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Personalised drug repositioning 
for Clear Cell Renal Cell Carcinoma 
using gene expression
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Reversal of cancer gene expression is predictive of therapeutic potential and can be used to find new 
indications for existing drugs (drug repositioning). Gene expression reversal potential is currently 

calculated, in almost all studies, by pre-aggregating all tumour samples into a single group signature 

or a limited number of molecular subtype signatures. Here, we investigate whether drug repositioning 

based on individual tumour sample gene expression signatures outperforms the use of tumour group 

and subtype signatures. The tumour signatures were created using 534 tumour samples and 72 matched 
normal samples from 530 clear cell renal cell carcinoma (ccRCC) patients. More than 20,000 drug 
signatures were extracted from the CMAP and LINCS databases. We show that negative enrichment 

of individual tumour samples correlated (Spearman’s rho = 0.15) much better with the amount of 
differentially expressed genes in drug signatures than with the tumour group signature (Rho = 0.08) and 
the 4 tumour subtype signatures (Rho 0.036-0.11). Targeted drugs used against ccRCC, such as sirolimus 
and temsirolimus, which could not be identified with the pre-aggregated tumour signatures could be 
recovered using individual sample analysis. Thus, drug repositioning can be personalized by taking into 

account the gene expression profile of the individual’s tumour sample.

While targeted therapies such as tyrosine kinase inhibitors (sunitinib, sora�nib, pazopanib, axitinib, tivozanib) 
and mammalian target of rapamycin (mTOR) inhibitors (everolimus, sirolimus, temsirolimus) have greatly 
improved the prognosis of metastatic Clear Cell Renal Carcinoma (ccRCC) patients, the average duration of dis-
ease control ranges between 8–9 months in the �rst-line setting and 5–6 months in the second-line setting1. �is 
is caused by intrinsic and/or acquired drug resistance2. Both are likely enhanced by the existence of inter- and 
intra-tumour molecular heterogeneity: a recent study demonstrated that di�erent biopsies from the same ccRCC 
tumour grown in patient-derived xenogra� (PDX) mouse models can show di�erent drug sensitivity patterns, 
and each was associated with markedly di�erent gene expression pro�les3.

To prevent and overcome drug resistance, model systems and clinical experience have shown that combining 
drugs which target di�erent pathways are superior to single-agent approaches4. However, combining oncological 
drugs also tends to prohibitively increase the toxicity, as evidenced by the use of sunitinib and everolimus simulta-
neously5. �erefore, to design better tolerated and e�ective combination regimens it might be productive to widen 
the search to include non-oncological drugs, as they o�en have a better safety pro�le. �is is not as far-fetched as 
it may initially seem: aspirin, metformin, itraconazole and many other regular drugs are currently being tested in 
clinical trials for e�cacy in adult malignancies, usually in combination with regular treatments6.

�e application of already registered drugs and compounds for new indications is called drug repositioning 
and it has obvious appeal: knowing the safety, toxicity, pharmacokinetic, pharmacodynamic and metabolic prop-
erties of a compound signi�cantly reduces the risk and time required to register an indication as compared to a 
new chemical entity7. �is process has been accelerated by the surge of freely available “omics” data which has 
inspired many researchers to develop computational drug repositioning methods8. One popular method, gene 
expression signature reversal, is based on the observation that when the di�erence in gene expression of cells a�er 
perturbation by a compound (the drug signature) is negatively correlated to the di�erence in gene expression 
between diseased and normal cells (the disease signature), the drug o�en turns out to be therapeutically indicated 
for that disease9.
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Because of the considerable heterogeneity between and even within ccRCC tumours, it therefore makes sense 
to reposition drugs based on individual gene expression pro�les, as each tumour sample may have a di�erent 
set of perturbed pathways10. If all samples are analyzed collectively, pathways could either be masked or be less 
prominently expressed in proportion to the incidence of the perturbation. One way to solve this problem is to 
divide the tumour gene expression signature into subtypes with a statistical technique such as hierarchical clus-
tering, which groups samples with similar expression pro�les. If no real biological variability remains within the 
identi�ed subtypes (i.e. the same pathways are similarly perturbed in all samples belonging to that subtype), the 
probability of �nding a valid result increases due to increased power as bigger groups are compared. However, if 
subtypes do contain signi�cant biological variability it could interfere with the correct identi�cation of potentially 
therapeutic drugs. Analyzing individual tumour samples does not su�er from this potentially incorrect binning 
problem, and could therefore result in more potentially therapeutic drug hits and simultaneously provide infor-
mation on the proportion of tumour samples which are negatively correlated to each drug signature, at the cost of 
reduced power when samples are homogeneous. Although development of a method to target drugs based on the 
gene expression of single tumour samples may not be successful for all tumours due to the existence of inter and 
intra-tumour heterogeneity, however, such an approach would best approximate the situation of intra-tumour 
heterogeneity and could be extended to multiple tumour samples in the future.

�e goal of this research is to benchmark the results of the gene expression reversal analysis of the tumour 
subtype and the individual tumour sample signatures against the results of the average ccRCC tumour signature, 
as this could provide support for the development of an individualized drug repositioning approach based on 
gene expression.

Results
Clear Cell Renal Cell Carcinoma expression profiles. In total, 610 expression pro�les from 606 di�er-
ent tissue samples (of which 72 matched solid tissue normal) were included in the analysis (Table 1). �e ‘new 
primary solid tumour tissue sample’ (i.e. the metastasis of an earlier ccRCC tumour) was excluded from further 
analysis, as it could skew the results from the far more common 534 original primary solid tumour samples. �ese 
tissue samples were taken from 530 di�erent patients, 344 male and 186 female. Of 4 patients (3 in stage I & 1 in 
stage II), 2 tumour samples were taken and one of these was analysed twice. �e age of the patients ranged from a 
minimum of 26.6 years to a maximum of 90 years with a median age of 61 years.

A�er �ltering out low expressed genes, the genes remaining in the analysis were reduced from 23,247 to 
11,333 (−51%). Varying the CPM cuto� or minimum sample requirement around these values does not signif-
icantly a�ect the number of genes remaining in the analysis (Figs 1,2 Supplement). Furthermore, no substantial 
batch e�ects were observed as assessed by Principal Components Analysis (Fig. 3 Supplement), conform the 
original analysis of the data by TCGA11.

Tumour signatures. Fig. 1a illustrates that although the signature sizes of the tumour samples are smaller 
than those of the tumour group and subtypes, the signatures sizes of the tumour samples are many times bigger 
than those of the normal samples at any false discovery rate (FDR) < 100%. �is contrast is even clearer to see in 
Fig. 1b: up to an FDR of 50% the amount of di�erentially expressed genes compared to the control condition (i.e. 
each individual normal sample versus all the other samples), remains at minimum 20 times higher. Fig. 1c further 
emphasizes that there’s information in the individual signatures, as the amount of di�erentially expressed genes 
(DEG) increases monotonically with tumour stage. Lastly Fig. 1d shows that at the more liberal FDR cuto� of 
50%, sizeable fractions of genes frequently di�erentially expressed in the individual samples are in the opposite 
direction of the tumour group signature containing genes with a FDR < 1%.

Drug signatures. Of the 1,309 drugs tested in CMAP and the 19,812 drugs tested in LINCS, 21 (1.6%) and 
388 (2.0%) could not be processed further because the linear model could not be �tted due to the lack of control 
samples. �e genes measured by the CMAP and LINCS arrays shared 6,058 and 502 genes in common with the 
11,333 genes included in the tumour gene expression analysis, respectively (Fig. 4 supplement). However, LINCS 
drug signatures contain on average 6 times more genes with a FDR below 50% based on the set of 879 genes 
shared between CMAP and LINCS when tested on the shared set of 979 drugs (Fig. 5 Supplement).

Connectivity mapping. �e tumour sample signatures show a much higher rate of negative enrichment 
when connectivity mapping to the LINCS drug signatures than with the CMAP drug signatures (P < 10−16, 
Wilcoxon rank sum test). Furthermore, the amount of DEG in a drug signature (a marker of signature quality) 

Tissue Subgroup Samples

Primary solid tumour Stage I 268

Stage II 58

Stage III 123

Stage IV 82

Unknown 3

Total 534

Matched solid tissue normal Total 72

New primary solid tumour Total 1

Table 1. Tissue samples.
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shows a much stronger correlation with tumour sample negative enrichment rate (Fig. 2a, Spearman’s Rho = 0.15, 
P < 10−16) than with the amount of negatively enriched drugs calculated with the group and subtype signatures 
(Spearman’s Rho = 0.08 for group signature, between 0.036–0.11 for subtype signatures, Fig. 2b). �e mTOR 
inhibitors sirolimus (P = 0.03) and temsirolimus (P = 0.004) show negative enrichment with the individual 
tumour sample signatures, but not with the tumour group or subtype signatures. In contrast, the tyrosine kinase 
inhibitors approved for use against ccRCC (axitinib, pazopanib, sorafenib, sunitinib) do not show statistically 
negative enrichment with any signature type.

�e top 8 results of connectivity mapping the 19,424 LINCS drug signatures to the 530 �rst tumour samples 
taken from each patient a�er �ltering out drugs not clinically available are presented in Table 2. Diverse classes of 
drugs are represented, most of which anti-tumour activity against ccRCC was not expected a priori.

If the tumour samples are simulated based on the tumour group signature, the expected amount of negatively 
enriched tumour samples in 95% of cases would be at least 2.3 up to 3.2 times lower for erlotinib, a drug which is 
negatively correlated to the group signature at P < 0.01, and 8.7 up to 21 times lower for tenofovir, which is only 
slightly negatively correlated to the group signature with P = 0.15 (Fig. 3a). If the samples are simulated from a 
representative distribution of tumour subtypes, then the di�erence becomes a little smaller: 95% of simulated 
batches return 1.6 up to 2.1 less negatively enriched tumour samples with erlotinib, and 4.1 to 6.7 times less 
for tenofovir. �is same pattern, i.e. the samples simulated from the subtype signatures moving closer to the 
actual individual negative sample enrichment rate, was observed for the other 6 drugs (Fig. 6 Supplement). Lastly, 

Figure 1. (a) Signature sizes of tumour group, tumour subtypes, tumour samples and normal samples plotted 
against FDR cuto�. (b) Ratio of average tumour sample signature size divided by average normal sample 
signature size plotted against FDR cuto�. (c) Distribution of tumour sample signature sizes by tumour stage at 
an FDR cuto� of 1% and 50%. (d) Inclusion and directionality of genes plotted against perturbation frequency 
at an FDR cuto� of 1% and 50%.

Figure 2. (a) Amount of samples showing statistically signi�cant enrichment versus % of DEG in LINCS drug 
signature across the 10 deciles of ±1940 compounds. (b) Correlation between negative enrichment frequency of 
signature types versus % DEG in drug signature.
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Fig. 3b illustrates the directional consistency of the connectivity scores when the same 4 samples are analyzed 
again contrasted with the result of connectivity mapping the tumour sample signatures of 4 di�erent samples 
from the same patients. At P value intervals between 0.1–0.01, between 0.01–0.001 and below 0.001, there’s a 
respectively 76%, 87% and 96% probability the connectivity score has the same sign upon re-analysis of the same 
sample. However, when the same P value intervals but di�erent samples from the same patient are used, these 
probabilities drop to respectively 50%, 61% and 78%.

Discussion
In this study we showed that an individual analysis of tumour samples result in more potentially therapeutic drug 
hits which are negatively correlated to each drug signature. �is supports the development of an individualized 
drug repositioning approach based on gene expression.

Despite the fact that none of the drugs were tested on any ccRCC cell lines, connectivity mapping of the 
tumour sample signatures (but not the group or subtype signatures) does reveal signi�cant negative enrichment 
for 2 out of the 3 mTOR-inhibitors used against ccRCC (sirolimus and temsirolimus). However, the other mTOR 
inhibitor (everolimus) and the 4 tyrosine kinase inhibitors used against ccRCC present in the LINCS database 
(axitinib, pazopanib, sorafenib, sunitinib) did not reveal signi�cant negative enrichment. �is could be because 
these drugs were tested in fewer cell lines (N = 13–20) as compared to sirolimus and temsirolimus (N = 51–57). 
Furthermore, these tyrosine kinase inhibitors are believed to work because they primarily inhibit the Vascular 
Endothelial Growth Factor (VEGF) receptor present on non-cancerous endothelial cells1, and therefore reversal 
of gene expression on the ccRCC cells is not expected to occur.

Our study also shows that the approach of drug repositioning by gene expression reversal reveals interest-
ing potential drugs for treatment of individuals with ccRCC. Indeed, most of the top 8 of drugs with the high-
est negative enrichment of tumour sample signatures are already supported by existing evidence. Erlotinib and 
genistein both inhibit the Endothelial Growth Factor Receptor (EGFR), and the EGFR gene expression pro�le 
showed overexpression in 38.2% of tumour samples from an independent cohort of 63 ccRCC patients12. �e 
nucleotide reverse transcriptase inhibitor tenofovir is associated with nephrotoxicity due to accumulation in the 
proximal tubules13, which ccRCC is thought to originate from. �e similarity in gene expression between ccRCC 

Drug
% of 
samples Mechanism of action Current indications

erlotinib 45
A tyrosine kinase inhibitor for the EGFR 
receptor.

Primarily used in non-small cell lung 
cancer and pancreas carcinoma.

elvitegravir 41 An integrase inhibitor. HIV infection.

tenofovir 39 Nucleotide reverse transcriptase inhibitor.
Chronic hepatitis B and prevention/
treatment HIV/AIDS.

trimidox 
(trimethoprim + sulfadoxine)

36
Inhibition of dihydrofolate reductase, reduces 
folic acid

Bacterial infections.

nicotinamide 30
Part of the vitamin B3 complex. Has anti-
in�ammatory properties.

Niacin de�ciency, Acne.

quinine 29
Inhibition of hemozoin biocrystallization of 
parasites

Malaria and babesiosis.

genistein 26
Supposedly many, e.g. inhibition of EGFR and 
DNA topoisomerase.

None registered, used as a dietary 
supplement.

temsirolimus 24 Inhibition of mammalian Target Of Rapamycin. Clear cell renal cell carcinoma.

Table 2. Top 8 LINCS drugs in clinical use which show the most frequent negative enrichment of tumour 
samples and which have >33% di�erentially expressed genes, all with a P value < 0.01 and a FDR <10%.

Figure 3. (a) Density plot of negative enrichment frequency with erlotinib and tenofovir of 10,000 simulated 
batches of 530 tumour samples assuming they were sourced from the tumour group signature (solid lines) or 
subtype signatures (dashed lines). (b) Connectivity scores of analytical replicates on the same 4 tissue samples 
(green) and from 4 di�erent tissue samples from the same 4 patients (red) plotted against each other, for three P 
cuto� intervals.
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and proximal tubules cells has been noted before14, and therefore it seems plausible they share the same toxicity 
as well. Quinine has shown some e�cacy as an add-on in breast cancer patients15 and nicotinamide has been 
shown to substantially reduce the recurrence risk of skin cancer in a RCT16. Lastly, temsirolimus is already in use 
against ccRCC.

Some potential statistical issues/re�nements of the described pipeline remain: the current method of deter-
mining the drug signature equally weighs experimental instances equally with di�erent drug concentrations and 
drug exposure durations, whereas it has been demonstrated that higher drug concentrations and exposure dura-
tions induce a stronger e�ect on the di�erential gene expression pro�les17. More sophisticated batch e�ect correc-
tion methods than including a factor in the linear model exist, e.g. the use of control genes, could further amplify 
the signal from the noise18. Di�erent connectivity scoring methods also exist, which could further improve the 
sensitivity and/or speci�city of the pipeline19. Lastly, the selection of tumour sample genes was done by the com-
monly accepted but arbitrary criterion of a FDR below 1%; ideally this cut-o� would be determined from the data, 
or genes more likely to be actually di�erentially expressed could be given a higher weight. It will be more di�cult 
to quantify the false negative rate which can be increased by biological factors, e.g. if drugs are tested in cell lines 
which do not express the drug target(s). However, as the amount of hits that can be validated is likely small, per-
haps the focus should mainly be on decreasing the false positive rate.

Despite all these potential issues/re�nements however, the simulations already make it very clear that it would 
have been extremely unlikely to have found the same results if all tumour samples came from a single uniform 
tumour expression pro�le or a representative combination of the 4 previously identi�ed subtype pro�les. Indeed, 
the power of this approach lies in not having to assume the number of subtypes, whether there are none, 4 or 
more. Repeated RNA-seq analysis of the same tissue sample, and to a lesser degree a new tissue sample from the 
same patient, already shows remarkable consistency in connectivity scores calculated with the current method 
and increases as the P-value of the connectivity score decreases.

To our knowledge, this is the �rst paper to convincingly demonstrate that using individual tumour sample 
signatures as the basis for analysis outperforms analyses based on tumour group or subtype signatures. Zerbini 
et al. did publish a similar analysis10, but as this was the only type of analysis they did, it did not demonstrate the 
superiority to the connectivity mapping of the group or subtype tumour signatures. Furthermore, our analysis 
contains more than 25 times more, and arguably better characterized, tumour samples and more than 120 times 
more drug compounds pro�led in far more cell lines, resulting in a more comprehensive analysis.

Whether a pathway is causally involved in the survival of the tumour is impossible to determine from the gene 
expression data alone. Testing the hits on existing ccRCC cell lines is a possibility, but many aspects of ccRCC 
cannot be replicated using cell lines20. Furthermore, the transcriptomic heterogeneity is unlikely to be well repre-
sented in existing cell lines. It could be an option to �rst grow some of the patient’s own tumour tissue in an and 
test the drugs using an ex vivo functional assay. When the candidate drugs are marketed drugs which have been 
tested and approved for clinical use within the dose range an e�ect can be expected, it might therefore be ethically 
defensible to directly prescribe the drug o�-label in an N = 1 trial. Possibly both scenarios could even be run in 
parallel, with the ex vivo results providing some external validation and validated alternatives in the event the 
�rst prescription failed to provide any bene�t. If a database of the results of these N = 1 trials can be created and 
maintained, it could eventually generate enough evidence to conclude which combinations of gene expression 
pro�les and drugs show a consistent therapeutic bene�t.

Materials and Methods
All data processing and analyses were performed using R version 3.4.0 using the R/Bioconductor packages men-
tioned below. FDR was always calculated using the Benjamini-Hochberg method.

Clear Cell Renal Cell Carcinoma expression profiles. �e mRNA-seq v2 read counts produced by �e 
Cancer Genome Atlas (TCGA) Kidney Renal Clear Cell Carcinoma project were downloaded from the Genomic 
Data Commons using the TCGAbiolinks package (version 2.5.7)21. It is automatically annotated with metadata, 
such as patient information and the molecular subtype as determined by the original TCGA analysis using hier-
archical cluster analysis11. �e genes were normalized within samples by gene length and between samples to 
correct for sequencing depth using the EDAseq package (version 2.10.0)22. Only genes which were expressed 
above 0.5 Counts Per Million (CPM) in at least a sixth of all samples were retained, i.e. selection was irrespective 
of tissue type. �is cuto� was taken from a Bioconductor example work�ow, and reduces the high noise inherent 
in measuring lowly expressed genes23.

Tumour signatures. �e read counts were modelled using the negative binomial generalized log-linear 
model available from the edgeR package (version 3.18.1)22, and statistical signi�cance was assessed using a likeli-
hood ratio test. �ree di�erent types of tumour signature were generated:

 1. Tumour group signature: All tumour samples versus all normal samples. �is is the conventional compari-
son, and ideal under the assumption of homogenous tumours.

 2. Tumour subtype signatures: All tumour samples belonging to each one of the 4 molecular tumour subtypes 
versus all normal samples.

 3. Tumour sample signatures: Each tumour sample versus all normal samples. �is provides a unique signa-
ture for each tumour sample.

To estimate the true false positive rate of genes included in the tumour sample signatures, normal sample sig-
natures were generated by comparing each normal sample versus all the other normal samples.
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Drug signatures. A preprocessed version of the CMAP database was downloaded using the PharmacoGx 
package (version 1.6.1) which was corrected for systematic di�erences caused by the di�erent microarray plat-
forms using the ComBat function in the sva package (version 3.10.0)24.

�e LINCS database was downloaded directly from the Gene Expression Omnibus (GSE92742) in the Level 
3 format. �e Entrez gene identi�ers were converted to Ensembl gene identi�ers using the bioMart package 
(version 2.32.1), to make them compatible with the tumour expression pro�les and the preprocessed CMAP 
database25.

�e drug signatures were calculated with a linear model using the limma package (version 3.32.5) with drug 
concentration as a linear parameter (i.e. 0 for controls and >0 for drugged cells) and cell type, perturbation dura-
tion (if >2 perturbation durations), batch as categorical variables26

Drug-tumour signature connectivity mapping. Gene Set Enrichment Analysis (GSEA), using the log2 
fold di�erence of the tumour genes which are below a 1% FDR in combination with using the landmark genes 
and tumour cells resulted in the least amount of false positive results out of all tested methods and con�gura-
tions, when CMAP drug signatures were used to retrieve the corresponding LINCS drug signatures (Figures 7–10 
Supplement). �erefore, the same con�guration was used for the drug-tumour signature connectivity mapping.

Negative enrichment is defined as a negative connectivity score with an associated P-value below 0.05. 
P-values were calculated using permutations; N = 1000 for each sample and N = 1000 * the amount of tumour 
samples for the group and subtype signatures. P-values of cumulative tumour sample enrichment were deter-
mined by comparing the amount of negatively enriched samples to the distribution observed for drug signatures 
containing less di�erentially expressed genes (DEG) than the amount which would be expected by chance 95% of 
the time. FDR correction was applied separately for each decile of drug signature percentage DEG.

Simulation study. For the top 8 most frequently negatively enriched drugs, a simulation study was per-
formed to validate which drugs show individual di�erences in connectivity score di�erent from the group and 
subtype signatures. 10,000 batches of individual tumour samples of the same size as the original batch and with 
the same distribution of sequencing depth to the original tumour samples were simulated from the tumour group 
signature to determine the amount of negatively enriched tumour sample signatures. Another 10,000 similarly 
constructed batches were sampled from the subtype signatures in the same proportion as found in the original 
data. Simulation was performed by extracting the mu and size parameters for each gene from the negative bino-
mial generalized log-linear model. Tumour sample signatures were then calculated to determine the connectivity 
score and associated P-value with each drug.

Data availability. The R code, drug signatures, tumour signatures and the resulting datasets gener-
ated during the current study are available in a public GitLab repository (https://gitlab.com/k.k.m.koudijs/
personalised_DR_ccRCC).
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