
1 
 

Electronics Letters 
 vol. 45, no. 20, September 2009 

Personal Identification using Finger Knuckle Orientation Features 
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This paper proposes a novel approach for personal identification using finger 

images which exploits the orientation features from the random knuckle lines 

using finite Radon transform. The feasibility of this approach is rigorously 

evaluated on a publically available finger knuckle database from 158 subjects 

and achieves highly promising results. 

 
Introduction: The hand-based biometrics exploits several internal and 

external features that are quite distinct in an individual. The finger-back 

surface, also known as the dorsum of hand, can be highly useful in user 

identification but has attracted very little attention (please refer to review in [1]-

[2]) from the researchers. In particular, the image pattern formation from the 

finger-knuckle bending are highly unique and makes this surface a distinctive 

biometric identifier. The user acceptance for the outer finger surface imaging 

can be very high as, unlike popular fingerprints, there is no stigma of criminal 

investigation associated with finger knuckle surface imaging. The peg-free 

imaging of the finger knuckle surface is highly convenient to users and offers 

very high potential for reliable personal identification.  

 The appearance based approach recently investigated in [2] for the 

finger knuckle identification cannot exploit line-based features and therefore 

achieves moderate performance. The finger knuckle surface is highly rich in 

lines and creases which are rather curved but highly unique in individuals. 

Therefore the exploitation of localized information, rather than the global 

appearance based information employed in [2], can generate more reliable 

performance and is proposed in this work. In the proposed method, fixed size 
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knuckle sub-images are automatically segmented and then pre-processed. 

The pre-processing step accentuates texture features and also helps to cope 

with the illumination variations. The local orientation of random knuckle lines 

and creases are exploited to generate a unique KnuckleCode using finite 

Radon transform. The similarity between two KnuckleCodes is ascertained 

from their normalized Hamming distance. We also investigate the 

KnuckleCodes generated using even Gabor filters. Since there is no publically 

available finger knuckle database, the middle finger knuckle database 

developed and employed in this work is made publically available [6] for 

further research. The experimental results are presented on a peg-free 

database of 790 finger images from the 158 subjects and achieve highly 

promising results. A comparison of the proposed approach with the 

eigenknuckle approach [2] is also presented. 

. 

Methodology: The finger surface represents highly curved surface and 

results in non-uniform reflections. Therefore, the extracted finger knuckle 

images often have non-uniform brightness and low contrast. The 

enhancement of knuckle images is achieved by firstly dividing the image into 

10  10 pixels sub-blocks. The mean gray-level in each of these blocks is 

computed which represents estimated reflection of the block. The estimated 

coarse reflection is expanded into original size knuckle image using bi-cubic 

interpolation. This estimated reflection (figure 1c) is subtracted from the 

original image which results in the uniform illumination of the image. The 

resulting image is histogram equalized to improve the contrast and smoothen 

the boundaries between adjacent blocks. 



3 
 

The finite Radon transform (FRT) can be effectively employed to detect 

random lines and creases by integrating gray-level pixels in a small 

neighbourhood. The FRT exhibits wrap around effect due to the inherent 

‘modulo operation’ [4], which can be eliminated for the effective detection of 

knuckle lines and creases. The modified FRT or MFRAT for a discrete image 

g[m,n] on a finite grid  is defined as: 

             Μ  ∑ ,,                                               (1) 

where 0, 1, … , 1 , q is a positive integer, and  is centred at 

, . The  represents set of points on  such that 

                      , : ,                                    (2) 

where p denotes the slope of , i.e. slope of line passing through the centre 

,  of . The MFRAT, unlike FRAT, is not an invertible transform but 

useful to represent line and crease like features. The line width of  can be 

empirically selected corresponding to the width of the observed knuckle lines 

in the acquired finger images. In this work, this line width is therefore 

empirically selected as two pixels. 

The key objective of employing MFRAT in this work is to efficiently and 

effectively ascertain the orientation p of knuckle lines/creases in a finite/local 

neighbourhood region. Therefore we compute the direction of every pixel 

centred at ,  on  from the summation of pixels along the line of given 

slope p. The index of the dominant direction at every pixel forms the feature 

and is computed as follows: 

  , arg Χ , 1, 2, … ,                                     (3) 
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where the ,  represents the line direction or the dominant index of 

pixel , . This operation is repeated as the centre of lattice  moves 

over all the pixels in the image. The dominant direction   at every pixel is 

binary coded using b binary bits and is referred to as KnuckleCode. The 

generation of matching distance between two KnuckleCodes  and , 

extracted from two M  N size knuckle images, is achieved as follows: 

                     , min   ,
∑ ∑ , ,

,  where  

                     ,   0                  
1                  

                                           (4) 

,  represents the translated template in u  v neighbourhood, and b = 1, 

2, ..Z which denotes bits for the Z bit binary code. The equation (4) effectively 

compares two Z bit KnuckleCodes and generates the best (minimum) 

matching score from all the translated versions templates.   

 

Experiments: The performance from the proposed approach is evaluated on 

a publically available [6] finger knuckle image database from 158 subjects. 

This database was acquired over a period of 11 months and each 

subject/volunteer contributed five image samples which resulted in total of 790 

images. These images were acquired using a digital camera in an indoor 

environment using unconstrained (peg-free) setup as detailed in [2]. The 

middle finger images from each of the subjects are employed to automatically 

extract 80 x 100 pixel knuckle region using the segmentation method detailed 

in [2]. Figure 1(a) shows a sample of acquired middle finger image and 

correspondingly segmented knuckle image in figure 1(b). The segmented 
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images have low contrast and may suffer from non-uniform illumination. 

Therefore enhancement of knuckle images is required and the sample of 

enhanced knuckle image is shown in figure 1(d). It can be easily seen from 

the enhanced image sample that the knuckle features are much more 

prominent in the enhanced image as compared to the original image. 

 Each of the enhanced knuckle images is subjected to the feature 

extraction, using MFRAT, as detailed in previous section. The total number of 

candidate directions (W) for every pixel is empirically fixed to 12. The 

performance evaluation is achieved by 5-fold cross validation and the average 

of experimental results is presented. This represents a more realistic 

experiments, similar to as in [7], as the knuckle images have large variations 

within the same class resulting from shadows, illumination and pose changes. 

The receiver operating characteristics (ROC) using 790 (158  5) genuine and 

imposter 124030 (158  157  5) matching scores is shown in figure 2(a). The 

comparison of experimental results from our approach, with the appearance 

based approach, i.e., eigenknuckles employed in [2], on the database 

employed in this work is also shown in figure 2. Table 1 summarizes the 

average equal error rate from the experiments. We also performed 

experiments for the recognition and the corresponding comparative 

cumulative match characteristics (CMC) are shown in figure 2(b). Another 

possible approach for extracting orientation features is to employ real part of 

Gabor functions and ascertain the orientation at every pixel using the 

maximum filtered response. Such an approach has been investigated on the 

palmprint data in [5] and achieves promising results. Therefore the generation 

of KnuckleCode using such Gabor filters is also investigated and the 
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comparative results are shown in figure 2 (a)-(b). The twelve real Gabor filters, 

with 17  17 mask size, centred at frequency of 1/ 2√2  were employed to 

achieve the best performance. The experimental results in figure 1 and figure 

2 suggests that the performance from the KnuckleCodes generated using 

MFRAT, i.e., KnuckleCodes (Radon), is far superior as compared to those 

from real Gabor filter based encoding.  

It may also be noted that the generation of KnuckleCodes using Gabor 

filters is highly computationally demanding as it requires convolution operation 

at every pixel and orientation as compared to simple sum in MFRAT. 

Therefore, the KnuckleCodes generated from MFRAT are also favourably 

suitable for online user identification. It should be noted that reference [2] 

simultaneously employs hand geometry features while reference [3] [5] 

employed palmside finger/palm features. Therefore any direct comparison of 

our results, that employed only middle finger knuckle images, with [2]-[3] [5] is 

difficult. The accuracy of segmenting knuckle images from the presented 

fingers highly influences the matching scores between the corresponding 

KnuckleCodes. In order to handle the rotational and translational variations in 

the segmented knuckle images, we employed minimum of matching score (6) 

generated from the translation of respective templates in the region that 

extended to one third of length and width of the templates. The database 

employed in this work is now made freely available [6] for further research 

efforts. 

 

Conclusion: In summary, the proposed approach for the finger knuckle 

identification using orientation features from the finite Radon transform 
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achieves highly promising results, i.e., average rank-one recognition rate of 

98.6% and equal error rate of 1.14% on the database of 158 persons. These 

results can be attributed to (i) effective characterization of orientation features 

using KnuckleCodes, (ii) usage of robust image enhancement technique, and 

(iii) usage of reliable matching distances that can account for translation of 

finger knuckles. These experimental results suggest that the orientation based 

KnuckleCodes offer a promising and computationally simpler alternative for 

the automated personal identification.  
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Table 1: Comparative Performance for verification experiments 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1  (a) Middle finger image, (b) Segmented knuckle image, (c) mean bi-
cubic image, (d) enhanced knuckle image; gray level representation of 
KnuckleCodes generated using even Gabor filters in (e), and using finite 
Radon transfom in (f) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2  The ROC curve in (a) and the CMC curve in (b) from experiments 

 Equal Error Rate 
 
EER (%) 

KnuckleCodes 
(Radon) 

KnuckleCodes 
(Gabor) 

EigenKnuckles 

Mean 1.14 2.66 12.6% 

Std deviation 1.37 1.81 1.27 

(b) (a) 


