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Abstract

In many surveillance applications it is desirable to de-
termine if a given individual has been previously observed
over a network of cameras. This is the person reidentifica-
tion problem. This paper focuses on reidentification algo-
rithms that use the overall appearance of an individual as
opposed to passive biometrics such as face and gait. Person
reidentification approaches have two aspects: (i) establish
correspondence between parts, and (ii) generate signatures
that are invariant to variations in illumination, pose, and
the dynamic appearance of clothing. A novel spatiotempo-
ral segmentation algorithm is employed to generate salient
edgels that are robust to changes in appearance of cloth-
ing. The invariant signatures are generated by combining
normalized color and salient edgel histograms. Two ap-
proaches are proposed to generate correspondences: (i)
a model based approach that fits an articulated model to
each individual to establish a correspondence map, and (ii)
an interest point operator approach that nominates a large
number of potential correspondences which are evaluated
using a region growing scheme. Finally, the approaches are
evaluated on a 44 person database across 3 disparate views.

1. Introduction

Many applications require the ability to reidentify an in-
dividual across multiple disjoint fields of view. In this pa-
per, we consider reidentification algorithms that rely on the
overall appearance of the individual as opposed to ones that
use passive biometrics such as face [16] and gait [22]. An
appearance-based algorithm must deal with several chal-
lenges such as: different camera angles and illumination
conditions, variation in pose and the rapidly changing ap-
pearance of loose or wrinkled clothing. We assume, how-
ever, that individuals do not change their clothing between
sightings. This is a reasonable assumption for many ap-

plications such as airport and subway surveillance. In many
person reidentification applications, temporal reasoning and
spatial layout of the different cameras can be used for prun-
ing the set of candidate matches. To test the limits of
our appearance-based reidentification algorithms we do not
consider such information in this paper.

Several approaches have been proposed where invariant
signatures based on the global appearance of an individual
are compared. In [7] a color histogram of the region be-
low the face (found by a face detector) serves as the signa-
ture for comparison. See [15] for a related approach using
clothing color descriptors. Recently, the brightness transfer
functions between different cameras have been used to track
individuals over multiple non-overlapping cameras [14, 8].
It has been shown that the brightness transfer functions lie
in a low-dimensional subspace, and can be learnt using a set
of corresponding calibration objects [8]. Reidentification is
then achieved by comparing the adjusted color histograms.

In contrast to the global appearance based methods pre-
viously discussed, recent advances in object recognition
have demonstrated that comparing multiple local signa-
tures can be effective in exploiting spatial relationships and
achieving some robustness with respect to variations in ap-
pearance [2, 9]. The key to this methodology is the abil-
ity to establish correspondences between objects. Two ap-
proaches that are successful in this regard are interest point
operators [9, 18] and model fitting [24].

There are two aspects to the person reidentification prob-
lem. First, we need to establish correspondences, i.e., de-
termine which parts of one image should be compared to
which parts in the second image. Second, we need to gen-
erate invariant signatures for comparing the corresponding
parts. We hypothesize that the ability to compute the corre-
spondences and generate invariant local signatures will also
result in improved person reidentification. In addition, the
performance will be enhanced if variation due to articula-
tion can be directly addressed.
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1.1. Overview of Approach

In this paper we develop two person reidentification ap-
proaches which use interest operators and model fitting, re-
spectively, for establishing spatial correspondences between
individuals. We also develop a novel spatiotemporal seg-
mentation that utilizes spatial and temporal cues to generate
invariant signatures for clothing.

The responses of many interest point operators will not
persist over extended periods of time due to the dynamic
nature of the appearance of a person [11]. To address this
issue, our strategy is to choose an operator that generates
a large number of responses in regions with high informa-
tion content, thus increasing the probability of establishing
true correspondences between images of the same individ-
ual. In this paper, the Hessian affine invariant operator [11]
is used for this purpose. Signature matching is used to es-
tablish correspondences between two sets of interest points.
A match score is computed based on the cardinality of the
final set of correspondences.

In contrast to the interest point operator approach which
generates a large number of potential correspondences,
model-based algorithms establish a mapping from one in-
dividual to another. In this paper we use a decomposable
triangulated graph [1, 5] to model the articulated shape of a
person. A dynamic-programming algorithm is used to fit the
model to the image of the person [1, 5]. Model fitting local-
izes different body parts such as arms, torso, legs and head,
thus facilitating the comparison of appearance and structure
between corresponding body parts.

We now describe how the invariant signatures for com-
paring different regions are generated by combining color
and structural information. The color information is cap-
tured by histograms based on hue and saturation. Some in-
variance to differences in ambient illumination is achieved
via normalization. Unlike most rigid objects, the structural
appearance of loose fitting or wrinkled clothing on peram-
bulating individuals is highly dynamic. Hence, the appli-
cation of a traditional edge operator [4] will produce many
spurious edges corresponding to wrinkles and folds in cloth-
ing. To address this issue, a novel spatiotemporal segmen-
tation algorithm that generates salient edgel information is
applied to the imagery. The watershed algorithm is used to
generate an over-segmentation of each frame. A spatiotem-
poral graph is then generated by treating each region as a
node and placing edges between spatially and temporally
adjacent regions. A graph partitioning algorithm that mod-
els each cluster as a minimum spanning tree is then used to
generate salient edgels corresponding to the boundaries of
each type of clothing. Finally, the region signatures are then
augmented with local histograms of these salient edgels.

The paper is organized as follows. In Section 2 the local
signature generation is described. In Section 3 the spatio-
temporal segmentation algorithm is presented. Sections 4

and 5 describe the interest operator and model fitting ap-
proaches to correspondence generation. In Section 6 the
algorithms are evaluated against a database of 44 individu-
als observed over 3 disparate views. Section 7 discusses the
two approaches and concludes the paper.

2. Signature Generation

This section describes how the signature or feature vec-
tor hi is generated for given a local support region i. The
first component of this feature vector is a histogram of the
hue and saturation of the region. To overcome the sensitiv-
ity of HSV histograms to changes in illumination and shad-
ows in outdoor scenes, we use the definition of hue which
is invariant to brightness and Gamma [20]. This definition
of hue for a given RGB color space is as follows:

H = arccos
log(R) − log(G)

log(R) + log(G) − 2 log(B)
, (1)

as compared to the traditional definition which is

H = arctan
0.5[(R − G) + (R − B)]√

(R − G)(R − G) + (R − B)(G − B)
.

(2)
The second part of hi represents the structural qualities

of the region. As in [9, 10] a histogram of edgels that are
contained in the region i are used for this purpose. The
direct application of traditional edge detection algorithms
such as Canny [4] to images of clothing produces many
spurious responses. Hence, salient edgels generated by a
novel spatiotemporal segmentation algorithm is used in this
application (see Section 3). The spatiotemporal segmenta-
tion rejects edge information that are temporally unstable .
Only edgels that are interior to the foreground are consid-
ered. Each edgel encodes the dominant local boundary ori-
entation (vertical or horizontal) as well as the ratios between
the RGB color components of the two regions on either side
of the edgel. The ratios of the RGB color components are
each quantized to 4 possible values. This results in a 7 bit
edgel representation.

In the matching process the distance between two signa-
tures hi and hj (of n bins) is defined using the intersection
histogram [20]

D(hi, hj) = 1 − 2
∑n

k=1 min(hi(k), hj(k))∑n
k=1(hi(k) + hj(k))

(3)

3. Spatiotemporal Segmentation

In this section we propose an algorithm that produces
stable structural information in the form of edgels which
are used for defining region signatures. Even though many
articles of clothing are derived from materials with uniform
reflectance properties, a given type of material may appear
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quite different across an image and over time. This is be-
cause the surface normals of loosely-fitting clothing under
articulated motion are highly dynamic. The proposed spa-
tiotemporal segmentation method groups pixels that belong
to the same type of fabric. Salient edgels are those pixels
that are on the boundaries between two such groupings.

Observe that intra-fabric boundaries are not stable over
time due to folds and wrinkles. We exploit this idea in the
spatiotemporal segmentation. For a given time window an
over-segmentation is performed on each image. This results
in a set of contiguous regions R = {rt

i}, where rt
i is the ith

region of image t. A graph G = {V,E} is defined for a

set of vertices V = {vt
i} and edges E = {et,t′

i,i′} where vt
i

corresponds to region rt
i and et,t′

i,i′ is an edge connecting ver-

tices vt
i and vt′

i′ . Region grouping is performed by partition-
ing G into a set of clusters. A number of authors [12, 13]
have used region grouping over time for the purpose of fore-
ground - background separation. However, our objective
differs from these applications in that the goal is to achieve
a stable segmentation of the foreground. In [25] segmen-
tation that is consistent across neighboring frames is devel-
oped and is used for video editing.

The over-segmentation used to define V is performed in
two stages. First, a Sobel operator is applied to the fore-
ground of each grey level image and this is followed by
Gaussian filtering. Second, a watershed segmentation algo-
rithm [21] is applied. This results in regions of uniform in-
tensity value for the foreground of the image. This method
is appropriate for articles of clothing that are not overly tex-
tured.

Given V, the edge structure can then be defined. Two
types of edges are constructed: spatial and temporal. If two
regions rt

i and rt
i′ share a common boundary, then a spatial

edge et,t
i,i′ is formed. For each region rt

i , the region rt+1

î
is

determined such that rt+1

î
has the highest likelihood of cor-

responding to the same material as rt
i . This establishes the

temporal edge et,t+1

i,̂i
. The selection of rt+1

î
, is determined

based on estimates of the motion field. A frequency image
FN,t(x, y) is defined as

FN,t(x, y) =
N∑

k=0

H(It(x, y) − It+k(x, y)) (4)

where It(x, y) is the intensity value of pixel (x, y) at time t
and

H(z) = 1 if |z| < δ
H(z) = 0 otherwise

(5)

for a threshold δ. For a given region with uniform intensity
and uniform motion, the values of FN,t(i, j) will be higher
on the side of the region that corresponds to the direction of
forward motion. For each overlapping region rt+1

i′ , we com-
pute the integral of FN,t(i, j) over the intersection of rt

i and

rt+1
i′ . The overlapping region with the highest frequency in-

tegral is selected for a temporal edge. See Figure 1 for an
example of the frequency image.

If two adjacent regions correspond to the same piece of
fabric they will periodically have a similar appearance. This
is because intra-fabric boundaries are inherently unstable.
Based on this, the edge weight wt,t′

i,i′ is now defined as the
cost of grouping two regions together:

wt,t
i,i′ = |M(i, t) − M(i′, t)| (6)

wt,t+1
i,i′ =

1
3
|M(i, t) − M(i′, t + 1)| (7)

where M(i, t) is the median intensity value for region rt
i .

Note that a temporal edge allows for greater variation in
appearance. We argue that two regions should be grouped
if there is a low cost path connecting them through space,
time or a combination of both. Thus our graph partitioning
algorithm is based on a search for clusters that have low-
cost spatiotemporal minimal spanning trees.

3.1. Graph Partitioning

Once the spatiotemporal graph G has been generated
for ten consecutive frames, the graph partitioning algorithm
proposed in [6] is used for grouping spatiotemporally simi-
lar regions. The basic idea of this partitioning algorithm is
to merge connected clusters whenever the distance between
them is less than the internal variation of each of the indi-
vidual clusters. To efficiently implement this approach each
cluster C is represented by the minimum spanning tree EC

passing through all its vertices VC. The maximum edge
weight of the minimum spanning tree is used to define the
internal variation of the cluster C, i.e.,

I(C) = max(wt,t′
i,i′ )s.t. et,t′

i,i′ ∈ EC (8)

Given two clusters Cm and Cn, the inter-cluster distance
D(Cm,Cn) is defined as the lowest edge weight between
them, i.e.,

D(Cm,Cn) = min(wt,t′
i,i′ )

s.t. vt
i ∈ VCm , vt′

i′ ∈ VCn , et,t′
i,i′ ∈ E.

(9)

Two clusters are merged if the inter-cluster distance is
small when compared to the internal variation of the in-
dividual clusters. Specifically, clusters Cm and Cn are
merged if

D(Cm,Cn) ≤ MI(Cm,Cn) (10)

where

MI(Cm,Cn) = min(I(Cm)+κ/|Cm|, I(Cn)+κ/|Cn|).
(11)
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Figure 1. Upper row: over segmentation for frames 0,3,6,9. Lower
row: A) original image, B) Frequency image for N=10, C) Final
segmentation after graph partitioning, D) median image for final
segmentation

The factor κ/|C| is based on the size of the cluster and en-
courages the formation of larger clusters. Otherwise, in the
beginning of the merging process, the internal variation of
very small clusters tends to be too small, causing the merg-
ing process to stop prematurely.

A greedy algorithm is proposed in [6] to obtain the graph
segmentation that satisfies the above conditions. All edges
in the spatiotemporal graph are sorted according to non-
decreasing edge weights, and are then processed in that
order. Let an edge et,t′

i,i′ between two separate clusters

Cm and Cn be the one under consideration. If wt,t′
i,i′ ≤

MI(Cm,Cn), then Cm and Cn are merged and the edge

et,t′
i,i′ added to the minimum spanning tree of the combined

cluster. This step is repeated until all edges have been pro-
cessed. It has been shown in [6] that the segmentation pro-
duced by the above algorithm is optimal in that the maxi-
mum edge weight for the minimum spanning tree for each
cluster is smaller than the weights of all edges to each of
their neighboring clusters. See Figure 1 for an example of
the application of this algorithm.

3.2. Foreground-Background Separation

While foreground background segmentation is not the
focus of this paper, estimates of the foreground patches are
required. For this application we have found that a reason-
able approach is to first compute the maximum frequency
image which is defined as :

MFN,t(i, j) = max(FN,t(i, j), F−N,t(i, j)) (12)

This results is low values near motion boundaries, after
thresholding and morphological filtering (to fill in the cen-

ters), reasonable foreground/background segmentations are
achieved.

4. Interest-Point Matching

This section describes how interest operators are used to
establish correspondences between individuals. Given an
image of a person, the Hessian Affine invariant interest op-
erator [11] is used to nominate points of interest. The oper-
ator is limited to foreground patches extracted using mech-
anisms described in section 3.2. The Hessian operator is
not stable over time. However, when compared to other
methods [11], it provides a large number of interest points
and it is more informative with respect to color variation.
This increases the probability of generating true correspon-
dences between images of the same individual. For each
interest point i, a feature vector hi is generated (see section
2) based on a circular support region C(i,r) of fixed radius
r centered at position i. In order to limit the influence of
foreground segmentation errors, interest points that contain
large amounts of background are not considered.

When two images I and J are compared, an initial set
of correspondences are nominated. The merit of a poten-
tial match (i → j) is evaluated using equation 3. Inverse
matching is used to ensure consistency of the correspon-
dences. For each interest point i in image I , the most likely
correspondence i′ in image J is determined. If the distance
between the signatures of i and i′ is below a threshold, then
the most likely interest point i′′ in image I corresponding to
point i′ is determined. If the Euclidean distance between i
and i′′ is smaller than a threshold, then the correspondence
(i → i′) is accepted.

A final validation stage is used to prune the initial corre-
spondences. The support regions for corresponding interest
points are expanded iteratively in the vertical direction. We
again construct the region signatures for each expanded re-
gion and compare them using equation 3. The process con-
tinues for a fixed number of iterations or there is too much
overlap with the background. If the distance between the
two signatures remains below a fixed threshold, the corre-
spondence is accepted into the final set of correspondences.

The score given to the match between images I and J is
based on the cardinality of the final set of correspondences.
Two examples of this matching process are shown in Figure
2. The efficacy of this matching algorithm is evaluated in
section 6.

5. Dynamic-Programming Model Fitting

In contrast to the interest operator algorithm, we now
consider a model-based approach that generates a corre-
spondence between different body parts such as the head,
arms, legs and torso. In other words, we we need to match
the torso of an individual in one scene with the torso in the
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Figure 2. Two examples of the interest operator matching algo-
rithm. On the left are two images that are to be compared. On the
right are the identified correspondences and associated signature
regions.

Figure 3. Left: An example of a decomposable triangulated graph
used as a person model. The solid (blue) edges correspond to
the boundary of the person while the light (red) edges are inte-
rior edges. Note that in this work we consider models without
arms, mostly because most individuals in the database, have their
arms next to their torso. Right: Partitioning of the person used for
generating signatures for comparison.

second scene and so on. This presents a significant chal-
lenge as the relative location of arms, legs and torso of an
individual varies from one scene to another. To address this
problem we propose to use a model-based top-down seg-
mentation of an individual in a scene where the different
parts are accurately localized. This segmentation is used
to establish the correspondence between the different body
parts of an individual in two scenes, which facilitates a com-
parison of the appearance of these body parts.

We use a decomposable triangulated graph as a novel
method for model fitting to people. See Figure 3 for an ex-

ample. Several researchers have used decomposable trian-
gulated graphs to represent deformable shapes [1, 19, 5, 23].
These graphs are a collection of cliques of size three and
have a perfect elimination order for their vertices, i.e., there
exists an elimination order for all vertices such that (i) each
eliminated vertex belongs only to one triangle, and (ii) a de-
composable triangulated graph results from eliminating the
vertex. As these graphs support a perfect elimination or-
der, the model optimization can be efficiently done using a
dynamic programming algorithm [1].

We now describe how the decomposable triangulated
graph is used for modeling and segmenting people in a
scene using an energy minimization approach. The starting
point for the model-fitting algorithm is the bounding box of
the person of interest. Let the model be a decomposable tri-
angulated graph T with n triangles, Ti, i = 1, . . . , n. We
are seeking a function g that maps the model to the image
domain such that the consistency of the model with salient
image features is maximized, and deformations of the un-
derlying model is minimized. This function g is restricted
to being a piecewise affine map [5], where the deformation
of each triangle gi(Ti) in the model is an affine transforma-
tion. The energy functional E(g, I) that we are trying to
minimize can then be written as a sum of costs with one set
of costs for each triangle in the model. Specifically,

E(g, I) =
∑

i Ei(gi, I)
=

∑
i Edata

i (gi, I) + Eshape
i (gi)

(13)

where I denotes the underlying image features.
We now discuss how the shape and data costs for each

triangle in the model are formulated. The shape cost for
each triangle is defined in terms of the polar decomposition
of its affine transformation [17]. For an affine matrix A the
polar decomposition is defined as

A =
[
cos ψ − sin ψ
sin ψ cos ψ

] [
sx sh

sh sy

]

= R(ψ)S.

S is the scale-shear matrix and R(ψ) is the closest possi-
ble rotation matrix to A1. The polar decomposition can be
derived from the commonly used singular value decompo-
sition of the affine transformation. The shape term is then
defined as

Eshape = log(
λ1

λ2
)2 + log(1 + sh)2 (14)

where λ1 and λ2 are eigenvalues of the scale-shear ma-
trix. The first term is the log-anisotropy term and penalizes
changes in height-width ratio [3, 5], while the second term
penalizes shear.

1The closeness is measured using Frobenuis matrix norm, i.e., R(ψ) =
argminQ ‖ Q − A ‖F , whereQT Q = Iand ‖ Q − A ‖F =∑

i,j(qij − mij)
2.
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Figure 4. This figure illustrates two examples of fitting the decom-
posable triangulated model to individuals. The cropped image im-
age, edge feature image, foreground mask, and fitting results are
shown from left to right. The green dots show the candidate lo-
cations for the model points. Observe that the model fits well to
the individuals despite the presence of bags, shadows, additional
interior edges due to different clothing etc.

The data cost in the energy functional attracts the model
to salient image features. Note that the decomposable trian-
gulated graph has both boundary edges and interior edges,
and that the data costs are defined only for boundary edges.
The data cost for all interior edges is zero. Two complemen-
tary sets of image features are used to define the data cost:
salient edges in the image which are detected using Canny’s
algorithm [4] and a foreground mask that is obtained us-
ing the spatiotemporal segmentation discussed in Section 3.
Note that the model fitting approach is less sensitive to the
presence of spurious edges than to missing ones, hence we
use a combination of Canny edges and spatiotemporal fore-
ground mask to compute the data cost.

After the edges are extracted using Canny’s algorithm, a
Euclidean distance transform is applied to get the edge fea-
ture image D. The edge cost measures how far a boundary
triangle edge is from Canny edges. The average edge fea-
ture value along the sampled triangle edge L = (xi, yi), i =
1, . . . , n is used as the edge cost, i.e.,

Eedge =
1
n

n∑
i=1

D(xi, yi). (15)

The foreground cost measures consistency of the model

with the foreground mask and is defined by the relative
number of foreground pixels in a window on either side of
the boundary triangle edge.

Efg = 1 − ∣∣Nfg
1

N1
− Nfg

2

N2

∣∣ (16)

where Nfg
1 and N1 are the number of foreground pixels and

total number of pixels on one side of the window. Nfg
2 and

N2 are similarly defined for the other side. Note that this
term is small when the boundary edge is along the fore-
ground mask.

The dynamic-programming algorithm for computing the
optimal deformation of the model is now described. We
want to find g that maps the vertices of the model to im-
age locations such that the energy functional in Equation 13
is minimized. The dynamic programming does an exhaus-
tive search of the candidate locations to find the global opti-
mum. We restrict the candidate locations for the vertices of
the model to be the boundary of the foreground mask and
Canny edges. Since the triangulated model used here has
a perfect elimination order and the cost defined in Equa-
tion 13 is extensible, a serial dynamic-programming algo-
rithm [1, 5] can be used for optimization. At each iteration
of the algorithm, the perfect elimination order is used to
eliminate one vertex from the model, and its optimal loca-
tion is encoded in terms of its two adjacent vertices. This
process is repeated until all vertices are eliminated. The
final location of all vertices in the model is computed by
standard backtracking. Figure 4 shows the results for two
representative cases.

Once the model fitting is done, the appearance and shape
signature for an individual is computed as follows. The in-
dividual is partitioned into salient body parts using the fitted
model as is illustrated in Figure 3. As an example, consider
how the signature is generated for the upper torso. Using
all the triangles that correspond to the upper torso (colored
red in Figure 3) the appearance and shape signature is ex-
tracted. Similarly, the signatures for all salient body parts
are computed and is compared using the Equation 3.

6. Experimental Results

For purposes of evaluation, 44 different individuals were
recorded using three different cameras with disjoint views.
See Figure 6. The subjects were recorded entering a cor-
porate campus and were in no way coached or rehearsed.
Two to four key frames were selected for each person from
each camera. Each image in the database is indexed as Ipfc

where p encodes the person id, f encodes the key frame
number and c encodes the camera view. All the reidentifi-
cation algorithms are evaluated in the following manner:

• Each image Ipfc is compared against the set of images
(Ipfc′) such that c �= c′.
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Figure 5. Left: The layout of cameras used for collecting the data
for the experiments. Camera 2 is placed roughly at twice the height
of Cameras 1 and 3. Right: The representative samples of key
frames for three individuals from all three camera views. The per-
son bounding boxes are placed on a black background to illustrate
the differences in resolution in the different views.

• For each person/camera combination, the maximum
ranking true match for all it’s key frames is determined.

• The number of times that a maximum ranking true
match is higher than a given value is then tabulated.

This evaluation scheme is analogous to a standard surveil-
lance scenario where an operator would query a person rei-
dentification system with multiple images of the same indi-
vidual captured over a short period of time from a particular
camera. Any hits from these queries would result in a suc-
cess.

Three reidentification algorithms are evaluated in this
manner. The first two algorithms use the interest operator
(see Section 4) and model fitting (see Section 5) approaches
for generating correspondences. A third algorithm, referred
to as the bounding box method, computes a single signature
using the foreground pixels in the bounding box of each in-
dividual and calculates the distance between the resulting
monolithic feature vectors to perform the matching. This
serves as a baseline implementation for comparison.

Figure 6 reports the performance of the three algorithms.
The model fitting approach results in the best performance
with approximately 60 percent of the queries achieving a
top ranking true match and over 90 percent of the queries
generating a true match in the top ten. The interest operator
method achieves a top ranking true match 25 percent of the
time and a true match is found in the top ten 65 percent of
the time. It should be noted that the performance of this
approach may improve with higher image resolotution. The
performance of the bounding box approach is comparable
to that of the interest point approach. Figure 6 shows the
top ranking images for a number of queries using the model

Table 1. Top ten matches using the model-based algorithm. The
query image is shown in the left column, and the remaining
columns are the top matches ordered from left to right. A box
is used to highlight when a match corresponds to query. Third row
shows an example where the correct match is not present in the top
ten matches.
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Figure 6. This figure compares the overall performance of the in-
terest operator, model fitting, and bounding box approaches. The
percent correct detection rate is plotted vs. the number of matches
considered. Note that the model fitting approach is the best per-
former, and the performance of bounding box approach and inter-
est point approach is comparable.

fitting algorithm. See Section 7 for further discussion of
these different approaches.

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) 
0-7695-2597-0/06 $20.00 © 2006 IEEE 



7. Conclusion

This paper has demonstrated that by both establish-
ing accurate correspondences and generating invariant sig-
natures, greatly improved person reidentification can be
achieved. This confirms the hypothesis put forth in the
introduction. This paper has presented a novel applica-
tion of triangulated model fitting to people that directly ad-
dresses issues associated with articulation. Even though hu-
man subjects are highly deformable, an interest operator ap-
proach to correspondence generation was demonstrated. In
addition a new spatiotemporal segmentation algorithm has
been developed that provides structural information that is
invariant to the dynamic appearance of clothing.

This work can be extended in the following directions.
First, observe that the model fitting approach generates
an ordered set of signatures, enabling efficient indexing
schemes for database queries. This would be valuable
for forensic applications involving large numbers of cam-
eras capturing imagery over extended periods of time. Fi-
nally, our experiments indicate that the interest operator and
model fitting approaches can be combined to form a hierar-
chical person reidentification approach. In the first stage,
an interest point operator algorithm is used as a fast way for
reducing the number of candidate matches. In the second
stage, a model-fitting approach will be applied for cases that
confound the interest operator method. We plan to evaluate
this hierarchical approach using a much larger database.
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