although Gheissari et al. [11] design
a spatial-temporal segmentation method using the video
frames, neither the feature design nor matching processes
use the video information, so we classify [11] into image-
based re-ID. This work [11] marks the separation of person
re-ID from multi-camera tracking, and its beginning as an
independent computer vision task.

Video-based re-ID. Initially intended for tracking in
videos, most re-ID works focus on image matching instead. In
the year 2010, two works [12], [13] were proposed for multi-
shot re-ID, in which frames are randomly selected. Color is
a common feature used in both works, and Farenzena et al.
[13] additionally employ a segmentation model to detect the
foreground. For distance measurement, both works calculate
the minimum distance among bounding boxes in two image
sets, and Bazzani et al. further use the Bhattacharyya distance
for the color and generic epitome features. It is shown that
using multiple frames per person effectively improves over
the single-frame version [12], [13] and that re-ID accuracy
will saturate as the number of selected frames increases [12].

Deep learning for re-ID. The success of deep learning
in image classification [14] spreads to re-ID in 2014, when
Yi et al. [15] and Li et al. [16] both employ a siamese neural
network [17] to determine if a pair of input images belong
to the same ID. The reason for choosing the siamese model
is probably that the number of training samples for each
identity is limited (usually two). Aside from some variations
in parameter settings, the main differences are that [15] adds
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Task Train Class Test Class Advantage
Classification available seen discri. learning
Retrieval not available unseen efficiency
Person re-ID available unseen discri. + efficiency?

TABLE 1: Comparing re-ID with classification and retrieval

an additional cost function in the network, while [16] uses
a finer body partitioning. The experimental datasets do not
overlap in [15] and [16], so the two methods are not directly
comparable. Although its performance is not stable yet on
the small datasets, deep learning methods has since become
a popular option in re-ID

End-to-end image-based re-ID. While a majority of
works use hand-cropped boxes or boxes produced by a fixed
detector in their experiments, it is necessary to study the
impact of pedestrian detectors on re-ID accuracy. In 2014, Xu
et al. [18] addressed this topic by combining the detection
(commonness) and re-ID (uniqueness) scores. It is shown that
on the CAMPUS dataset, jointly considering detection and
re-ID confidence leads to higher person retrieval accuracy
than using them separately.

1.3 Relationship with Classification and Retrieval

Person re-ID lies inbetween image classification [14] and
instance retrieval [19] in terms of the relationship between
training and testing classes (Table 1). For image classification,
training images are available for each class, and testing im-
ages fall into these predefined classes, denoted as previously
“seen” in Table 1. For instance retrieval, usually there is no
training data because one does not know the content of the
query in advance and the gallery may contain various types
of objects. So the training classes are “not available” and the
testing classes (queries) are denoted as previously “unseen”.

Compared to image classification, person re-ID is similar
in that the training classes are available, which includes
images of different identities. Person re-ID is also similar to
instance retrieval in that the testing identities are unseen:
they do not have overlap with the training identities, except
that both training and testing images are of pedestrians.

As a consequence, person re-ID can be positioned to take
advantage of both classification and retrieval. On the one
hand, using training classes, discriminative distance metrics
[20] or feature embeddings [16], [21] can be learned in the
person space. On the other hand, when it comes to retrieval,
efficient indexing structures [22] and hashing techniques [23]
can be beneficial for re-ID in a large gallery. In this survey,
both effective learning and efficient retrieval approaches will
be introduced or pointed out as important future directions.

2 IMAGE-BASED PERSON RE-ID

Since the work by Gheissari et al. in 2006 [11], person re-
ID has mostly been explored using single images. Let us
consider a closed-world toy model, in which G is a gallery
(database) composed of N images, denoted as {gi}

N
i=1

. They
belong to N different identities 1, 2, ..., N . Given a probe
(query) image q, its identity is determined by:

i∗ = argmaxi∈1,2,...,N sim(q, gi), (1)

where i∗ is the identity of probe q, and sim(·, ·) is some kind
of similarity function.

2.1 Hand-crafted Systems

It is apparent from Eq. 1 that two components are necessary
for a toy re-ID system, i.e., image description and distance
metrics.

2.1.1 Pedestrian Description

In pedestrian descriptions, the most commonly used feature
is color, while texture features are less frequent. In [13], the
pedestrian foreground is segmented from the background,
and a symmetrical axis is computed for each body part. Based
on body configuration, the weighted color histogram (WH),
the maximally stable color regions (MSCR), and the recurrent
high-structured patches (RHSP) are computed. WH assigns
larger weights to pixels near the symmetrical axis and forms
a color histogram for each part. MSCR detects stable color
regions and extracts features such as color, area, and centroid.
RHSP instead is a texture feature capturing recurrent texture
patches. Gheissari et al. [11] propose a spatial-temporal
segmentation method to detect stable foreground regions. For
a local region, an HS histogram and an edgel histogram are
computed. The latter encodes the dominant local boundary
orientation and the RGB ratios on either sides of the edgel.
Gray and Tao [24] use 8 color channels (RGB, HS, and YCbCr)
and 21 texture filters on the luminance channel, and the
pedestrian is partitioned into horizontal stripes. A number
of later works [25], [26], [27] employ the same set of features
as [24]. Similarly, Mignon et al. [28] build the feature vector
from RGB, YUV and HSV channels and the LBP texture
histograms in horizontal stripes.

Compared to the earlier works described above, hand-
crafted features have remained more or less the same in
recent years [20], [29], [30], [31], [32]. In a series of works by
Zhao et al. [30], [33], [34], the 32-dim LAB color histogram
and the 128-dim SIFT descriptor are extracted from each
10× 10 patch densely sampled with a step size of 5 pixels;
this feature is also used in [35]. Adjacency constrained search
is employed to find the best match for a query patch in
horizontal stripes with similar latitudes in a gallery image.
Das et al. [36] apply HSV histograms on the head, torso and
legs from the silhouette proposed in [12]. Li et al. [31] also
extract local color descriptors from patches but aggregate
them using hierarchical Gaussianization [37] to capture
spatial information, a procedure followed by [38]. Pedagadi
et al. [39] extract color histograms and moments from HSV
and YUV spaces before dimension reduction using PCA. Liu
et al. [40] extract the HSV histogram, gradient histogram
and the LBP histogram for each local patch. To improve the
robustness of the RGB values against photometric variance,
Yang et al. [41] introduce the salient color names based color
descriptor (SCNCD) for global pedestrian color descriptions.
The influence of the background and different color spaces
are also analysed. In [20], Liao et al. propose the local maximal
occurrence (LOMO) descriptor, which includes the color and
SILTP histograms. Bins in the same horizontal stripe undergo
max pooling and a three-scale pyramid model is built before
a log transformation. LOMO is later employed by [42], [43]
and a similar set of features is used by Chen et al. [32]. In
[44], Zheng et al. propose extracting the 11-dim color names
descriptor [45] for each local patch, and aggregating them
into a global vector through a Bag-of-Words (BoW) model. In
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[46], a hierarchical Gaussian feature is proposed to describe
color and texture cues, which models each region by multiple
Gaussian distributions. Each distribution represents a patch
inside the region.

Apart from directly using low-level color and texture
features, another good choice is the attribute-based features
which can be viewed as mid-level representations. It is
believed that attributes are more robust to image translations
compared to low-level descriptors. In [47], Layne et al.
annotate 15 binary attributes on the VIPeR dataset related
to attire and soft biometrics. The low-level color and texture
features are used to train the attribute classifiers. After
attribute weighting, the resulting vector is integrated in the
SDALF [13] framework to fuse with other visual features.
Liu et al. [48] improve the latent Dirichlet allocation (LDA)
model using annotated attributes to filter out noisy LDA
topics. Liu et al. [49] propose discovering some pedestrian
prototypes with common attributes in an unsupervised
manner and adaptively determine the feature weights of
different query person according to the prototypes. Some
recent works borrow external data for attribute learning.
In [50], Su et al. embed the binary semantic attributes of
the same person but different cameras into a continuous
low-rank attribute space, so that the attribute vector is
more discriminative for matching. Shi et al. [51] propose
learning a number of attributes including color, texture,
and category labels from existing fashion photography
datasets. These attributes are directly transferred to re-ID
under surveillance videos and achieve competitive results.
Recently, Li et al. [52] collected a large-scale dataset with
richly annotated pedestrian attributes to facilitate attribute-
based re-ID methods.

2.1.2 Distance Metric Learning

In hand-crafted re-ID systems, a good distance metric is
critical for its success, because the high-dimensional visual
features typically do not capture the invariant factors under
sample variances. A comprehensive survey of the metric
learning methods can be accessed in [53]. These metric
learning methods are categorized w.r.t supervised learning
versus unsupervised learning, global learning versus local
learning, etc. In person re-ID, the majority of works fall into
the scope of supervised global distance metric learning.

The general idea of global metric learning is to keep all
the vectors of the same class closer while pushing vectors
of different classes further apart. The most commonly used
formulation is based on the class of Mahalanobis distance
functions, which generalizes Euclidean distance using linear
scalings and rotations of the feature space. The squared
distance between two vectors xi and xj can be written as,

d(xi, xj) = (xi − xj)
TM(xi − xj), (2)

where M is a positive semidefinite matrix. Equation 2 can be
formulated into the convex programming problem suggested
by Xing et al. [54].

In person re-ID, currently the most popular metric learn-
ing method, i.e., KISSME [55] is based on Eq. 2. In this method
[55], the decision on whether a pair (i, j) is similar or not is
formulated as a likelihood ratio test. The pairwise difference
(xi,j = xi − xj) is employed and the difference space is
assumed to be a Gaussian distribution with a zero mean. It

is shown in [55] that the Mahalanobis distance metric can be
naturally derived from the log-likelihood ratio test and in
practice, the principle component analysis (PCA) is applied
to the data points to eliminate dimension correlations.

Based on Eq. 2, a number of other metric learning
methods have been introduced. In the early days, some
classic metric learning methods target at nearest neighbor
classification. Weinberger et al. [56] propose the large margin
nearest neighbor Learning (LMNN) method which sets up a
perimeter for the target neighbors (matched pairs) and pun-
ishes those invading the perimeter (imposters). This method
belongs to the supervised local distance metric learning
category [53]. To avoid the overfitting problems encountered
in LMNN, Davis et al. [57] propose the information-theoretic
metric learning (ITML) as a trade-off between satisfying the
given similarity constraints and ensuring that the learned
metric is close to the initial distance function.

In recent years, Hirzer et al. [58] proposed relaxing the
positivity constraint which provides a sufficient approxima-
tion for the matrix M with a much lower computational cost.
Chen et al. [38] add a bilinear similarity in addition to the
Mahalanobis distance, so that cross-patch similarities can be
modeled. In [31], the global distance metric is coupled with
the local adaptive threshold rule which additionally contains
the orthogonal information of (xi, xj). In [59], Liao et al.
suggest perserving with a positive semidefinite constraint
and propose weighting the positive and negative samples
differently. Yang et al. [60] consider both the differences
and commonness between image pairs and show that the
covariance matrices of dissimilar pairs can be inferred from
those of the similar pairs, which makes the learning process
scalable to large datasets.

Other than learning distance metrics, some works focus
on learning discriminative subspaces. Liao et al. [20] propose
learning the projection w to a low-dimensional subspace
with cross-view data solved in a similar manner to linear
discriminant analysis (LDA) [61],

J (w) =
w

T
Sbw

wTSww
, (3)

where Sb and Sw are the between-class and within-class
scatter matrices, respectively. Then, a distance function is
learned in the resulting subspace using KISSME. To learn
w, Zhang et al. [42] further employ the null Foley-Sammon
transform to learn a discriminative null space which satisfies
a zero within-class scatter and a positive between-class
scatter. For dimension reduction, Pedagadi et al. [39] sequen-
tially combine the unsupervised PCA (principle component
analysis) and supervised local Fisher discriminative analysis
which preserves the local neighborhood structure. In [28],
the pairwise constrained component analysis (PCCA) is
proposed which learns a linear mapping function to be
able to work directly on high-dimensional data, while ITML
and KISSME should be preceded by a step of dimension
reduction. In [62], Xiong et al. further propose improved
versions of two existing subspace projection methods, i.e.,
regularized PCCA [28] and kernel LFDA [39].

Aside from the methods that use Mahalanobis distance
(Eq. 2), some use other learning tools such as support vector
machine (SVM) or boosting. Prosser et al. [25] propose
learning a set of weak RankSVMs which are subsequently
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Model Identification Verification
rank-1 (%) mAP (%) rank-1 (%) mAP (%)

AlexNet [14] 56.03 32.38 41.24 22.47
VGG-16 [67] 64.34 40.77 42.99 24.29
Residual-50 [68] 72.54 46.00 60.12 40.54

TABLE 2: Comparison of the identification and verification
(siamese) models on the Market-1501 dataset (single query).

assembled into a stronger ranker. In [63], a structural SVM is
employed to combine different color descriptors at decision
level. In [43], Zhang et al. learn a specific SVM for each
training identity and map each testing image to a weight
vector inferred from its visual features. Gray and Tao
[24] propose using the AdaBoost algorithm to select and
combine many different kinds of simple features into a single
similarity function.

2.2 Deeply-learned Systems

CNN-based deep learning models have been popular since
Krizhevsky et al. [14] won ILSVRC’12 by a large margin.
The first two works in re-ID to use deep learning were
[15], [16] as mentioned in Section 1.2 and Fig. 2. Generally
speaking, two types of CNN models are commonly employed
in the community. The first type is the classification model
as used in image classification [14] and object detection [64].
The second is the siamese model using image pairs [65] or
triplets [66] as input. The major bottleneck of deep learning
in re-ID is the lack of training data. Most re-ID datasets
provide only two images for each identity such as VIPeR
[24], so currently most CNN-based re-ID methods focus on
the siamese model. In [15], an input image is partitioned into
three overlapping horizontal parts, and the parts go through
two convolutional layers plus a fully connected layer which
fuses them and outputs a vector for this image. The similarity
of the two output vectors are computed using the cosine
distance. The architecture designed by Li et al. [16] is different
in that a patch matching layer is added which multiplies the
convolution responses of two images in different horizontal
stripes, similar to ACS [30] in spirit. Later, Ahmed et al.
[69] improved the siamese model by computing the cross-
input neighborhood difference features, which compares the
features from one input image to features in neighboring
locations of the other image. While [16] uses product to
compute patch similarity in similar latitude, Ahmed et al.
[69] use subtraction. Wu et al. [70] deepen the networks using
convolutional filters of smaller sizes, called “PersonNet”. In
[71], Varior et al. incorporate long short-term memory (LSTM)
modules into a siamese network. LSTMs process image parts
sequentially so that the spatial connections can be memorized
to enhance the discriminative ability of the deep features.
Varior et al. [72] propose inserting a gating function after each
convolutional layer to capture effective subtle patterns when
a pair of testing images are fed into the network. This method
achieves state-of-the-art accuracy on several benchmarks, but
its disadvantage is also obvious. The query has to pair with
each gallery image before being sent into the network - a
time inefficient process in large datasets. Similar to [72], Liu
et al. [73] propose integrating a soft attention based model in
a siamese network to adaptively focus on the important local

parts of an input image pair; however, this method is also
limited by computational inefficiency. While these works use
image pairs, Cheng et al. [74] design a triplet loss function
that takes three images as input. After the first convolutional
layer, four overlapping body parts are partitioned for each
image and fused with a global one in the FC layer. Su et al.
[75] propose a three-stage learning process which includes
attribute prediction using an independent dataset and an
attributes triplet loss trained on datasets with ID labels.

A drawback of the siamese model is that it does not make
full use of re-ID annotations. In fact, the siamese model only
needs to consider pairwise (or triplet) labels. Telling whether
an image pair is similar (belong to the same identity) or
not is a weak label in re-ID. Another potentially effective
strategy consists of using a classification/identification mode,
which makes full use of the re-ID labels. In [76], training
identities from multiple datasets jointly form the training set
and a softmax loss is employed in the classification network.
Together with the proposed impact score for each FC neuron
and a domain guided dropout based on the impact score,
the learned generic embeddings yield competitive re-id
accuracy. On larger datasets, such as PRW and MARS, the
classification model achieves good performance without
careful training sample selection [21], [77]. Yet the application
of the identification loss requires more training instances
per ID for model convergence. For comparison, this survey
presents some baseline results for both types of models. In
Table 2, we implement the identification and verification
models on the Market-1501 dataset [44]. All the networks
use the default parameter settings, and are fine-tuned from
the ImageNet [78] pre-trained models. Images are resized
to 224 × 224 before being fed into the network. The initial
learning rate is set to 0.001 and reduced by a factor of 0.1
after each epoch. Training is done after 36 epochs. We can
clearly observe that the identification model outperforms the
verification model, and that the residual-50 model [68] yields
state-of-the-art re-ID accuracy on Market-1501 compared
with recent results [71], [72], [75].

The above-mentioned works learn deep features in an
end-to-end manner, and there are alternatives that take
low-level features as input. In [79], low-level descriptors
including SIFT and color histograms are aggregated into a
single Fisher Vector [80] for each image. The hybrid network
builds fully connected layers on the input Fisher vectors
and enforces the linear discriminative analysis (LDA) as an
objective function to produce embeddings that have low
intra-class variance and high inter-class variance. Wu et al.
[81] propose concatenating the FC feature and a low-level
feature vector, which is followed by another FC layer before
the softmax loss layer. This method constrains the FC features
using the hand-crafted features.

2.3 Datasets and Evaluation

2.3.1 Datasets

A number of datasets for image-based re-ID have been
released, and some commonly used datasets are summa-
rized in Table 3. The most tested benchmark is VIPeR. It
contains 632 identities, and two images for each identity. 10
random train/test splits are used for stable performance, and
each split has 316 different identities in both the training
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Dataset time #ID #image #camera label evaluation
VIPeR 2007 632 1,264 2 hand CMC
iLIDS 2009 119 476 2 hand CMC
GRID 2009 250 1,275 8 hand CMC
CAVIAR 2011 72 610 2 hand CMC
PRID2011 2011 200 1,134 2 hand CMC
WARD 2012 70 4,786 3 hand CMC
CUHK01 2012 971 3,884 2 hand CMC
CUHK02 2013 1,816 7,264 10 (5 pairs) hand CMC
CUHK03 2014 1,467 13,164 2 hand/DPM CMC
RAiD 2014 43 1,264 4 hand CMC
PRID 450S 2014 450 900 2 hand CMC
Market-1501 2015 1,501 32,668 6 hand/DPM CMC/mAP

TABLE 3: Statistics of some commonly used datasets [16],
[36], [44], [82], [83], [84], [85], [86], [87], [88], [89], [90] for
image-based re-ID.

and testing sets. These datasets reflect various scenarios.
For example, the GRID dataset [84] was collected in an
underground station, iLIDS [83] was captured at an airport
arrival hall, and CUHK01 [88], CUHK02 [89], CUHK03 [16]
and Market-1501 [44] were collected in a university campus.
Over recent years, progress can observed in several aspects.

First, the dataset scale is increasing. Many of these
datasets are relatively small in size, especially those of
the early days, but recent datasets, such as CUHK03 and
Market-1501, are larger. Both have over 1,000 IDs and over
10,000 bounding boxes, and both datasets provide good
amount of data for training deep learning models. That
said, we must admit that the current data volume is still far
from satisfactory. The community is in great need of larger
datasets.

Second, the bounding boxes tend to be produced by
pedestrian detectors (such as DPM [91] and ACF [92])
instead of being hand-drawn. For practical applications, it is
infeasible to draw gallery bounding boxes using human labor,
so detectors must be used. This may cause the bounding
boxes to deviate from ideal ones. It is shown in [16] that using
detected bounding boxes usually leads to compromised re-
ID accuracy compared to hand-drawn ones due to detector
errors such as misalignment. In [44], a number of false
detection results (on the background) are included in the
gallery, which is inevitable when detectors are used. The
experiments in [44] show that re-ID accuracy drops as more
distractors are added to the gallery. As a consequence, it is
beneficial for the community to study datasets with practical
imperfections such as false detection and misalignment.

Third, more cameras are used during collection. For
example, each identity in Market-1501 can be captured
by up to 6 cameras. This design calls for metric learning
methods that have good generalization ability, instead of
being carefully tuned between a certain camera pair. In fact,
in a city-scale camera network with n, the number of camera
pairs is C2

n, so it is prohibitive to collect annotated data from
each camera and train C2

n distance metrics.
For more detailed descriptions of these datasets, we refer

to survey [5] and website1.

2.3.2 Evaluation Metrics

When evaluating re-ID algorithms, the cumulative matching
characteristics (cmc) curve is usually used. CMC represents

1. http://robustsystems.coe.neu.edu/sites/robustsystems.coe.neu.
edu/files/systems/projectpages/reiddataset.html

the probability that a query identity appears in different-
sized candidate lists. No matter how many ground truth
matches there are in the gallery, only the first match is
counted in the CMC calculation. So basically, CMC is accurate
as an evaluation method only when one ground truth for
each query exists. This measurement is acceptable, in practice,
when people care more about returning the ground truth
match in the top positions of the rank list.

For research integrity, however, when multiple ground
truths exist in the gallery, Zheng et al. [44] propose using
the mean average precision (mAP) for evaluation. The
motivation is that a perfect re-ID system should be able
to return all true matches to the user. The case might be
that two systems are equally competent at spotting the first
ground truth, but have different retrieval recall ability. In this
scenario, CMC does not have enough discriminative ability
but mAP does. Therefore, mAP is used together with CMC
for the Market-1501 dataset where multiple ground truths
from multiple cameras exist for each query. Later, in [71],
[72], [93], mAP results are also reported for datasets with
multiple ground truths per query.

2.3.3 Re-ID Accuracy Over the Years

In this section, we summarize re-ID accuracy on several
representative datasets over the years in Fig. 3. The presented
datasets are VIPeR [82], CUHK01 [88], iLIDS [83], PRID 450S
[90], CUHK03 [16], and Market-1501 [44]. We broadly classify
the current methods into two types, i.e., hand crafted and
deeply learned. For each dataset, representative methods
that report the highest re-ID accuracy in the corresponding
year are shown. From these results, three major insights can
be drawn.

First, a clear trend of performance improvement can be
observed from the six datasets over the years. On VIPeR,
CUHK01, i-LIDS, PRID 450S, CUHK03, and Market-1501, we
observe a performance increase of +51.9%, +56.7%, +35.0%,
+42.6%, +57.2%, and +31.62%, respectively. For example, on
the most studied dataset VIPeR [82], from the year 2008 to
2016, representative works [13], [24], [30], [32], [85], [94], [95]
witness a rank-1 accuracy from 12.0% in 2008 [24] to 63.9%
in 2015 [94], an improvement of +51.9%. For the Market-
1501 dataset, since its release in 2015, the state-of-the-art
results have increased from 44.42% [44] to 76.04% [72], an
improvement of 31.62%.

Second, with the exception of VIPeR, deep learning
methods yield a new state of the art on the remaining
5 datasets. On these 5 datasets (CUHK01, i-LIDS, PRID
450S, CUHK03, and Market-1501), the performance of deep
learning is superior to hand-crafted systems. On CUHK03
and Market-1501, the two largest datasets so far, we observe
overwhelming advantage for deep learning [72], [76] com-
pared to the (also extensive) tests of hand-crafted methods.
Since VIPeR is relatively small, the advantage of deep
learning cannot be tested to the full; instead, a hand-crafted
metric learning may be more advantageous in this setting.
Considering the cases in image classification and object
detection, it is highly possible that deeply learned systems
will continue dominating the re-ID community over the next
few years.

Third, we speculate that there is still much room for
further improvement, especially when larger datasets are to

http://robustsystems.coe.neu.edu/sites/robustsystems.coe.neu.edu/files/systems/projectpages/reiddataset.html
http://robustsystems.coe.neu.edu/sites/robustsystems.coe.neu.edu/files/systems/projectpages/reiddataset.html
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Fig. 3: Person re-ID accuracy on (a) VIPeR [82] (b) iLIDS [83] (c) GRID [84] (d) CUHK01 [88] (e) CUHK03 [16] and (f)
Market-1501 [44] over the years. Results from top venues using hand-crafted or deeply learned systems are presented.
For CUHK03, we record results on the detected data, and for Market-1501, results using single queries are used. Since
Market-1501 was released recently, results on this dataset are plotted according to their publication (or ArXiv) time.

be released. For example, on the Market-1501 dataset, while
the best rank-1 accuracy is 65.88% without using multiple
queries [72], mAP is quite low (39.55%). This indicates that
although it is relative easy to find the first true match (rank-1
accuracy) among a pool of 6 cameras, it is not trivial to locate
the hard positives and thus achieve a high recall (mAP). On
the other hand, although we seem to be able to achieve 60%
to 70% rank-1 accuracy on these datasets, we must keep in
mind that these datasets receive a very small proportion of
practical usage. In fact, apart from [44], it is also reported in
[96] a 10-fold gallery size increase leads to a 10-fold decrease
in rank-1 accuracy, resulting in a single-digit rank-1 score
even for the best-performing methods. As a consequence,
considering the low mAP (re-ID recall) and the small scale of
current datasets, we are more than optimistic that important
breakthroughs are to be expected in image-based re-ID.

3 VIDEO-BASED PERSON RE-ID

In literature, person re-ID is mostly explored with single
images (single shot). In recent years, video-based re-ID
has become popular due to the increased data richness
which induces more research possibilities. It shares a similar
formulation to image-based re-ID as Eq. 1. Video-based re-ID
replaces images q and g with two sets of bounding boxes
{qi}

nq

i=1
and {gj}

ng

j=1
, where nq and ng are the number of

bounding boxes within each video sequence, respectively.
As important as the bounding box features are, video-based
methods pay additional attention to multi-shot matching
schemes and the integration of temporal information.

3.1 Hand-crafted Systems

The first two trials [12], [13] in 2010 were both hand-crafted
systems. They basically use color-based descriptors and
optionally employ foreground segmentation to detect the

pedestrian. They use similar image features to image-based
re-ID methods, where the major difference is the matching
function. As mentioned in Section 1.2, both methods com-
monly calculate the minimum Euclidean distance between
two sets of bounding box features as the set similarity. In
essence, such methods should be classified into “multi-shot”
person re-ID, where the similarity between two sets of frames
plays a critical role. This multi-shot matching strategy is
adopted by later works [97], [98]. In [86], multiple shots are
used to train a descriminative boosting model based on a
set of covariance features. In [99], the SURF local feature is
used to detect and describe interest points within short video
sequences that are in turn indexed in the KD-tree to speed
up matching. In [11], a spatial-temporal graph is generated
to identify spatial-temporal stable regions for foreground
segmentation. The the local descriptions are then calculated
using a clustering method over time to improve matching
performance. Cong et al. [100] employ the manifold geometric
structures from video sequences to construct more compact
spatial descriptors with color-based features. Karaman et al.
[101] propose using the conditional random field (CRF) to
incorporate constraints in the spatial and temporal domains.
In [102], colors and selected face images are used to build a
model over frames that capture the characteristic appearance
as well as its variations over time. Karanam et al. [103] make
use of multi-shots for a person and propose that the probe
feature be presented as a linear combination of the same
person in the gallery. Multiple shots of an identity can also
be employed to enhance body part alignment. In [85], in
the effort to look for precise part-to-part correspondence,
Cheng et al. propose an iterative algorithm in which the
fitting of the pictorial structure becomes more accurate after
each iteration due to the improvement of part detectors. In
[104], pedestrian poses are estimated and frames with the
same pose are matched with higher confidence.
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The above methods typically build appearance models
based on multiple shots, and a recent trend is to incorporate
temporal cues in the model. Wang et al. [105] propose
using spatial-temporal descriptors to re-identify pedestrians.
Its features include HOG3D [106] and the gait energy
image (GEI) [107]. By designing a flow energy profile (FEP),
walking cycles are detected so that frames around the local
minimum/maximum are used to extract motion features.
Finally, reliable spatial-temporal features are selected and
matched through a discriminative video ranking model. In
[108], Liu et al. propose de-composing a video sequence into
a series of units that represent body-actions corresponding
to certain action primitives, from which Fisher vectors are
extracted for the final representation of the person. Gao et
al. [109] make use of the periodicity property of pedestrians
and divide the walking cycle into several segments which
are described by temporally aligned pooling. In [110], a new
spatial-temporal descriptor is proposed based on densely
computed multi-directional gradients and discarding noisy
motion occurring over a short period.

Distance metric learning is also important when matching
videos. In [111], a set verification method is proposed in
which a transfer ranking is employed to tell whether the
query matches one of the images belonging to the same iden-
tity. In [89], the multi-shot extension of the proposed local
match model minimizes the distance of the best-matched
pairs and reduces the number of cross-view transformations.
In [112], Zhu et al. propose simultaneously learning intra-
and inter-video distance metrics to make video representa-
tion more compact and to discriminate videos of different
identities. You et al. [113] propose the top-push distance
learning method which optimizes the top-rank matching in
video re-ID by selecting discriminative features.

3.2 Deeply-learned Systems

In video-based re-ID, the data volume is typically larger
than image-based datasets, because each tracklet contains a
number of frames (Table 4).

A basic difference between video-based and image-based
re-ID is that with multiple images for each matching unit
(video sequence), either a multi-match strategy or a single-
match strategy after video pooling should be employed. The
multi-match strategy is used in older works [12], [13], which
induces higher computational cost and may be problematic
on large datasets. On the other hand, pooling-based methods
aggregates frame-level features into a global vector, which
has better scalability. As a consequence, current video-based
re-ID methods typically involve the pooling step. This step
can be max/average pooling as [21], [114], or learned by a
fully connected layer [115]. In Zheng et al.’s system [21], tem-
poral information is not explicitly captured; instead, frames
of an identity are viewed as its training samples to train a
classification CNN model with softmax loss. Frame features
are aggregated by max pooling which yield competitive
accuracy on three datasets. These methods are proven to be
effective, and yet there is plenty of space for improvement.
With respect to this point, the re-ID community can borrow
ideas from the community of action/event recognition. For
example, Xu et al. [116] propose aggregating the column
features in the 5th convolutional layer of CaffeNet into

Dataset time #ID #track #bbox #cam. label evaluation
ETHZ 2007 148 148 8,580 1 hand CMC
3DPES 2011 200 1,000 200k 8 hand CMC
PRID-2011 2011 200 400 40k 2 hand CMC
iLIDS-VID 2014 300 600 44k 2 hand CMC
MARS 2016 1261 20,715 1M 6 DPM&GMMCP mAP&CMC

TABLE 4: Statistics of some currently available datasets [21],
[86], [105], [122], [123] for video-based re-ID.

Fisher vectors [80] or VLAD [117], in direct CNN feature
transfer. Fernando et al. [118] propose a learning-to-rank
model to capture how frame features evolve over time in a
video, which yields video descriptors of video-wide temporal
dynamics. Wang et al. [119] embed a multi-level encoding
layer into the CNN model and produce video descriptors of
varying sequence lengths.

Another good practice consists of injecting temporal infor-
mation in the final representation. In hand-crafted systems,
Wang et al. [105] and Liu et al. [108] use pure spatial-temporal
features on the iLIDS-VID and PRID-2011 datasets and report
competitive accuracy. In [21], however, it is shown that the
spatial-temporal features are not sufficiently discriminative
on the MARS dataset, because many pedestrians share
similar waling motion under the same camera, and because
motion feature of the same person can be distinct in different
cameras. The point made in [21] is that appearance features
are critical in a large-scale video re-ID system. That said,
this survey calls for attention to the recent works of [114],
[115], [120], in which appearance features (e.g., CNN, color
and LBP) are used as the starting point to be fed into
RNN networks to capture the time flow between frames. In
[114], features are extracted from consecutive video frames
through a CNN model, and then fed through a recurrent
final layer, so that information flow between time-steps
is allowed. The features are then combined using max or
average pooling to yield an appearance feature for the video.
All these structures are incorporated into a siamese network.
A similar architecture is used in [120]. Their difference is two-
fold. First, a particular type of RNN, the Gated Recurrent
Unit (GRU) is used in [120]. Second, an identification loss is
adopted in [114], which is beneficial for loss convergence and
performance improvement. While the two works [114], [120]
employ the siamese network for loss computation, Yan et al.
[115] and Zheng et al. [21] use the identification model which
classifies each input video into their respective identities.
In [115], hand-crafted low-level features such as color and
LBP are fed into several LSTMs and the LSTM outputs are
connected to a softmax layer. In action recognition, Wu et
al. [121] propose extracting both appearance and spatial-
temporal features from a video and build a hybrid network
to fuse the two types of features. In this survey, we note
that perhaps the discriminative combination of appearance
and spatial-temporal models is an effective solution in future
video re-ID research.

3.3 Datasets and Evaluation

Several multi-shot re-ID datasets exist, e.g., ETH [122], 3DPES
[123], PRID-2011 [86], iLIDS-VID [105], and MARS [21].
Some statistics of these datasets are summarized in Table 4.
The ETH dataset uses a single moving camera. It contains
three sequences and multiple images from each sequence



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

80

85

90

95

100

2010 2011 2012 2013 2014 2015 2016

ra
n

k
-1

 a
cc

u
ra

cy
 (

%
) 

Years 

SEQ. #1 SEQ. #2 SEQ. #3

M. Farenzena et al. 

L. Bazzani et al. 

G. Zhang et al. 
N. Martinel et al. 

B. Ma et al. G. Lisanti et al. 

(a) ETHZ

0

10

20

30

40

50

60

70

2010 2011 2012 2013 2014 2015 2016

ra
n

k
-1

 a
cc

u
ra

cy
 (

%
) 

Years 

hand crafted deeply learned

M. Farenzena et al. 

R. Martin et al. 

R. Zhao et al. 

T. Wang et al. 

K. Liu et al. 

N. Mclaughlin et al. 

(b) iLIDS-VID

0

10

20

30

40

50

60

70

80

90

2010 2011 2012 2013 2014 2015 2016

ra
n

k
-1

 a
cc

u
ra

cy
 (

%
) 

Years 

hand crafted deeply learned

M. Farenzena et al. 

R. Martin et al. 

R. Zhao et al. 

T. Wang et al. 

K. Liu et al. 

L. Zheng et al. 

(c) PRID-2011

Fig. 4: Video-based person re-ID accuracy on (a) ETH sequence 1 [82] (b) PRID-2011 [86] and (c) iLIDS-VID [105] over the
years. Results from top venues using hand-crafted or deeply learned systems are presented. For ETHZ, we report results
obtained by 5 images per video sequence, and state-of-the-art results on SEQ. #1, SEQ. #2, and SEQ. #3 are drawn.

are provided. This dataset is relatively easy and the re-ID
accuracy of the multi-shot scenario is nearly 100% [124]. The
3DPeS dataset is collected with 8 non-overlapping outdoor
cameras. Although the videos are released, this dataset is
typically used for single-shot re-ID. PRID-2011 and iLIDS-
VID are similar in that both datasets were captured by 2
cameras and each identity has 2 video sequences. iLIDS-
VID has 300 identities captured under indoor scenes. PRID-
2011 has 385 and 749 identities for each outdoor camera,
respectively, and in this dataset 200 identities are observed
in both cameras. During testing, 178 identities are used for
PRID-2011 following the proposal by [105]. It is generally
believed that iLIDS-VID is more challenging than PRID-
2011 due to extremely heavy occlusion. The MARS dataset
[21] was recently released which is a large-scale video re-
ID dataset containing 1,261 identities in over 20,000 video
sequences. It is produced using the DPM detector [91] and
the GMMCP tracker [125]. Due to its recent release, we
have not provided an extensive summary of results for the
MARS dataset. Figure 4 presents the evaluation of the state-
of-the-art results on three representative video (multi-shot)
re-ID datasets, i.e., ETHZ, iLIDS-VID, PRID-2011. Two major
conclusions are drawn:

First, the ETHZ dataset has reached its performance
saturation. In 2015, Lisanti et al. [124] and Martinel et al.
[126] report rank-1 accuracies approximating 100%. In [124],
using 5 images per sequence, the rank-1 accuracy of ETHZ
sequence 1, 2, and 3 is 99.8%, 99.7%, and 99.9%, respectively.
Results with 10 frames per sequence is higher, achieving 100%
[124], [126]. The primary reason is that the ETHZ dataset has
relatively fewer identities, and the image variance is low due
to the use of only one moving camera. This may be the first
re-ID dataset to almost accomplish its initial objectives.

Second, active video re-ID research is still being con-
ducted on the iLIDS-VID and PRID-2011 datasets. Since their
introduction, we observe clear improvement of their rank-
1 accuracy (including the ETHZ dataset). For iLIDS-VID,
Wang et al. [105] report a rank-1 accuracy of 23.3%, and an
absolute improvement of 34.7% can be seen when compared
to McLaughlin et al. [114]. On PRID-2011, Wang et al. [105]
report a rank-1 accuracy = 19.0%, and two years later, Zheng
et al. [21] improve this score by 58.3% using the max pooling
of CNN features fine-tuned on the MARS dataset.

Third, deep learning methods are producing overwhelm-
ingly superior accuracy in video-based re-ID. On both the
iLIDS-VID and PRID-2011 datasets, the best performing

methods are based on the convolutional neural network with
optional insertion of a recurrent neural network [21], [114].
Compared to image-based re-ID, the amount of training data
is clearly larger in video re-ID. MARS provides over 500k
training frames, compared to 13k in the Market-1501 dataset
[44], from which MARS was extended. With these training
data, it is feasible to train discriminative networks not only
for video-based re-ID, but also for image-based datasets.
We also note that, while the rank-1 accuracy on the MARS
dataset reaches 68.3%, its mAP is still relatively low (49.3%),
and when evaluating the performance of each camera pair,
performance is further lowered. As a consequence, we believe
that the research of video re-ID still has good potential for
improvement.

4 FUTURE: DETECTION, TRACKING AND PERSON

RE-ID

4.1 Previous Works

Although person re-ID originates from multi-camera tracking,
it is now studied as an independent research topic. In this
survey, we view re-ID as an important future direction that
will join pedestrian detection and tracking as a scenario,
but in a more independent role. Specifically, we consider
an end-to-end re-ID system2 that takes raw videos as input
and integrates pedestrian detection and tracking, along with
re-identification.

Until recently, most re-ID works are based on two
assumptions: first, that the gallery of pedestrian bounding
boxes is given; second, that the bounding boxes are hand-
drawn, i.e., with perfect detection quality. However, in
practice, these two assumptions do not hold. On the one
hand, the gallery size varies with the detector threshold. A
lower threshold produces more bounding boxes (a larger
gallery, higher recall, and lower precision), and vice versa.
When the detection recall/precision undergoes changes due
to different thresholds, re-ID accuracy does not remain stable.
On the other hand, when pedestrian detectors are used,
detection errors typically exist with the bounding boxes, such
as misalignment, miss-detection, and false alarms. Moreover,
when pedestrian trackers are used, tracking errors may
lead to outlier frames within a tracklet, i.e., background
or pedestrians with different identities. So the quality of
pedestrian detection and tracking may have direct influence

2. Here, “end-to-end” means spotting a query person from raw videos.
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on re-ID accuracy, which has been rarely discussed in the
re-ID community. In the following, we will review the several
works devoted to this direction.

In initial attempts to address the second problem, several
datasets, i.e., CUHK03 [16], Market-1501 [44], and MARS
[21], were introduced. These datasets do not assume perfect
detection/tracking outputs and are a step closer to practical
applications. For example, Li et al. [16] show that on CUHK03,
re-ID accuracy using the detected bounding boxes is lower
than that obtained with hand-drawn bounding boxes. Later
works also report this observation [42], [127]. These findings
are closely related to practical applications. On MARS, track-
ing errors (Fig. 8) as well as detection errors are presented,
but it remains unknown how tracking errors will affect re-ID
accuracy.

Despite the fact that the datasets make progress by
introducing detection/tracking errors, they do not evaluate
explicitly how detection/tracking affects re-ID, which pro-
vides critical insights into how to select detectors/trackers
among the vast number of existing works in an end-to-end
re-ID system. To our knowledge, the first work on end-to-end
person re-ID was proposed by Xu et al. [18] in 2014. They use
the term “commonness” to describe how an image bounding
box resembles a pedestrian, and the term “uniqueness” to
indicate the similarity between the gallery bounding box
and the query. Commonness and uniqueness are fused by
their product in an exponential function. This method works
by eliminating the impact of false background detections.
Although Xu et al. [18] considers the impact of detection on
re-ID, its limitation is a lack of comprehensive benchmarking
and consideration of the dynamic issue of the gallery.

In 2016, Xiao et al. [128] and Zheng et al. [77] simul-
taneously introduce an end-to-end re-ID system based on
large-scale datasets. The two works take raw video frames
and a query bounding box as input (Fig. 5). One is required
to first perform pedestrian detection on the raw frames, and
the resulting bounding boxes form the re-ID gallery. Then,
classic re-ID is leveraged. This process, called “person search”
in [18], [128], is no longer restricted to re-ID (Fig. 5(b)): it pays
equal attention to the detection module (Fig. 5(a)). A very
important aspect of this pipeline is that a better pedestrian
detector tends to produce higher re-ID accuracy, given the
same set of re-ID feature. In [77], [128], extensive baselines
are implemented on the person re-identification in the wild
(PRW), and the large-scale person search (LSPS) datasets,
respectively and this argument usually holds. Another
interesting topic is whether pedestrian detection helps person
re-ID. In [18], [77], detection confidence is integrated in the
final re-ID scores. In [128], pedestrian detection and re-ID are
jointly considered in a CNN model which resembles faster
R-CNN [129], while in [77], the ID-discriminative embedding
(IDE) is shown to be superior when fined-tuned on a CNN
model pre-trained on the R-CNN model [130] for pedestrian
detection. These methods provide initial insights on how
weakly labeled detection data helps improve re-ID accuracy.

Nevertheless, in the so-called “end-to-end” systems [18],
[77], [128], pedestrian tracking is not mentioned nor have we
known any existing works/datasets addressing the influence
of tracking on re-ID. This work views it as an “ultimate”
goal to integrate detection, tracking, and retrieval into one
framework, and evaluate the impact of each module on the

Dataset LSPS PRW CAMPUS EPFL
#frames 18,184 11,816 214 80
#ID 8,432 932 74 30
#annotated bbox 99,809 34,304 1,519 294
#box per ID 11.8 36.8 20.5 9.8
#gallery box 50-200k 50-200k 1,519 294
#camera - 6 3 4
Evaluation CMC&mAP CMC&mAP CMC CMC

TABLE 5: Datasets [18], [77], [128], [133] for end-to-end
person re-identification (search).

overall re-ID performance. This survey therefore calls for
large-scale datasets that provide bounding box annotations
to be used for the three tasks.

4.2 Future Issues

4.2.1 System Performance Evaluation

A proper evaluation methodology is a critical and sometimes
tricky topic. Generally there is no single “correct” protocol,
especially for the under-explored end-to-end re-ID task.
An end-to-end re-ID system departs from most current
re-ID studies in dynamic galleries based on the specific
detector/tracker used and their parameters. Moreover, it also
remains mostly unknown how to evaluate detection/tracking
performance in the scenario of person re-ID. As a conse-
quence, this survey raises questions of system evaluation on
two aspects.

First, it is critical to use effective evaluation metrics for
pedestrian detection and tracking in re-ID. The evaluation
protocol should be able to quantify and rank detector/tracker
performance in a realistic and unbiased manner and infor-
mative of re-ID accuracy. Pedestrian detection, for example,
mostly employs the log-average miss rate (MR) which is
averaged over the precision range of [10−2, 100] FPPI (false
positives per image). Some also use average precision (AP)
following the routine in PASCAL VOC [134]. Dollár et al.
[135] argue that using the miss rate against FPPI is preferred
to precision recall curves in certain tasks such as automotive
applications, since there may be an upper limit on the
acceptable FPPI. As opposed to the automotive applications
of pedestrian detection, person re-ID aims to find a person
which does not necessarily care about the false positive rates.
So essentially we can employ both the miss rate and average
precision to evaluate pedestrian detection for person re-ID.

An important parameter in the AP/MR computation is
the intersect over union (IoU) score. A detected bounding
box is considered correct if its IoU score with the ground
truth bounding box is larger than a threshold. Typically the
threshold is set to 0.5, and yet Zhang et al. [136] study the
difference between a “perfect single frame detector” and
an automatic detector under various IoU scores. The KITTI
benchmark [137] requires an IoU of 0.7 for car detection, but
0.5 for pedestrians. For person re-identification, this problem
is open to proposals. Some clues about it still exist and if we
dive closer to the conclusions drawn in [77], we should be
aware of the observation that using a larger IoU score (e.g.,
0.7) is a better evaluation criteria than a low IoU (e.g., 0.5).
Figure 6 presents the relationship between detection accuracy
(AP) and re-ID accuracy (rank-1 or mAP) on the PRW dataset.
A linear relation is clearly presented between the two tasks
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Fig. 5: An end-to-end person re-ID system that includes pedestrian detection and re-identification.

under IoU = 0.7, while a scattered plot exists under IoU =
0.5. The correlation between detectors and recognizors is
therefore more consistent with a larger IoU. Nevertheless, it
is still far from satisfactory.

Given the consideration that bounding box localization
quality is important for re-ID accuracy, it is a good idea to
study IoU thresholds when assessing detector quality and
see if it accords with re-ID accuracy. Our intuition is that
a larger IoU criteria enforces better localization results, but
there has to be some limit, because the difference in detector
performance tends to diminish when IoU gets larger [136].
It would also feasible to explore the usage of the average
recall (AR) proposed in [138] for IoU from 0.5 to 1 and plot
the AR for a varying number of detector thresholds. Such an
evaluation metric considers both recall and localization, and
we speculate that it may be especially informative in re-ID
where pedestrian detection recall and bounding box quality
are of vital importance.

While there are at least some clues to guide the evaluation
of pedestrian detection, how to evaluate tracking under
person re-ID is largely unknown. In the multiple object
tracking (MOT) benchmark [139], multiple evaluation metrics
are used, including multiple object tracking precision (MOTP)
[140], mostly track (MT) targets (percentage of ground truth
persons whose trajectories are covered by the tracking results
for at least 80%), the total number of false positives (FP),
the total number of ID switches (IDS), the total number of
times a trajectory is fragmented (Frag), the number of frames
processed per second (Hz), etc. It might be possible that some
of the metrics are of limited indication ability such as the
processing speed, because tracking is an off-line step. For
re-ID, we envision that tracking precision is critical as it is
undesirable to have outlier images in the tracklets which
compromise the effectiveness of pooling. We also speculate
that 80% might not be an optimal threshold for evaluating
MT under re-ID. As suggested by [105], extracting features
within a walking cycle is a good practise, so generating long
tracking sequences may not bring much re-ID improvement.
In the future, once datasets are released to evaluate tracking

and re-ID, an urgent problem is thus to design proper metrics
to evaluate different trackers.

The second question w.r.t the evaluation procedure con-
cerns the re-ID accuracy of the entire system. In contrast
to traditional re-ID in which the gallery is fixed, in an
end-to-end re-ID system, the gallery varies with the detec-
tion/tracking threshold. A stricter threshold indicates higher
detection/tracking confidence, so the gallery is smaller and
background detections are fewer and vice versa. Furthermore,
the gallery size has a direct impact on re-ID accuracy.
Let us take an extreme case as an example. When the
detection/tracking threshold is very strict, the gallery can
be very small, and it is even possible that the ground
truth matches are excluded. At the other extreme, when
the detection/tracking threshold is set to a very loose value,
the gallery would be very large and contain a number of
background detections which may exert a negative effect
on re-ID, as shown in [44]. Therefore, it is predictable that
too strict or too loose a threshold leads to inferior galleries,
and it is preferred that the re-ID evaluation protocol reflect
how the re-ID accuracy changes with the gallery dynamics.
In [77], Zheng et al. plot rank-1 accuracy and mAP against
a different number of detections per image. It is observed
that the curves first rise and then drop after they peak. In
the PRW dataset, the peak is positioned at 4-5 detections
per images, which can serve as an estimation of the average
number of pedestrians per image. In [128], a similar protocol
is employed, i.e., the rank-1 matching rate is plotted against
detection recall, and reaches its maximum value when recall
= 70%. When recall further increases, the prevalence of false
detections will compromise the re-ID accuracy. Some other
ideas could be explored, e.g., plotting re-ID accuracy against
FPPI. Keeping in mind that the gallery size depends on the
detector threshold, other new evaluation metrics that are
informative and unbiased could be designed in the future.

We also point out another re-ID evaluation protocol in
end-to-end systems. In practice, when being presented with
a query bounding box/video sequence, while it is good to
locate the identity in a certain frame and tell its coordinates
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(a) BoW, r1, IoU = 0.5
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(b) BoW, r1, IoU = 0.7
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(c) BoW, mAP, IoU = 0.5
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(d) BoW, mAP, IoU = 0.7
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(e) LOMO, r1, IoU = 0.5
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(f) LOMO, r1, IoU = 0.7
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(g) LOMO, mAP, IoU = 0.5
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(h) LOMO, mAP, IoU = 0.7

20 30 40 50 60 70 80 90 100
33

34

35

36

37

38

39

Average Precision (%) of pedestrian detection

ra
n

k
−

1
 a

c
c
u

ra
c
y
 (

%
) 

o
f 

re
−

ID

CNN descriptor

(i) CNN, r1, IoU = 0.5
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(j) CNN, r1, IoU = 0.7
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(k) CNN, mAP, IoU = 0.5
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Fig. 6: Person re-ID accuracy (mAP and rank-1) versus pedestrian detection accuracy (AP) on the PRW dataset [77]. Three
re-ID methods are evaluated, i.e., BoW [44], LOMO + XQDA [20], and CNN [77]. 9 detectors are evaluated, i.e., 1) DPM [91]
+ RCNN (AlexNet), 2) DPM pre-trained on INRIA [131], 3) DPM re-trained on PRW, 4) ACF [92] pre-trained on INRIA, 5)
ACF + RCNN (AlexNet), 6) ACF + RCNN (ResidualNet), 7) ACF re-trained on PRW, 8) LDCF [132] re-trained on PRW, and
9) LDCF pre-trained on INRIA. We can observe clearly the linear relation between re-ID and detection accuracy under IoU =
0.7 instead of IoU = 0.5.

by pedestrian detection/tracking, it is also acceptable that the
system only knows which frame(s) the identity re-appears in.
The specific location of the query person can then be found
by human labor which is efficient. In essence, determin-
ing the exact frame(s) where the queried person appears
is a relatively easier task than a “detection/tracking+re-
identification” task, because detection/tracking errors may
not exert a large influence. In this scenario, re-ID accuracy
should be higher than the standard re-ID task. Also, mean
average precision can be used w.r.t the retrieved video
frames. Since this task does not require locating persons
very precisely, we can thus use relaxed detectors/proposals
or trackers aiming at improving frame-level recall. Detec-
tors/proposals can be learned to locate a rough region
of pedestrians with a loose IoU restriction, and put more
emphasis on matching, i.e., finding a particular person from
a larger bounding box/spatial-temporal tube.

4.2.2 The Influence of Detector/Tracker on Re-ID

Person re-ID originates from pedestrian tracking [9], in which
tracklets from multiple cameras are associated if they are
determined to be of the same identity. This line of research

treats re-ID as a part of the tracking system, and does not
evaluate the impact of localization/tracking accuracy on
re-ID accuracy. However, even since the independence of
re-ID, most studies have been conducted on hand-drawn
image bounding boxes which is an idealized situation that
hardly meets reality. Therefore, in an end-to-end re-ID
system, it is critical that the impact of detection/tracking
on re-ID be understood and that methods be proposed that
detection/tracking methods/data can help re-ID.

First, pedestrian/tracking errors do affect re-ID accuracy,
but the intrinsic mechanism and feasible solutions are still
open to challenge. Detection errors (Fig. 7) may lead to
pedestrian misalignment, scale changes, part missing and
most importantly, false positives and miss detections, which
compromise the re-ID performance and pose new challenges
for the community [16], [44], [96].

A few re-ID works explicitly take the detection/tracking
errors into account. In [29], Zheng et al. propose fusing
local-local and global-local matches to address partial re-
ID problems with severe occlusions or missing parts. In [18],
Xu et al. compute a “commonness” score by matching the
GMM encoded descriptor with a prior distribution. The score
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(a) 

(b) 

(c) 

Fig. 7: Detection errors in the Market-1501 dataset [44]. (a)
misalignment and scale variances; (b) part missing; (c) false
positives. In (a) and (b), the first and second rows represent
DPM-detected and hand-drawn bounding boxes which have
an IoU > 0.5.

can be used to eliminate false positives which do not contain
or provide good localization of a human body. In a similar
way, Zheng et al. [77] propose integrating detector confidence
(after square root) into the re-ID similarity score, according to
which the gallery bounding boxes are ranked. These works
address detection errors after they happen. Nevertheless,
there is a possibility that detection/tracking errors could
be avoided at an earlier stage. For example, in the network
designed by Xiao et al. [128], a localization loss is added in
the fast R-CNN [141] sub-module. It regulates localization
quality which is critical for an effective re-ID system.

Future investigations are in need to reveal the dependence
of person re-ID on detection/tracking quality. Since the
idea to develop detector/trackers that are error-free is
too idealistic, we advocate research into how detection
confidence can be integrated into re-ID matching scores,
i.e., how to correct errors by effectively identifying outliers,
and how to train context models that do not rely solely
on detected bounding boxes. For example, using clustering
algorithms to filter out inconsistent frames within a tracklet
can be effective in purifying tracking sequences. In another
example, detected bounding boxes could be enlarged to
include possibly missing body parts and learn discriminative
visual features that in turn use or discard the enriched
contextual information.

Secondly, we should be aware that detection and tracking,
if appropriately designed, may be of help to re-ID. In [77], the
IDE network fine-tuned on the R-CNN model [64] is proved
to be more effective than the one fine-tuned directly on an
ImageNet pre-trained model. This illustrates the importance
of using the excessive amount of labeled data in pedestrian
detection, i.e., pedestrians with ID annotations and false
positive detections. In [128], the end-to-end network inte-
grates the loss of background detections, which is assumed to
improve the discriminative ability of the learned embedding.
The integration of detection scores into re-ID similarities [18],
[77] can also be viewed as an alternative that detection helps

Fig. 8: Tracking errors/artifacts in the MARS dataset [21].
Each row represents a tracklet generated by the DPM
detection + GMMCP tracker [125]. First row: detection error
and tracking error; second row: detection error; third row:
occlusions in tracking; last row: tracking error.

re-ID.
It may seem not quite straightforward that pedestrian

detection/tracking could help re-ID or the reverse, but if
we consider the analogy of generic image classification and
fine-grained classification, we may think of some clues. From
example, fine-tuning the ImageNet pre-trained CNN model
on the fine-grained datasets is an effective way for faster
convergence and higher fine-grained recognition accuracy. It
is also a good idea to jointly train a pedestrian detection and
re-ID model by back-propagating the re-ID loss to the (fast)
RCNN part. Being able to discriminate different identities
may be beneficial to the task of discriminating pedestrians
from the background. The latter could also be helpful to the
former.

One of the ideas that can be explored is the use of
unsupervised tracking data. In videos, tracking a pedestrian
is not too difficult a task, though tracking errors are inevitable.
Facial recognition, color, and non-background information
are useful tools to improve tracking performance like in
Harry Potter’s Marauder’s Map [142]. Within a tracking
sequence, the appearance of a person may undergo variances
to some extent, but it can be expected that most of the
bounding boxes are of the same person. In this scenario,
each tracklet represents a person which contains a number
of noisy but roughly usable training samples. We can
therefore make use of racking results to train pedestrian
verification/identification models, so as to alleviate the
reliance on large-scale supervised data. As another promising
idea, it is worth trying to pre-train CNN models using the
detection/tracking data using the auto-encoder [143] or the
generative adversarial nets (GAN) [144]. It would also be
interesting to directly learn person descriptors using such
unsupervised networks to help address the data issue in
person re-ID.

5 FUTURE: PERSON RE-ID IN VERY LARGE GAL-

LERIES

The scale of data has increased significantly in the re-ID
community in recent years, e.g., from several hundred gallery
images in VIPeR [82] and iLIDS [83] to over 100k as in PRW
[77] and LSPS [128], which gives rise to the predominance of
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Fig. 9: An illustration of the inverted index.

deep learning methods. However, it is apparent that current
datasets are still far from a practical scale. Supposing that in
a region-scale surveillance network with 100 cameras, if one
video frame is used per second for pedestrian detection, and
an average of 10 bounding boxes are produced from each
frame, then, running the system for 12 hours will produce
3, 600 × 12 × 1 × 10 × 100 = 43.2 × 106 bounding boxes.
But to our knowledge, previously no work has reported
re-ID performance in such a large gallery. It seems that the
largest gallery used in the literature is 500k [44], and evidence
suggests that mAP drops over 7% compared to Market-1501
with a 19k gallery. Moreover, in [44], approximate nearest
neighbor search [145] is employed for fast retrieval but at the
cost of compromised accuracy.

From both a research and an application perspective, per-
son re-ID in very large galleries should be a critical direction
in the future. Attempts to improve both the accuracy and
efficiency issues should be made.

On the one hand, robust and large-scale learning of
descriptors and distance metrics is much more important.
This coincides with current research [71], [73], [75], [81].
Following large-scale image recognition [78], person re-ID
will progress to large-scale evaluations. Although current
methods address the re-ID problem between one or several
pairs of cameras in a very limited time window, robustness
in a camera networks over a long time period has not
been well considered. In [36], [146], the re-ID consistency
within a camera network is jointly optimized with pair-
wise matching accuracy, but the testing datasets (WARD [87]
and RAiD [36] ) only have 3 and 4 cameras and less than
100 identities. In a network with n cameras, the number
of camera pairs is O(n2). Considering the long recording
time and lack of annotated data, it is typically prohibitive
to train distance metrics or CNN descriptors in a pair-wise
manner. As a consequence, training a global re-ID model with
adaptation to various illumination condition and camera
location is a priority. Toward this goal, an option is to design
unsupervised descriptors [44], [97] which aim to find visually
similar persons and treat visually dissimilar ones as false
matches. But unsupervised methods may be prone to lighting
changes.

On the other hand, efficiency is another important issue
in such a large-scale setting. Although computation time
could almost be omitted in small datasets [82], [83], in our
experiment using MATLAB 2014 on a server with 3.1GHz
Intel Xeon E5-2687w v3 (10 cores), 64GB memory, it takes
8.50s to compute the distance between a 100-dim floating
vector with a number of 10 million 100-dim vectors. If we
use a 4,096-dim floating-point vector extracted from the

CaffeNet [14] and C++ programming, the time used increases
dramatically to 60.7s including 33.2s for the distance calcula-
tion and 26.8s for the data to load from the disk. It is clear
that the query time increases dramatically according to the
feature dimensions and gallery size, which is not desirable for
practical use. To our knowledge, previous works in person
re-ID rarely focus on efficiency issues, and therefore effective
solutions are lacking, but fortunately, we can resort to the
image retrieval community for answers, and this survey
provides two possible directions.

Inverted index-based. The inverted index is a de facto
data structure in the Bag-of-Words (BoW) based retrieval
methods [22], [147], [148]. Based on the quantization result
of local descriptors, the inverted index has k entries where k

denotes the codebook size. The indexing structure thus has k
entries and each is attached to an inverted list, in which the
local descriptors are indexed. The structure of the baseline
inverted index is shown in Fig. 9. A posting stores the image
ID and the term frequency (TF) of the indexed descriptor
and in a series of works, a number of other meta data can
be stored, such as binary signature [148], feature coordinates
[149], etc. For basic knowledge and state-of-the-art advances
of the inverted index in instance retrieval, we refer readers
to a recent survey [19].

In person re-ID, the use of local descriptors is popular
[30], [34], [44]. The color and texture features are typically
extracted from local patches. While some previous works use
sophisticated matching algorithms [30], it is preferred that
the matching procedure can be accelerated using the inverted
index under a large gallery. A codebook is usually needed to
quantize a local descriptor to visual words, and since the local
descriptors are high-dimensional, a large codebook is needed
to reduce quantization error. Under these circumstances,
the inverted index is ready for use which saves memory
costs to a large extent and, if properly employed, can have
approximately the same accuracy compared to quantization-
free cases.

Hashing-based. Hashing has been an extensively studied
solution to approximate nearest neighbor search, which aims
to reduce the cost of finding exact nearest neighbors when
the gallery is large or distance computation is costly [23].
Learning to hash is popular in the community following the
milestone work Spectral Hashing [150]. It refers to learning
hash functions, y = h(x), mapping a vector x to a compact y,
and aims at finding the true nearest neighbor at high-ranks
in the rank list while keeping the efficiency of the search
process. Some classic learning to hash methods include
product quantization (PQ) [117], iterative quantization (ITQ)
[151], etc. Both methods are efficient in training and have
fair retrieval accuracy. They do not require labeled data, so
are applicable for re-ID tasks when large amount of training
data may not be available.

Another application of supervised hashing consists of
image retrieval [152], [153], [154], [155], which is the interest
of this section. The hash function is learned end-to-end
through a deep learning network which outputs a binary
vector given an input image. This line of works focus on
several image classification datasets such as CIFAR-10 [156]
and NUS-WIDE [157], in order to leverage the training data
that is lacking in generic instance retrieval datasets [22],
[148]. In person re-ID, the application scenario fits well
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with deep hashing for image retrieval. In large galleries,
efficient yet accurate hash methods are greatly needed, which
is a less-explored direction in re-ID. As shown in Table 1,
training classes are available in re-ID datasets, and the testing
procedure is a standard retrieval task, so the current arts in
supervised hashing are readily to be adopted in re-ID in the
light of the increasing size of the datasets [16], [44]. The only
relevant work we find is [158] which learns hash functions in
a triplet-loss CNN network with regularizations to enforce
adjacency consistency. This method is tested on the CUHK03
dataset which contains 100 identities in each test split, so in
this sense, performance evaluation on very large galleries
is still lacking. As a consequence, this survey calls for very
large re-ID datasets that will evaluate the scalability of re-ID
methods and scalable algorithms especially those using hash
codes to further push this task to real-world applications.

6 OTHER IMPORTANT YET UNDER-DEVELOPED

OPEN ISSUES

6.1 Battle Against Data Volumn

Annotating large-scale datasets has always been a focus in
the vision community. This problem is even more challenging
in person re-ID, because apart from drawing a bounding box
of a pedestrian, one has to assign him an ID. ID assignment
is not trivial since a pedestrian may re-enter the fields of
view (FOV) or enter another observation camera a long
time after the pedestrian’s first appearance. This makes
collaborative annotation difficult, as it is costly for two
collaborators to communicate on the annotated IDs. These
difficulties partially explain why current datasets typically
have a very limited number of images for each ID. The
last two years have witnessed the release of several large-
scale datasets, e.g., Market-1501 [44], PRW [77], LSPS [128],
and MARS [21], but they are still far from satisfaction in
views of practical applications. In this survey, we believe two
alternative strategies can help bypass the data issue.

First, how to use annotations from tracking and de-
tection datasets remains under-explored. Compared to re-
ID, tracking and detection annotations do not require ID
assignment when a person re-enters FOV: the majority of
effort has been spent on bounding box drawing. In [77], it is
shown that adding more pedestrian and background training
data in the R-CNN stage benefits the following training
of the IDE descriptor. In [50], [75], attribute annotations
from independent datasets are employed to represent the
re-ID images. Since the attributes can be annotated through
collaboration among workers and have good generalization
ability, they are also good alternatives to the deficiency of
re-ID data. As a consequence, external resources are valuable
for training re-ID systems when training data is lacking.

Apart from the pre-training/unsupervised strategies as
mentioned in Section 4.2.2, a novel solution is to retrieve
hard negatives from the unlabeled data which can be viewed
as “true positives” in metric learning/CNN training. This
strategy has been evaluated in object classification where a
small portion of labels are disturbed before training [159]. It
can efficiently enlarge the training set, and at the same time
reduce the risk of model over-fitting. Our preliminary exper-
iments show that this direction yields decent improvement
over the baselines.

cam 1 cam 2 cam 3 cam 4 

query (a) easy match 

new rank list 

similar 

bounding box refinement 

(b) hard match 

(detector error) 
(c) hard match 

(pose variance) 

initial rank list 

Fig. 10: An example of re-ranking in re-ID. Given a query
image, an initial rank list is obtained, in which an easy match
(a) is ranked top, while two hard matches (b) and (c) have
low ranks. The detection error in (b) can be corrected by
retrieving the corresponding video frame and performing
a finer search for the best bounding box within a local
neighborhood. In this example, (c) is visually similar to (b)
but not the query, so after (b) is retrieved, (c) can be found
by similarity propagation.

The second strategy is transfer learning that transfers
a trained model from the source to the target domain.
Previously, supervised learning require large numbers of
labeled data which limits the re-ID system to scale to other
cameras. In [160], an unsupervised topic model is proposed
to discover saliant image patches for re-ID matching and
simultaneously remove background clusters. In [161], a
weakly supervised method is proposed which requires full
annotations from other re-ID dataset and a few samples
captured in the target scenario. In [162], [163], unsupervised
transfer learning is proposed in which the target dataset is
unlabeled. Ma et al. [162] employ a cross-domain ranking
SVM, while Peng et al. [163] formulate the transfer problem as
a dictionary learning task, which learns the shared invariant
latent variables and is biased towards the target dataset.
These methods indicate that it is feasible to learn a fair re-
ID model from the source, and that it is beneficial to mine
discriminative cues from the unsupervised data. Transfering
CNN models to other re-ID datasets can be more difficult
because the deep model provides a good fit to the source.
Xiao et al. [76] gather a number of source re-ID datasets
and jointly train a recognition model for the target dataset.
According to our experience, the usage of off-the-shelf metric
learning methods [20], [55] can also correct the transfer effect
to some extent, but unsupervised transfer learning is still an
open issue for the deeply learned models.

6.2 Re-ranking Re-ID Results

The re-identification process (Fig. 5(b)) can be viewed as a
retrieval task, in which re-ranking is an important step to
improve the retrieval accuracy. It refers to the re-ordering of
the initial ranking result from which re-ranking knowledge
can be discovered. For a detailed survey of search re-ranking
methods, we refer the readers to [164].

A few previous works exist on this topic. Re-ranking
can be performed either with human in the loop or fully
automatically. When online human labeling is involved,
Liu et al. [165] propose the post-rank optimisation (POP)
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method which allows a user to provide an easy negative
and, optionally, a few hard negatives from the initial rank
list. The sparse human feedback enables on-the-fly automatic
discriminative feature selection of the query person. In an
improvement, Wang et al. [96] design the human verification
incremental learning (HVIL) model which does not require
any pre-labelled training data and learns cumulatively from
human feedback to provide instance model update. A
number of incrementally learned HVIL models are combined
into a single ensemble model for use when human feedback
is no longer available. In a similary nature, Martinel et al.
[166] propose finding the most relevant gallery images for
a query, sending them to the human labeler, and finally
using the labels to update the re-ID model. Automatic re-
ranking methods have also been studied in several works.
Zheng et al. [167] propose a query-adaptive fusion method
to combine rank results of several re-ID systems. Specifically,
the shape of the initial score curves is used and it is argued
that the curve exhibits an “L” shape for a good feature.
In [95], various metrics are ensembled based on the direct
optimization of the CMC curve. Garcı́a et al. [94] analyze the
unsupervised discriminant context information in the rank
list. This is further combined with a re-ranking metric learned
in the offline. Leng et al. [168] use the idea of reciprocal k-
nearest neighbors [169] to refine the initial rank list based
constructing images relations in the offline steps.

Re-ranking is still an open direction in person re-ID,
while it has been extensively studied in instance retrieval.
The application scenario can be depicted as follows. When
searching for a person-of-interest, it is likely that its images
under certain cameras are very difficult to find due to
intensive image variations. But we may be able to find the
true matches under some cameras which are more similar to
the hard positives. So in this manner, hard positives can be
found once the easy ones are returned. Re-ranking methods
in instance retrieval can be readily adopted in person re-ID
[44], [169], [170], [171]. Since training data is available in
re-ID (Table 1), it is possible to design re-ranking methods
based on training distribution. For example, when doing
k-NN re-ranking [170], the validity of the returned results
can be determined from the training set according to the
scores. Since re-ID is focused on pedestrians, re-ranking
methods can be specifically designed. For example, after
obtaining the initial rank list, a subset of the top-ranked
images can be selected, and the video frames containing
them can be retrieved. We can subsequently find the best
localization through expensive sliding window method
without incurring much computation burdens, so as to
allieviate the impact of detector misalignment.

6.3 Open-World Person Re-ID

Most existing re-ID works can be viewed as an identification
task (Eq. 1). Query identities are assumed to exist in the
gallery and the tasks aim to determine the ID of the query.
By contrast, open-world re-ID systems study the person
verification problem. That is, based on identification tasks,
the open-world problem adds another condition to Eq. 1,

sim(q, gi∗) > h, (4)

where h is the threshold above which we can assert that
query q belongs to identity i∗; otherwise, q is determined

an outlier identity which is not contained in the gallery,
although i∗ is the first ranked identity in the identification
process.

In literature, open-world person re-ID is still at its early
stage, and several works are proposed to help define this
task. In [172], Zheng et al. design a system consisting of
a watch list (gallery) of several known identities and a
number of probes including target and non-target ones.
Their work aims to achieve high true target recognition
(TTR) and low false target recognition (FTR) rate which
calculate rate of the number of queries that are verified as
the target identities to the total number of queries. In [173],
Liao et al. divide open-world re-ID into two sub-tasks, i.e.,
detection and identification; the former decides whether a
probe identity is present in the gallery and the latter assigns
an ID to the accepted probe. Consequently two different
evaluation metrics, the detection and identification rate (DIR)
and the false accept rate (FAR) are proposed, based on which
a receiver operating characteristic (ROC) curve can be drawn.

Open-world re-ID still remains a challenging task as
evidenced by the low recognition rate under low false
accept rate, as shown in [172], [173]. The challenge mainly
lies in two aspects i.e., detection and recognition, both of
which are limited to the unsatisfying matching accuracy -
a research focus in standard re-ID tasks. As indicated in
[173], a 100% FAR corresponds to the standard close-set re-
ID and its accuracy is limited by the current state of the
art; a lower FAR is accompanied by lower re-ID accuracy
due to the low recall of the true matches. As a consequence,
from a technical perspective, the critical goal is to improve
matching accuracy, based on which probabilistic models can
be designed for novelty detection (verification) methods.
Moreover, when focusing on re-ID accuracy, open-world re-
ID should also consider the dynamics of the gallery [174].
In a dynamic system with constantly incoming bounding
boxes, a new identity will be added to the “watch list” if it is
determined to not belong to any existing gallery identities,
and vice versa. Enrolling new identities dynamically enables
automatic database construction and facilitates the re-ID
process with a pre-organized gallery.

7 CONCLUDING REMARKS

Person re-identification, foretold in the oldest stories, is
gaining extensive interest in the modern scientific community.
In this paper, a survey of person re-identification is presented.
First, a brief history of person re-ID is introduced and
its similarities and differences to image classification and
instance retrieval are described. Then, existing image and
video-based methods are reviewed, which are categorized
into hand-crafted and deeply-learned systems. Positioned
inbetween image classification and instance retrieval, person
re-ID has a long way from becoming an accurate and efficient
application. Therefore, departing from previous surveys, this
paper places more emphasis on the under-developed but
critical future possibilities, such as the end-to-end re-ID
systems that integrate pedestrian detection and tracking, and
person re-ID in very large galleries, which we believe are
necessary steps toward practical systems. We also highlight
some important open issues that may attract further attention
from the community. They include solving the data volume
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issue, re-ID re-ranking methods, and open re-ID systems.
All in all, the integration of discriminative feature learning,
detector/tracking optimization, and efficient data structures
will lead to a successful person re-identification system.
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descriptors into a compact image representation,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2010, pp. 3304–3311.

[118] B. Fernando, E. Gavves, J. Oramas, A. Ghodrati, and T. Tuytelaars,
“Rank pooling for action recognition,” IEEE transactions on pattern
analysis and machine intelligence, 2016.

[119] P. Wang, Y. Cao, C. Shen, L. Liu, and H. T. Shen, “Temporal
pyramid pooling based convolutional neural networks for action
recognition,” arXiv preprint arXiv:1503.01224, 2015.

[120] L. Wu, C. Shen, and A. van den Hengel, “Deep recurrent
convolutional networks for video-based person re-identification:
An end-to-end approach,” arXiv:1606.01595, 2016.

[121] Z. Wu, X. Wang, Y.-G. Jiang, H. Ye, and X. Xue, “Modeling
spatial-temporal clues in a hybrid deep learning framework for
video classification,” in Proceedings of the 23rd ACM international
conference on Multimedia. ACM, 2015, pp. 461–470.

[122] A. Ess, B. Leibe, and L. Van Gool, “Depth and appearance
for mobile scene analysis,” in IEEE International Conference on
Computer Vision. IEEE, 2007, pp. 1–8.

[123] D. Baltieri, R. Vezzani, and R. Cucchiara, “3dpes: 3d people dataset
for surveillance and forensics,” in Proceedings of the 2011 joint ACM
workshop on Human gesture and behavior understanding. ACM, 2011,
pp. 59–64.

[124] G. Lisanti, I. Masi, A. D. Bagdanov, and A. Del Bimbo, “Person
re-identification by iterative re-weighted sparse ranking,” IEEE
transactions on pattern analysis and machine intelligence, vol. 37, no. 8,
pp. 1629–1642, 2015.

[125] A. Dehghan, S. Modiri Assari, and M. Shah, “Gmmcp tracker:
Globally optimal generalized maximum multi clique problem for
multiple object tracking,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 4091–4099.

[126] N. Martinel, A. Das, C. Micheloni, and A. K. Roy-Chowdhury,
“Re-identification in the function space of feature warps,” IEEE
transactions on pattern analysis and machine intelligence, vol. 37, no. 8,
pp. 1656–1669, 2015.

[127] Y. Zhang, B. Li, H. Lu, A. Irie, and X. Ruan, “Sample-specific svm
learning for person re-identification,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016.

[128] T. Xiao, S. Li, B. Wang, L. Lin, and X. Wang, “End-to-end deep
learning for person search,” arXiv preprint arXiv:1604.01850, 2016.

[129] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” in Advances
in Neural Information Processing Systems, 2015, pp. 91–99.

[130] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmenta-
tion,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2014, pp. 580–587.

[131] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2005, pp. 886–893.

[132] W. Nam, P. Dollár, and J. H. Han, “Local decorrelation for
improved pedestrian detection,” in Advances in Neural Information
Processing Systems, 2014, pp. 424–432.

[133] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua, “Multiple object
tracking using k-shortest paths optimization,” IEEE transactions on
pattern analysis and machine intelligence, vol. 33, no. 9, pp. 1806–1819,
2011.

[134] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and
A. Zisserman, “The pascal visual object classes (voc) challenge,”
International journal of computer vision, vol. 88, no. 2, pp. 303–338,
2010.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 20

[135] P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection:
An evaluation of the state of the art,” IEEE transactions on pattern
analysis and machine intelligence, vol. 34, no. 4, pp. 743–761, 2012.

[136] S. Zhang, R. Benenson, M. Omran, J. Hosang, and B. Schiele, “How
far are we from solving pedestrian detection?” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016.

[137] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2012, pp. 3354–3361.

[138] J. Hosang, R. Benenson, P. Dollár, and B. Schiele, “What makes for
effective detection proposals?” IEEE transactions on pattern analysis
and machine intelligence, vol. 38, no. 4, pp. 814–830, 2016.
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[171] R. Arandjelović and A. Zisserman, “Three things everyone should
know to improve object retrieval,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2012, pp.
2911–2918.

[172] W.-S. Zheng, S. Gong, and T. Xiang, “Towards open-world person
re-identification by one-shot group-based verification,” IEEE
transactions on pattern analysis and machine intelligence, vol. 38,
no. 3, pp. 591–606, 2016.

[173] S. Liao, Z. Mo, J. Zhu, Y. Hu, and S. Z. Li, “Open-set person
re-identification,” arXiv preprint arXiv:1408.0872, 2014.

[174] B. DeCann and A. Ross, “Modelling errors in a biometric re-
identification system,” IET Biometrics, vol. 4, no. 4, pp. 209–219,
2015.


	1 Introduction
	1.1 Organization of This Survey
	1.2 A Brief History of Person Re-ID
	1.3 Relationship with Classification and Retrieval

	2 Image-based Person Re-ID
	2.1 Hand-crafted Systems
	2.1.1 Pedestrian Description
	2.1.2 Distance Metric Learning

	2.2 Deeply-learned Systems
	2.3 Datasets and Evaluation
	2.3.1 Datasets
	2.3.2 Evaluation Metrics
	2.3.3 Re-ID Accuracy Over the Years


	3 Video-based Person Re-ID
	3.1 Hand-crafted Systems
	3.2 Deeply-learned Systems
	3.3 Datasets and Evaluation

	4 Future: Detection, Tracking and Person Re-ID
	4.1 Previous Works
	4.2 Future Issues
	4.2.1 System Performance Evaluation
	4.2.2 The Influence of Detector/Tracker on Re-ID


	5 Future: Person Re-ID in Very Large Galleries
	6 Other Important Yet Under-developed Open Issues
	6.1 Battle Against Data Volumn
	6.2 Re-ranking Re-ID Results
	6.3 Open-World Person Re-ID

	7 Concluding Remarks
	References

