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Abstract—Person re-identification (Re-ID) is a challenging task
that tries to recognize a person across different cameras, and
that can prove useful in video surveillance as well as in forensics
and security applications. However, traditional Re-ID systems
analyzing image or video sequences suffer from well-known issues
such as illumination changes, occlusions, background clutter,
and long-term re-identification. To simultaneously address all
these difficult problems, we explore a Re-ID solution based on
an alternative medium that is inherently not affected by them,
i.e., the Wi-Fi technology. The latter, due to the widespread use
of wireless communications, has grown rapidly and is already
enabling the development of Wi-Fi sensing applications, such
as human localization or counting. These sensing procedures
generally exploit Wi-Fi signals variations that are a direct
consequence, among other things, of human presence, and which
can be observed through the channel state information (CSI)
of Wi-Fi access points. Following this rationale, in this paper,
for the first time in literature, we show how the pervasive Wi-
Fi technology can also be directly exploited for person Re-ID.
More accurately, Wi-Fi signals amplitude and phase are extracted
from CSI measurements and analyzed through a two-branch deep
neural network working in a siamese-like fashion. The designed
pipeline can extract meaningful features from signals, i.e., radio
biometric signatures, that ultimately allow the person Re-ID. The
effectiveness of the proposed system is evaluated on a specifically
collected dataset, where remarkable performances are obtained;
suggesting that Wi-Fi signal variations differ between different
people and can consequently be used for their re-identification.

Index Terms—Person Re-Idenitfication, Channel State Infor-
mation (CSI), Wi-Fi signal, Radio Biometric Signature

I. INTRODUCTION

PERSON re-identification (Re-ID) addresses a recognition
task across non-overlapping camera views, understanding

whether a given person appeared in the same (or a different)
location at distinct time instants [1]. Direct evolution from
identification approaches, where a person identity is classified
into one of those known by the system, in a Re-ID method
the input image, called probe, is matched against a gallery of
identities so that the most probable one can be retrieved. While
difficult, this task naturally enables for the re-identification
of people that were never seen before. To achieve this goal,
however, it is necessary to correctly model a person’s ap-
pearance and, as a consequence, existing approaches exploit
distinctive and reliable visual features extracted from images
and video sequences [2], [3]. Although these features have
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achieved impressive results in Re-ID over the last decade,
especially due to deep learning advances, several challenges
are still open, including different viewing angles [4], [5];
illumination changes [6], [7]; background clutter [8], [9];
occlusions [10], [11]; and long-term Re-ID [12], [13], where
the person’s appearance can drastically change after long
periods of time (e.g., weeks). What is more, even though
ever improving methodologies are being developed to address
these challenging problems [14], [15], [16], person Re-ID is
still considered an open task and, even more aggravating, it
also presents a considerable gap between research-oriented and
practical scenarios [2]. Nevertheless, great efforts are being
made to improve this situation by also investigating techniques
based on different prerequisites. Indeed, alternative solutions
are already exploiting skeleton information [17] or multiple
and diverse technologies such as thermal and infrared images
[18], [19], since the re-identification task can be a crucial asset
in real application areas such as surveillance and forensics. To
expand on this matter, we explore an unorthodox technology
that, due to its nature, inherently avoids the aforementioned
complications, and introduce a novel approach based on a
different medium, i.e., Wi-Fi transmissions.

Wi-Fi is a mature technology that leverages radio signals
transmitted by several access points (APs) to enable wireless
communication between devices. When traveling between two
connected devices, Wi-Fi signals are influenced by objects as
well as people along their path, resulting in variations of the
signal itself [20], [21]. These changes can be captured via
either the received signal strength indicator (RSSI) or the chan-
nel state information (CSI) measurements [22]. Despite this,
the latter is more stable and can carry more signal information
with respect to the former due to the underlying technology
principles. In fact, for a given wireless data packet, the
RSSI is represented by a single value computed at the MAC
layer, indicating the relative signal quality; whereas the CSI
is measured by employing the orthogonal frequency-division
multiplexing (OFDM) transmission technology at the PHY
layer, and includes fine-grained signal information defined at
the subcarrier level [23]. What is more, this measurement
has been proven to be more robust in complex environments,
enabling the extraction of relevant signal characteristics, espe-
cially in indoor areas [24]. Indeed, among other things, signals
amplitude and phase can be retrieved from CSI measurements
and, as a matter of fact, several works exploit these radio
signal properties to develop useful Wi-Fi sensing applications
such as indoor localization [25], [26], tracking [27], or action
recognition [28], [29]. A sound strategy to design these Wi-
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Fig. 1: Proposed model architecture for person Re-ID through Wi-Fi. Starting from a wireless transmission, CSI is estimated
and used to extract amplitude heatmaps and phase vectors as radio biometrics. A CNN and LSTM unit are then exploited to
build relevant radio biometric signatures, used for the person re-identification.

Fi sensing applications generally requires some sort of signal
pre-processing to improve the received CSI measurements
quality by removing, for example, amplitude outliers [30] and
phase offset [31]. Subsequently, either a machine or deep
learning approach is usually employed to address the given
sensing task [32]. Among the many practical Wi-Fi sensing
applications, systems performing person identification, i.e.,
methods that classify signals into known people identities,
indicate that distinct people affect the Wi-Fi signals differ-
ently and, therefore, can prove particularly useful for security
applications [33]. Moreover, this difference in signal variation
between people was also extensively examined by previous
studies on both electromagnetic absorption of human bodies
and radio waves interactions with biological tissues [34], [35];
where it was shown that wireless propagation around a human
body is highly dependent on several characteristics such as
skin and other biological tissues conditions, total body water
volume, and additional physical attributes including mass and
height. As a consequence, due to the high variability of such
features, radio biometrics can be extracted from Wi-Fi signals
to describe and ultimately recognize a given person [33].

In this paper, inspired by previous signal propagation studies
as well as the existing person identification task literature re-
sults, we introduce a new Wi-Fi sensing application and design
a re-identification system able to recognize both known and
unknown persons, i.e., never seen before, via radio biometric
signatures computed across the same or different locations. In
particular, CSI measurements of Wi-Fi transmissions describe
the propagation of a wireless signal from a transmitter (TX) to
a receiver (RX) by analysing specific carrier frequencies along
multiple paths, and this data can be exploited to implement
a Re-ID method, as empirically demonstrated in this paper.
Observe that CSI was chosen since it has been proven to
carry more information with respect to RSSI [32], therefore

resulting in a better choice for a feature sensitive task such as
person Re-ID. In more detail, starting from an estimated CSI
measurement, signals amplitudes and phases are extracted and
processed to improve their quality through established proce-
dures such as the outlier removal [30], for signals amplitudes;
and offset removal [31], for signals phases. Subsequently, the
sanitized signals are further refined through a median filtering
[36] to create a single amplitude heatmap and more stable
phases along the various CSI measurements. These features,
representing a person’s radio biometrics, are then used as
input for a novel deep neural network architecture, based on
a siamese structure, that was specifically designed to extract
meaningful radio biometric signatures through two parallel
sub-networks inside each siamese branch. The rationale behind
this choice is twofold and a requirement for the person Re-ID
task, where the lack of annotated data must be managed [37],
[38], [39]. First, this design is efficient in both supervised and
unsupervised feature space learning. Second, the underlying
strategy allows to extract invariant feature representations that
enable a distance-based Re-ID, where similar identities will be
close in the learned feature space, while dissimilar persons will
have distant representations [40]. Moreover, a siamese strategy
[41] has been widely used to address the vision-based person
Re-ID, achieving remarkable results [42], [43]. However, its
usage for other wireless sensing applications is fairly new and
still being developed [44]. What is more, to the best of our
knowledge, currently, there are no other siamese-like pipelines
processing Wi-Fi signals addressing the radio domain person
Re-ID, therefore encouraging the exploration and design of
such a system. To achieve this end, our network comprises two
siamese branches, both containing parallel sub-networks based
on different models to correctly handle the computed signal
amplitude heatmaps and filtered phases, i.e., a convolutional
neural network (CNN) and a long-short term memory (LSTM).
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Afterwards, the output radio biometric signatures are used
to re-identify the person across the same or two different
locations, while also avoiding classical Re-ID drawbacks since
a non-video-based medium is exploited. Notice, however,
that even though the latter holds true, different issues can
affect Wi-Fi signals. This is especially noticeable in real-
world application scenarios characterized by unconstrained
environmental properties such as crowded areas, where radio
biometrics from different people would be merged, or in
critical outdoor weather conditions, where the generation of
consistent signatures could be impaired altogether. Neverthe-
less, by focusing on single individuals in typical constrained
surveillance settings [45], it is possible to obtain well-defined
radio biometrics that allow to re-identify a given person. For
this reason, the proposed Re-ID method could be employed,
for instance, in relevant and strategic buildings checkpoints,
e.g., airports or banks, to further increase their security by
confirming a person’s identity. To simulate such scenarios,
and due to the lack of existing Wi-Fi collections for the
Re-ID task, a dataset was acquired capturing single persons
standing in several indoor locations. Moreover, comparably
to real-world environments, no shielding mechanism was im-
plemented against interference from other radio signals, since
they are inevitable in our highly connected world. Thereafter,
similarly to classical Re-ID methods that make use of visual
information extracted from images and videos [46], [47], [48],
common Re-ID metrics, such as the mean average precision
(mAP) and cumulative matching characteristic (CMC), were
employed to accurately evaluate the proposed methodology. As
shown by the experimental results, significant performances
are obtained on the acquired collection; highlighting the pre-
sented pipeline effectiveness and opening up a new classical
drawbacks-free person Re-ID task frontier.

Summarizing, the major contributions of this paper are:
• the definition of a completely new Wi-Fi sensing appli-

cation by implementing a person Re-ID method based
exclusively on Wi-Fi signals that can also avoid classical
vision-based drawbacks thanks to the different medium
nature of the wireless technology;

• the design of a novel architecture, based on a siamese
model structure, leveraging parallel sub-networks in each
siamese branch to extract meaningful radio biometric
signatures from Wi-Fi signals examined at either the same
or at different locations;

• the presentation of quantitative and qualitative experi-
ments that first, highlight the effectiveness of signal-
based approaches to address the person Re-ID task in
constrained ambients, and second, establish a baseline
methodology for this new Wi-Fi sensing application.

II. RELATED WORK

Depending on the signal measurement type, Wi-Fi sensing
methods can be broadly categorized into two classes, i.e., RSSI
and CSI based approaches [49].

Concerning the RSSI measure, it indicates the received
power level after any possible transmission loss, thus rep-
resenting the relative signal quality. Inanimate objects (e.g.,

furniture) or human presence can influence radio signals and,
as a matter of fact, the authors of [50] noticed significant
RSSI fluctuations in both line-of-sight (LOS) and non-line-of-
sight (NLOS) conditions. Supporting these findings, the RSSI
signal quality was successfully employed in heterogeneous
tasks such as map reconstruction [51], [52] as well as human
localization [53], [54], [55], [56], [57], tracking [58] and
identification [59]. Confirming the inanimate object influence
on radio signals, a grid points filling with low rank matrix
theory on RSSI fingerprints exchanged between several APs
is used in [51], for example, to reconstruct radio maps of
indoor environments; while Markov random field modeling for
loopy belief propagation of sparse signals is employed, by the
authors of [52], to build 3D radio maps of unknown structures
using RSSI signals examined by unmanned aerial vehicles.
Considering human-focused RSSI applications, instead, a pop-
ular and well-explored task is the localization one. In [53], for
instance, the best AP, i.e., with the best RSSI signal quality, is
selected to achieve indoor localization according to an eight-
diagram approach defining the signal propagation direction;
while the authors of [54] develop a feature-scaling-based k-
nearest neighbors (KNN) algorithm and further refine the RSSI
signals via outlier removal to address an analogous task. Fur-
ther improvements to localization systems are also provided
by techniques that can clean up the received signals. For
example, in [55], [56] and [57], Gaussian, weighted average,
and continuous wavelet transform (CWT) filtering are applied,
respectively, to improve the input for the chosen localization
algorithms. The received signal quality increment can also
be obtained by reducing possible interferences as shown in
[58], where a custom communication protocol enables to track
humans via RSSI measurements; or by using wearable devices
as demonstrated by the authors of [59], that present an RSSI
proximity algorithm able to identify several persons. What
is more, improved RSSI measurements are also successfully
used to address other complex tasks such as human action
recognition. Indeed, as described in [60], sanitizing the RSSI
through outlier removal and Gaussian filtering, enables a
feature fusion approach to obtain significant results on the
action recognition task, therefore indicating that the Wi-Fi
technology is a good medium for sensing applications and
could be also effectively applied to other tasks.

Regarding the CSI measure, it captures richer information
about the wireless transmission among communicating APs,
contrary to the RSSI that does not provide fine-grained features
except from the relative signal quality of a wireless envi-
ronment. For instance, CSI can acquire amplitude and phase
features for each subcarrier in the OFDM channel [61]. By
describing the channel characteristics of a frequency-diverse
group of subcarriers, this measurement is more robust to nar-
rowband interference from other signals. Moreover, it is not af-
fected by the automatic power level adjustment algorithm im-
plemented in commodity wireless APs [62]. As a consequence,
the channel state information is gaining momentum in the
latest years. In [63], for example, the authors show that there
is a high correlation between subsequent CSI measurements,
and consistently detect falling humans via CSI amplitude.
Similarly, [64] and [29] detect falling humans through de-
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noised frequency spectrogram images, in the former, and phase
differences, in the latter, that can be both extracted from CSI
measurements; thus indicating that CSI is an information-rich
measure. Indeed, among others, Wi-Fi signals amplitude [30],
[65], phase [31], [66], and frequency [67], obtained from CSI,
are also effectively employed in other tasks such as human
indoor localization. For example, the authors of [65] apply
a fingerprint matching procedure after optimizing a centroid-
based algorithm (i.e., KNN) used to examine locations through
CSI amplitudes. In [31], instead, indoor locations fingerprints
are defined by linearly transformed CSI phases, where offsets
deriving from the transmission are removed; while in [67]
the indoor localization is addressed through passive radio
maps that are analyzed via a probabilistic algorithm detecting
anomalies in CSI frequencies. Furthermore, CSI measurements
can also be exploited to capture human movements and,
consequently, perform action recognition from the received
signals. For instance, the authors of [68] use several CSI
channels to produce radio images that enable both to localize
and to recognize the corresponding human actions. Similarly,
in [69], activity recognition is achieved through variance-
normalized CSI amplitude waveforms filtered by the principal
component analysis (PCA) procedure. In [70], instead, ges-
tures are recognized via a spatiotemporal examination of CSI
phases executed by a siamese recurrent neural network; an
architecture that extracts meaningful features from the input
phases, and which we have extended in the proposed approach
since it is already successfully applied in classical vision-based
re-id approaches [37], [38], [71], [72], [73].

Although CSI-based works generally tend to focus on a
single Wi-Fi signal characteristic (e.g., amplitude), it is not
uncommon to find approaches exploiting more information
derived from CSI measurements. Such an example is found in
[74], where both CSI amplitude and phase, computed along
two distinct RX devices, are used jointly to generate fine-
grained human skeleton poses. Indeed, the multiple CSI chan-
nels can provide relevant information about people between
two, or more, APs and, as a matter of fact, they are employed
to define structural biometric features in [33]. In particular,
these features represent body pose differences that can be
registered and distinguished through the CSI by employing a
time-reversal (TR) technique, that ultimately enables to iden-
tify a known person. Following a similar reasoning, the authors
of [75] perform user identification through CSI frequency
shifts associated to gestures, by band-pass filtering the signals
and further refining them through PCA. In [76], instead, CSI
amplitudes, treated with discrete wavelet transforms (DWT)
and statistical profiling (e.g., channel power distribution), are
coupled with people’s gait allowing for their identification
through Wi-Fi signals. In addition, further confirming the
CSI measurement effectiveness, filtered CSI amplitudes are
exploited in [77] to simultaneously learn several tasks such as
action recognition, user tracking and identification, through a
deep neural network. Finally, in [78], the authors are able to
also extract internal characteristics (i.e., respiration rates) from
CSI measurements by improving the SNR of signals associated
to breaths, which allow to identify known users; indicating
that the CSI measure contains different signal cues for distinct

people, and therefore supporting our direct investigation of CSI
measurements to describe a person through radio biometric
signatures to address the re-identification task.

III. PROPOSED METHOD

To achieve person Re-ID from Wi-Fi signals, we design
an architecture that expands the two-branch siamese structure
to comprise two parallel sub-networks per model branch, as
shown in Fig. 1. By following the proposed pipeline, the
whole network can exploit both signals amplitude and phase
to address the re-identification task. Specifically, the system
first performs a CSI estimation step to capture propagation
properties of signals influenced by humans standing between
the transmitting and receiving APs. The CSI measurement
containing the affected signal is then employed to extract
amplitudes and phases, which are in turn processed to gen-
erate sanitized feature vectors that represent relevant radio
biometrics of a given person. In particular, filtered amplitudes
are transformed into heatmaps and analyzed through a CNN-
based network to capture meaningful signal patterns; cali-
brated phases are instead processed via an LSTM-based model
to describe discriminant temporal changes deriving from life
processes such as respiration and heartbeat. Subsequently, the
two sub-networks (i.e., CNN and LSTM components) outputs
are combined into a single feature vector representing a radio
biometric signature that can be used to re-identify a person
across the same or at different locations. Notice that the
proposed model, due to the identical branches with shared
weights, is suitable for finding similarities between compara-
ble inputs and can generate final feature vectors, i.e., radio
biometric signatures, that account for possible environment
noise derived, for example, from different furniture. Indeed, by
following the classical vision-based siamese objective function
structure, the proposed method ensures that signals associated
to the same person will have similar representations in the
feature space; therefore enabling for their Re-ID.

A. CSI Estimation

The first CSI estimation step leverages commodity hardware
for the TX and RX APs, fixed in place inside stationary
environments to reduce the amount of random ambient noise.
In detail, an 802.11n commercial router is used as transmitter
(i.e., TX), while an Intel Wi-Fi Link 5300 (IWL5300) network
interface card (NIC), connected to a Desktop PC, acts as re-
ceiver (i.e., RX). The latter was chosen since custom firmware
and drivers that enable the CSI estimation were implemented
in [22], as it is still rather uncommon to use commodity
hardware to access CSI estimation. Furthermore, the proposed
system exploits a multiple-input and multiple-output (MIMO)
technology to take full advantage of the multi-path propagation
as a consequence of TX and RX APs integrating Γ = 2 and
Θ = 3 antennas, respectively. Formally, considering a multi-
path propagation scenario, the communication channel can be
modeled in the time domain as the channel impulse response
(CIR) of a linear time-invariant channel filter, defined as:

h(τ) =
∑
i

αiδ(τ − τi), (1)

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on March 13,2022 at 22:39:58 UTC from IEEE Xplore.  Restrictions apply. 



1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3158058, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 5

where αi and τi are the attenuation factor and propagation
delay of the i-th path, respectively; while δ(τ) corresponds
to the Dirac delta function. Note, however, that the CSI
is a frequency-based measurement; thus, for its estimation,
the fast Fourier transform (FFT) is applied on the impulse
response at the receiver to obtain the corresponding channel
frequency response (CFR) complex value [79]. Consequently,
the APs communication channel in the frequency domain can
be linearly modeled as follows:

y = Hx+ n, (2)

where y is the received signal vector; H represents the CFR;
x is the transmitted signal vector; and n indicates the addi-
tive white Gaussian noise (AWGN) [80]. From this channel
model, the OFDM technology provides a sampled CFR with
a subcarrier granularity; therefore, the CSI measurement is
computed by including the CFR value from each of them.
Specifically, the IWL5300 component uses K = 30 OFDM
subcarriers sampled from the 20MHz channel which contains
56 subcarriers. For each subcarrier κ ∈ K, the frequency
response H

(θ,γ)
κ over the receiving θ ∈ Θ and transmitting

γ ∈ Γ antennas, can then be represented via the following
complex equation:

H(θ,γ)
κ = |H(θ,γ)

κ |ej 6 H
(θ,γ)
κ , (3)

where j indicates the imaginary component; while |H(θ,γ)
κ |

and 6 H(θ,γ)
κ represent the signal amplitude and phase, re-

spectively. The final CSI matrix computed over the frequency
response of the K subcarriers, accounting for all transmitting
and receiving antennas, is a Θ× Γ×K matrix defined as:

CSI =


H

(1,1)
1 H

(1,1)
2 . . . H

(1,1)
κ

H
(1,2)
1 H

(1,2)
2 . . . H

(1,2)
κ

...
...

...
...

H
(θ,γ)
1 H

(θ,γ)
2 . . . H

(θ,γ)
κ

 , (4)

where H(θ,γ)
κ is a signed 8-bit complex number indicating the

κ-th subcarrier CFR value over the θ ∈ Θ and γ ∈ Γ antennas.
Observe that both amplitude and phase can be retrieved from
the CSI matrix, but require further processing to be used by
the proposed system as shown in Sections III-B and III-C.

B. Amplitude Sanitization and Heatmap Generation

To prepare clean radio biometrics for the CNN sub-network,
we sanitize and transform CSI extracted amplitudes into
heatmaps. See that the sanitization step is required since the
retrieved amplitudes present noise due to various factors such
as furniture material and position, external radio interference,
and other environmental conditions, as shown in Fig. 2(a).

Concerning the sanitization procedure, we expand on the
method presented in [30]. Specifically, local outliers are
first detected through local median values computed over a
sliding window of fixed length. Subsequently, these outliers
are replaced using the previous non-outlier value to retain
consistent amplitude information. In particular, outliers are
identified by points resulting more than three local median
absolute deviations (MAD) away from the local median within
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Fig. 2: CSI extracted amplitude processing example. In (a)
and (b), the raw and sanitized amplitudes for a single TX-RX
antenna pair, respectively. In (c), and (d), the median filtered
amplitudes across all antenna pairs, and the corresponding
heatmap used as input for the CNN sub-network.
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Fig. 3: CSI extracted phase processing example. In (a), (b),
and (c), the raw, sanitized and median filtered phases of a
single subcarrier, respectively.

the sliding window applied across packets of each subcarrier.
Formally, given a wireless transmission between a TX and
RX antenna, amplitudes extracted from CSI measurements of
p ∈ P data packets, and a window size w, the local median
is defined as:

median(W p,κ) = W p,κ
dw/2e, (5)

W p,κ =
{
|Hκ|p−bw/2c, . . . , |Hκ|p+bw/2c :

|Hκ|p−bw/2c < |Hκ|p+bw/2c
}
,

(6)

where W p,κ represents an ascending order set containing w
neighboring packets amplitude |Hκ| of the κ-th subcarrier.
Note that the median described in Eq. (5) is computed for all
Θ×Γ×K antennas and subcarriers combinations, however a
single sample is reported for the sake of simplicity. The local
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(a) (b)

(c)

Fig. 4: Rooms configuration for the proposed dataset acquisi-
tion protocol. In (a), (b), and (c) the conference hall, office,
and indoor hallway, respectively.

MAD used to identify outliers and sanitize the amplitudes is
then computed as follows:

MAD(W p,κ) = median(|W p,κ
i −median(W p,κ)|),

∀i, 1 ≤ i ≤ w.
(7)

Finally, acceptable local amplitude ranges are defined as:

limitp,κ = median(W p,κ)± 3 ∗MAD(W p,κ), (8)

and every amplitude resulting outside these limits is replaced
with the previous non-outlier value to maintain signal con-
sistency. The produced sanitized signals, for an empirically
chosen window size w = 5, are shown in Fig. 2(b).

Upon this first processing procedure that enables to reduce
artifacts in CSI measurements, a second median filtering is
applied over the Θ× Γ transmissions. The reason behind this
decision is twofold. First, it allows to reduce the data dimen-
sionality, and second, it condensates amplitudes characteristics
shared among different antennas transmissions, as shown in
Fig. 2(c). Notice that this decision was taken since, in general,
the sanitized Θ × Γ transmissions present similar properties.
Lastly, the concentrated amplitudes are transformed into a
single heatmap M of size P ×K, as displayed in Fig. 2(d),
representing a person’s amplitude radio biometric; which is to
be used as input for the CNN sub-network.

C. Phase Sanitization

Similarly to CSI amplitudes, phases also require to be
processed due to common issues such as random noise and
unsynchronized time clocks between TX and RX APs, that
can result, among other things, in random phase offsets, as
shown in Fig. 3(a). To address this issue, we calibrate CSI-
extracted phases using the linear transformation presented in
[31]. Formally, a raw CSI phase 6 Ĥκ measured for the κ-th
subcarrier can be expressed as follows:

6 Ĥκ = 6 Hκ + 2π
mκ

N
∆t+ β + Z, (9)

where 6 Hκ indicates the real phase; ∆t represents the receiver
timing offset, which corresponds to the time interval between
signal arrival and detection; β denotes the unknown phase
offset; Z is the measurement noise; while mκ and N corre-
spond to the subcarrier index and fast Fourier transform (FFT)
size as specified by the IEEE 802.11n standard. In particular,
for the IWL5300 network interface, subcarrier indices range
from −15 to 15, while N = 30. Moreover, since ∆t and
β are unknown, the original phase information cannot be
directly retrieved. However, since the subcarrier frequency is
symmetric, it possible to apply a linear transformation and
ignore those parameters by considering the phase across the
total frequency band [31]. Specifically, the phase slope a and
offset b can be represented via the following equations:

a =
6 Ĥ30 − 6 Ĥ1

m30 −m1
, (10)

b =
1

30

30∑
κ=1

6 Ĥκ. (11)

Afterwards, the calibrated phases 6 H̃κ, shown in Fig. 3(b),
are computed as follows:

6 H̃κ = 6 Ĥκ − amκ − b. (12)

Once the phase calibration is completed, a median filtering
is applied over the Θ×Γ transmissions, similarly to the ampli-
tude procedure, to reduce data dimensionality and agglomerate
typical phase values along the various subcarriers, into a vector
F . An example of filtered phases is shown in Fig. 3(c). Finally,
the vector F of size P ×K, containing the processed phases
that capture temporal changes of a signal propagation, is used
as input for the LSTM sub-network.

D. Radio Biometric Signatures

To perform person Re-ID we propose an architecture based
on a siamese structure, implemented via a two-branch neural
network with parallel sub-networks in each branch, that is
trained as a feature extractor, and that can learn invariant
mappings [81] from the extracted radio-based features, thus
resulting in a good choice for the addressed task. In detail,
to compute such mappings, the model is composed by two
identical branches with shared weights. Moreover, both of
the presented architecture branches contain two parallel sub-
networks, i.e., a CNN and an LSTM model, to correctly
analyze the preprocessed signals. In particular, for the CNN
module we followed a VGG-16 structure without its classifica-
tion component (i.e., up to and including the last max pooling
operation), since this model is an effective image pattern ex-
tractor [82]. The LSTM sub-network, instead, is implemented
via a single recurrent neural network (RNN) layer containing
P LSTM units. Moreover, the CNN model takes as input the
heatmap M presented in Sec. III-B, representing biometric
information derived from amplitudes, and outputs a feature
map vector M̄ ; while the LSTM receives as input the F
vector introduced in Sec. III-C, containing temporal biometric
information, and outputs the feature vector F̄ . The resulting
sub-network outputs, i.e., M̄ and F̄ , are then concatenated and
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merged together through a dense layer to build what is defined
in this work as a radio biometric signature s.

Concerning the model training, the proposed pipeline ac-
cepts as input data pairs representing signals associated to
the same or different persons. Afterwards, while biometric
signatures are being learned by the sub-networks of a branch,
the Euclidean distance is applied across the branches resulting
outputs via a siamese loss function. This procedure allows to
minimize, or maximize, the generated biometric signatures dis-
tance for similar, or dissimilar, inputs, respectively. Formally,
given a pair of CSI measurements (CSIi, CSIj) as input,
biometric signatures si and sj are computed by concatenating
the model branches outputs and elaborating them through a
dense layer as follows:

si = wi(M̄i ⊕ F̄i) + bi,

sj = wj(M̄j ⊕ F̄j) + bj ,
(13)

where ⊕ represents the concatenation operation; while w and
b indicate the dense layer weights and bias, respectively.
Subsequently, the siamese loss can be defined as:

L(si, sj)
siamese

=

{
1
2 ‖si − sj‖

2
, if i = j;

1
2 max(m− ‖si − sj‖ , 0)2, if i 6= j,

(14)

where ‖·‖2 is the Euclidean distance; while m is a margin,
empirically set to 2 in this work, that helps the dissimilar
signatures separation during the optimization process. What is
more, notice that this architecture also enables the Re-ID of
unknwon people, i.e., not observed during training, since their
radio biometric signatures can still be extracted and compared
at test time; where likely matching identities will be associated
by lower distances among signatures, in accordance with the
reported siamese loss function.

E. Joint Identification and Verification

The siamese loss function is key to the signatures genera-
tion, however, on the basis of [83], [84], we further extend the
training loss function by following a joint identification and
verification strategy that can improve the signatures quality.
In particular, at training time, each model branch will predict
person identities while the siamese cost described in Sec. III-D
is also globally satisfied. Formally, the biometric signature
s generated by a given branch is fed to a dense layer with
dimension D, i.e., the number of known persons, and the
identity loss is then implemented through a categorical cross-
entropy function, as follows:

L(D)
ID

= −
D∑
d

yd log

(
exp(d)∑D
d′ exp(d′)

)
, (15)

where d and yd correspond to the predicted person identity
and ground truth, respectively. Subsequently, to improve Re-ID
accuracy, the identification losses computed by the two model
branches are also employed in the overall training objective
function, as described in the following equation:

L = L(si, sj)
siamese

+ L(Di)
ID

+ L(Dj)
ID

. (16)

Observe that this joint objective function is only used to
enable the model to extract good biometric signatures from
the input signals. However, at test time, the architecture is
only employed as a signature extractor. As a consequence, the
identification losses are ignored while the siamese one is re-
placed by an Euclidean distance to address the re-identification
task; where lower distances between two signatures naturally
indicate more likely matching identities.

IV. EXPERIMENTAL RESULTS

To present a comprehensive evaluation of the proposed
methodology, in this section we describe the data collection
procedure, necessary due to the lack of public datasets for
Wi-Fi Re-ID; relevant implementation details, including the
chosen testing protocol and metrics; as well as qualitative and
quantitative evaluations for the various system components.

A. Dataset

To compensate for the Wi-Fi Re-ID datasets unavailability,
a collection was acquired to assess the presented approach.
Specifically, we captured Wi-Fi signals of 35 distinct peo-
ple, comprising 15 women and 20 men with similar body
characteristics, standing between the TX and RX APs, for a
total of 525 transmissions. In more detail, the average women
height and weight were 165.3 ± 4.6cm and 61 ± 7kg, while
the average men measurements corresponded to 176.1±6.7cm
and 76 ± 8kg. Furthermore, for each identity, five 3-seconds
long transmissions (i.e., spanning over 300 packets) were
collected using the 20 MHz channel of a 2.4 GHz Wi-Fi
link in 3 different rooms: a conference hall, an office, and
indoor hallway. Each room configuration is shown in Fig. 4.
In all cases, the TX and RX were fixed and placed 2 metres
apart, with no objects in between, and one person at a time
was asked to either face toward to or away from the TX
while standing between the two devices. Finally, all furniture
and environment items were otherwise left untouched, and
no shielding mechanism was employed to avoid interferences
from other radio signals, which effectively replicates real
Wi-Fi networks characteristics where multiple connections
propagate across the same area and affect one another.

B. Implementation Details

Regarding the various experimental settings, Wi-Fi signals
were preprocessed via the Matlab R2021a software, while
several ablation studies were performed on the neural network
component to correctly evaluate the proposed approach. The
assessed models followed the same protocol for all tests.
Specifically, the dataset was split into two subsets D1 and
D2. The first one, which enables the model to learn how to
extract meaningful signatures via the two siamese branches,
contained 20 distinct people, for a total of 300 Wi-Fi trans-
missions. This collection was used in conjunction with a 10-
fold cross-validation procedure using 4/1 random splits per
person samples of each room (i.e., 240 and 60 transmissions)
for the training and test sets, respectively. The second subset
comprises, instead, the remaining 15 identities, counting a total
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5: Heatmaps M -derived 3D surfaces examples for 200-packets acquisitions in the three rooms, i.e., a hallway, office, and
conference hall, in the first, second and third row, respectively. Images (a), (d), and (g), correspond to no obstacles between
TX and RX APs; while triples (b), (e), (h) and (c), (f), (i) show two different persons of the collected dataset.

of 225 samples, which were left out to evaluate the system
on the re-identification of unknown people. Furthermore, for
each fold, every architecture was trained for 200 epochs using
the SGD algorithm, with an initial learning rate lr set to 0.1,
a weight decay of 5e-4, and a Nesterov momentum of 0.9.
Moreover, a scheduler was also implemented to divide the lr
by 5 at epochs 60, 120, and 160, so that the gradient update
speed would be gradually reduced for more stable signatures
updates. Notice that for all experiments we used common
person Re-ID metrics, such as the mean average precision
(mAP) and cumulative matching characteristic (CMC) curve to
represent up to Rank #10 re-identification accuracy. Finally, all
networks were implemented through the PyTorch framework
and its TorchVision library, while tests were performed using

a single GPU, i.e., a GeForce GTX 1070 with 8GB of RAM.

C. Signals Pre-Processing Qualitative Evaluation

Amplitude and phase extracted from CSI measurements
of Wi-Fi signals contain several information that can help
distinguish different persons. Examples of the resulting pre-
processed signals characteristics are shown in Fig. 5, for the
amplitudes, and in Fig. 6 and Fig. 7 for the phases.

Concerning the amplitudes, as can be seen in the heatmaps-
derived 3D surfaces, the general shape is retained across dif-
ferent rooms for the same identity (i.e., first, second and third
column in Fig. 5). However, the environment does affect the
received signal even after applying the sanitizing procedure, as
clearly shown in Fig. 5(a), Fig. 5(b) and Fig. 5(c), where the
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Fig. 6: Processed phases examples for 15-packets acquisitions
in the same room, i.e., indoor hallway. In (a) to (i) the resulting
F phases for 9 consecutive subcarriers of no obstacles between
TX and RX APs and two different persons; shown in blue, red,
and yellow, respectively.

reported amplitudes are associated to the empty rooms, i.e.,
only furniture was present and no obstacle was left between
the TX and RX APs. As a consequence, the resulting ambient
noise will also affect the received amplitude quality when
humans stand across the propagated signal. This outcome can
be traced back to the random path followed by the signal
itself, which is not guaranteed to be the same across multiple
transmissions. However, due to the stationary environments,
we can successfully mitigate possible random ambient noise
by operating directly in the frequency domain, which is not
feasible in non-stationary scenarios, where the signal should
also be processed in the time domain [80], [85]. While
this result might suggest that other techniques, such as the
angle of arrival, might further improve the signal processing
procedures, the produced heatmaps are still able to describe
human presence in a detailed way, especially when many
packets are used to build the corresponding image. As a matter
of fact, the heatmaps generated in the various rooms show
high inter-class and low intra-class shape differences, as can
be seen in each Fig. 5 row; therefore indicating that the derived
amplitude heatmaps can correctly model characteristics of
distinct persons.

Regarding the phases, they can be used to capture temporal
cues from Wi-Fi signals, as can be inferred from Fig. 6 and
Fig. 7. In more detail, the two images report 15 consecutive
filtered sanitized phases of distinct identities for 9 adjacent
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Fig. 7: Processed phases examples for 15-packets acquisitions
in the same room, i.e., conference hall. In (a) to (i) the resulting
F phases for 9 consecutive subcarriers of no obstacles between
TX and RX APs and two different persons; shown in blue, red,
and yellow, respectively.

subcarriers in two different rooms. i.e., indoor hallway and
conference hall. As shown, as time evolves, i.e., more packets
are analyzed at the RX AP, phases at each subcarrier tend to
concentrate on the same spot due to the presented filtering
procedure that removes phase offsets. Even more interesting,
for different persons, the resulting phases have dissimilar
values across the various subcarriers. This outcome suggests
that first, different people also have diverse effects on the
signal propagation, in accordance with the findings described
in [34], [35] and second, there is a little probability for two
dinstict people to have the exact distribution across all 30
subcarriers for several consecutive packets; thus indicating
that a sequence-based architecture (e.g., LSTM) could most
likely capture temporal shifts associated to different persons.
Observe that a small number of packets is reported for each
identity to avoid image clutter. However, the same reasoning
applies to more subsequent packets, therefore supporting that,
similarly to amplitudes, phases can also help to model unique
persons and support their discrimination.

D. Wi-Fi Person Identification and Verification Evaluation
To show the effectiveness of the proposed method, we per-

formed several ablation studies concerning the architecture, the
generated signature size, as well as the number of consecutive
packets to be analyzed from the Wi-Fi transmission to generate
meaningful amplitude and phase features.
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TABLE I: Model configuration 10-fold cross-validation perfor-
mance evaluation on dataset D1 for 300 consecutive packets,
and |s| = 256. SiameseA, SiameseP , and Siamese models ex-
ploit amplitude, phase, and joint signal properties, respectively.

Model #Rooms Rank #1 mAP
SiameseA 1 90.46% ± 4.40% 88.29% ± 6.36%
SiameseP 1 90.12% ± 4.05% 88.17% ± 5.12%
Siamese 1 94.42% ± 0.95% 92.90% ± 2.27%
SiameseA 2 89.78% ± 6.20% 87.96% ± 7.10%
SiameseP 2 89.35% ± 4.87% 87.90% ± 5.56%
Siamese 2 93.99% ± 1.01% 92.79% ± 2.31%
SiameseA 3 88.71% ± 7.24% 86.65% ± 7.51%
SiameseP 3 88.57% ± 5.15% 86.55% ± 5.97%
Siamese 3 93.51% ± 1.04% 92.17% ± 2.47%

TABLE II: Signature size 10-fold cross-validation perfor-
mance evaluation on dataset D1 for 300 consecutive packets.

Model |s| Rank #1 mAP
Siamese 16 56.72% ± 10.24% 50.84% ± 11.20%
Siamese 32 68.80% ± 8.05% 64.76% ± 9.06%
Siamese 64 85.59% ± 4.24% 83.41% ± 5.83%
Siamese 128 93.17% ± 1.12% 91.99% ± 2.63%
Siamese 256 93.51% ± 1.04% 92.17% ± 2.47%
Siamese 512 93.50% ± 1.01% 92.12% ± 2.48%
Siamese 1024 93.45% ± 0.99% 92.10% ± 2.43%

In relation to the chosen Re-ID model, the first batch of
experiments explored the extracted features efficacy in both
standalone and joint solutions by designing, respectively, a
siamese architecture with single sub-network streams, elabo-
rating either amplitudes or phases, and the presented model.
Notice that these experiments were performed by using subsets
with increasing complexity generated from dataset D1. Specif-
ically, the evaluation was performed using signals associated
to either the single rooms (e.g., hallway or office), all possi-
ble pairs (e.g., hallway and office or office and conference
room), and all rooms in dataset D1 (i.e., as described in
Sec. IV-B). The obtained results are summarized in Table I. As
shown, all models achieve significant performances for both
Rank #1 and mAP metrics, with the full model consistently
outperforming the single-subnetwork versions (i.e., SiameseA
and SiameseP ) by an ≈5% margin, independently of the
number of examined rooms. The reason behind this outcome
is twofold. First, the extracted features can capture enough
differences to distinguish the 20 identities present in D1, since
each person seems to affect the signal similarly even across
distinct rooms, as discussed in Sec. IV-C. Second, amplitudes
and phases describe different characteristics due to the chosen
representation (i.e., heatmap M̄ and temporal sequence F̄ , re-
spectively), further improving the derived human descriptions
when used jointly. Even more interesting, siamese models
exploiting phase information attained lower variance across
the 10-folds, which is due to temporal information captured
from vector F̄ by the LSTM unit. Indeed, while heatmaps can
still represent different humans in a meaningful way, they can
also be subject to higher association errors since they represent
a coarse view of signals amplitudes.

Concerning the second round of ablation studies, an eval-
uation of different signature sizes was performed to assess
the effectiveness of the fused features M̄ and F̄ . The results

TABLE III: Packets number 10-fold cross-validation perfor-
mance evaluation on dataset D1 with |s| = 256.

Model #Packets Rank #1 mAP
Siamese 10 80.28% ± 9.13% 79.02% ± 9.98%
Siamese 25 85.51% ± 7.99% 82.65% ± 8.65%
Siamese 50 88.50% ± 5.34% 87.23% ± 6.34%
Siamese 100 91.56% ± 3.01% 89.88% ± 4.00%
Siamese 200 93.29% ± 1.10% 92.02% ± 2.54%
Siamese 300 93.51% ± 1.04% 92.17% ± 2.47%
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Fig. 8: CMC curve up to Rank #10 computed on dataset D1

for different packets number.

obtained on dataset D1 are reported in Table II. As can
be seen, employing higher dimensions for the signature s
naturally results in improved performances. This is a direct
consequence of the task complexity when multiple identities
are present, as their representation cannot be fully described
via small signatures. As a matter of fact, for |s| < 64, the
system performances degrade rapidly and show high vari-
ance, confirming that the signature s is not able to capture
meaningful characteristics for the unique identities discrimi-
nation. Moreover, there are also diminished increase returns
in correspondence to bigger s sizes. This behavior is easily
explained by the relatively low number of identities at our
disposal (i.e., 20 for dataset D1) which can be characterized
by a signature size of 256. Nevertheless, to correctly represent
as many unique persons as possible, the chosen signature size
is a key component for the proposed system.

Regarding the last group of experiments, tests were per-
formed to evaluate the effectiveness of the extracted features
by modifying the number successive packets analyzed for their
generation. The results obtained on dataset D1 are summarized
in Table III. As can be seen, performances start converging
to a stable percentage from 200 packets, indicating that the
corresponding extracted features carry enough information to
correctly describe the various identities in D1. In fact, using
the whole sequence of 300 packets results only in slight
gains for both Rank #1 and mAP metrics. This outcome
confirms the representation capability of the system, that can
fully describe the various identities, while also suggesting the
extracted features effectiveness. As a matter of fact, significant
performances are obtained even by analyzing a lower number

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on March 13,2022 at 22:39:58 UTC from IEEE Xplore.  Restrictions apply. 



1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3158058, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 11

TABLE IV: Model configuration 10-fold cross-validation per-
formance evaluation on dataset D2 for 300 consecutive packets
and |s| = 256. SiameseA, SiameseP , and Siamese models ex-
ploit amplitude, phase, and joint signal properties, respectively.

Model #Rooms Rank #1 mAP
SiameseA 1 88.68% ± 3.59% 86.35% ± 4.54%
SiameseP 1 88.18% ± 3.50% 86.05% ± 3.64%
Siamese 1 90.28% ± 1.02% 89.77% ± 2.29%
SiameseA 2 86.72% ± 5.19% 80.12% ± 5.62%
SiameseP 2 86.52% ± 4.24% 80.02% ± 4.78%
Siamese 2 89.42% ± 1.09% 88.58% ± 2.55%
SiameseA 3 84.02% ± 7.25% 78.12% ± 7.70%
SiameseP 3 83.62% ± 5.07% 77.62% ± 5.12%
Siamese 3 88.82% ± 1.29% 87.52% ± 2.67%

TABLE V: Packets number 10-fold cross-validation perfor-
mance evaluation on dataset D2 with |s| = 256.

Model #Packets Rank #1 mAP
Siamese 10 72.12% ± 12.69% 64.52% ± 13.35%
Siamese 25 74.22% ± 9.34% 70.72% ± 10.23%
Siamese 50 80.95% ± 6.37% 78.75% ± 7.57%
Siamese 100 82.15% ± 4.98% 80.55% ± 5.60%
Siamese 200 85.05% ± 2.70% 83.85% ± 3.69%
Siamese 300 88.82% ± 1.29% 87.52% ± 2.67%

of packets (i.e., P ≤ 25). However, for these configurations
there is a higher variance due to the smaller extracted features
which might not fully capture distinct traits for more similar
radio biometrics. What is more, due to the chosen median
procedures, using less than 10 packets results in a performance
degradation due to an increased noise in the produced features.
Nevertheless, the approach quality for fewer packets is also
validated through the CMC curve shown in Fig. 8, where all
models attain higher performances (i.e., a score of ≈90%)
starting from Rank #3. This result highlights the proposed
method effectiveness and its ability to represent unique radio
biometric signatures which are suitable for the person re-
identification task, as demonstrated in the next section.

E. Wi-Fi Person Re-Identification Evaluation

Real-world person Re-ID scenarios, such as surveillance
systems, require models to also re-identify persons with dif-
ferent and unknown identities from those seen at training
time. Therefore, to correctly evaluate the presented pipeline
in such scenarios, we performed a comprehensive assessment
for both model configurations and successive packets number
on the distinct dataset D2, by using the D1-trained models
with signature size s = 256, introduced in Section IV-D.
Specifically, regarding the evaluation on D2, for each of its
15 unique persons, 1 wireless transmission per room was
randomly selected as the gallery, for a total of 45 transmis-
sions; while the remaining 4 samples were used as probes to
assess the re-identification capabilities of the system, counting
180 test transmissions. Moreover, since dataset D2 represents
only a small fraction of real world data, tests were performed
10 times using different random selections, and the average
performance was reported to ensure statistically stable results.

Concerning experiments on model configurations, the ob-
tained results on dataset D2 for 300 consecutive packets are
reported in Table IV. As shown, the same behavior observed
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Fig. 9: CMC curve up to Rank #10 computed on dataset D2

for different packets number.

and discussed in Sec. IV-D also applies to the different
unique identities of collection D2. Indeed, by increasing the
number of rooms, there is a slight performance decrease for
all models, and architectures exploiting phase information
have reduced variance for both Rank #1 and mAP metrics
most likely due to, as mentioned, the temporal information
for the interested feature. Nevertheless, when analyzing the
most complex scenario with 3 rooms, the full siamese model
achieves significant perfomances; suggesting that even though
the architectures have never observed the various identities,
they can still extract relevant radio biometric signatures for
their re-identification.

In relation to tests on the number of successive packets,
results are reported in Table V, while the corresponding CMC
curve up to Rank #10 is depicted in Fig. 9. As shown, the
best performing model exploits the whole sequence of 300
packets. However, differently from the performances observed
in Table III, where models using at least 100 packets had
similar scores, for unknown identities there is a greater gap
with respect to the maximum amount of recorded transmission
packets. The motivation for this outcome is twofold. First and
foremost, dataset D2 has 3 times the number of test samples
with respect to D1, which was purposely built in this way
to obtain consistent results over a more complex collection.
Second, for real-world scenarios, i.e., where re-identification
is performed on unknown people, the proposed model does not
execute a training phase and, consequently, does not exploit
the joint loss function shown in Eq. (16), which also leverages
the specific identities to build more robust signatures. Never-
theless, while interesting performances are already achieved
with only 10 successive packets, by increasing this number
it is possible to obtain more discriminative radio biometrics
and, therefore, improved radio biometric signatures able to
mitigate the identity loss absence. Thus, these results confirm
the findings presented by [34], [35] on signal variations in cor-
respondence with different biological tissues, and highlight the
Wi-Fi effectiveness in addressing the person re-identification
task without classical vision-based drawbacks; consequently
opening up a new frontier for surveillance applications where it
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can be crucial to re-identify unknown persons across different
locations.

V. CONCLUSION

In this paper we introduced a novel person re-identification
approach based on radio biometric signatures extracted from
Wi-Fi signals. As shown by the results achieved in restricted
environments, the proposed siamese architecture with parallel
sub-networks, analyzing amplitude heatmaps and phase vec-
tors, can extract meaningful representations, i.e., signatures,
that enable the Re-ID of both known and unknown persons
thanks to the information carried by the transmitted signals,
validating the presented idea and potential application in real-
world surveillance scenarios that are typically constrained.

As future work, an extended dataset version with more than
150 distinct identities will be collected and released to offer a
benchmark for this unorthodox re-identification approach. In
particular, this re-identification dataset will comprise multiple
modalities in the form of synchronized tuples. The latter
will contain Wi-Fi transmissions, RGB, and depth videos, to
enable, on the one hand, a direct comparison between video
and wireless modalities on the Re-ID task, and on the other
hand, the implementation of multimodal methods that might
benefit from the added cross-modality information when re-
identifying a person across different locations. Furthermore,
the presented pipeline will be used as a baseline approach
for the Re-ID from Wi-Fi signals. At the same time, specific
video-based and multimodal architectures will be implemented
to present a comprehensive benchmark comparing the differ-
ences between the various modalities with a focus on their
strengths and weaknesses. Moreover, further inquiries will be
performed on other signal properties in the time domain (e.g.,
impulse response or time of arrival) that might be used either in
a standalone solution or jointly with those implemented in this
work. In addition, different solutions will also be designed to
better exploit other characteristics, such as the angle of arrival,
to further reduce possible ambient noise and ultimately handle
more complex non-stationary environments.
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