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Abstract
Lack of motivation and low adherence rates are critical concerns of long-term rehabil-
itation programmes, such as cardiac rehabilitation. Socially assistive robots are known
to be effective in improving motivation in therapy. However, over longer durations,
generic and repetitive behaviours by the robot often result in a decrease in motiva-
tion and engagement, which can be overcome by personalising the interaction, such
as recognising users, addressing them with their name, and providing feedback on
their progress and adherence. We carried out a real-world clinical study, lasting 2.5
years with 43 patients to evaluate the effects of using a robot and personalisation
in cardiac rehabilitation. Due to dropouts and other factors, 26 patients completed
the programme. The results derived from these patients suggest that robots facilitate
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motivation and adherence, enable prompt detection of critical conditions by clinicians,
and improve the cardiovascular functioning of the patients. Personalisation is further
beneficial when providing high-intensity training, eliciting and maintaining engage-
ment (as measured through gaze and social interactions) and motivation throughout
the programme. However, relying on full autonomy for personalisation in a real-world
environment resulted in sensor and user recognition failures, which caused negative
user perceptions and lowered the perceived utility of the robot. Nonetheless, person-
alisation was positively perceived, suggesting that potential drawbacks need to be
weighed against various benefits of the personalised interaction.

Keywords Personalisation in social robots · Socially assistive robotics · Real-world
study · Cardiac rehabilitation · Long-term interaction · Human–robot interaction

1 Introduction

Cardiovascular diseases—disorders of the heart and blood vessels—are the most
prominent cause of global deaths, leading to 17.7 million deaths each year (World
Health Organization 2011). Cardiac rehabilitation (CR) is a long-term programme fol-
lowing a cardiovascular episode, which aims to accelerate recovery and reduce the risk
of recurrent cardiovascular events. CR is generally composed of three phases (Kraus
and Keteyian 2007): (I) the Inpatient phase, involving a medical procedure within the
48 hours after the cardiac event, (II) the Outpatient phase, typically 18 weeks (with
sessions twice per week) of exercise and education programmes to improve the health
of the patient, (III) the Maintenance phase, lasting 9 months (with one or two sessions
per week) to reinforce the learned behaviour. This programme is demanding both in
time and physical effort and consequently results in low adherence rates (with drop-
out ranging between 15 and 50%) (Maclean and Pound 2000; Carlson et al. 2000;
Siegert and Taylor 2004; Bethell et al. 2009; Scane et al. 2012). However, adherence
to the programme is vital to achieving a complete recovery and reducing the risk of
suffering recurrent events (Jolly et al. 2007; Suaya et al. 2009; Hammill et al. 2010).

Social assistive robotics (SAR) aims to provide monitoring and assistance in physi-
cal to cognitive activities, and social interaction during therapy,which improves patient
motivation, task performance, and clinical progress (Feil-Seifer and Matarić 2005;
Ahmad et al. 2017). However, over a long period of time, repetitive behaviours of the
robot may decrease patient interest (Süssenbach et al. 2014; Kidd and Breazeal 2008),
which could reduce the frequency of use and interaction with the robot (Fernaeus et al.
2010). Personalisation, through tailoring the robot’s behaviour to each patient, creates
an opportunity to break this monotony and helps maintain motivation and facilitates
trust over long-term interactions (Castellano et al. 2008; Leite et al. 2013; Irfan et al.
2019).

This work is concerned with the question on what the impact is of personalisa-
tion in socially assistive robotics for long-term cardiac rehabilitation? We designed
and conducted a real-world clinical study at the Fundación Cardioinfantil-Instituto
de Cardiología (Bogotá, Colombia) to evaluate the performance and perceptions of
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Fig. 1 Setup of the sensor system (image on the left), tablet interface (at themiddle), and the social robot (on
the right), for the cardiac rehabilitation programme at the Fundación Cardioinfantil-Instituto de Cardiología
(Bogotá, Colombia)

the patients throughout the outpatient phase (II) of CR (Lara et al. 2017; Casas et al.
2018). This long-term study explored three conditions: (a) conventional CR in which
the patient is monitored using a suite of sensors, (b) SAR using a NAO robot (Soft-
Bank Robotics Europe, Fig. 1) to continuously monitor and provide generic feedback
to patients during exercise on the treadmill, based on sensory information, or (c) SAR
using a NAO robot with personalised features to recognise users (Irfan et al. 2018b,
2021), recall the patients’ previous session progress, track their adherence, and give
personalised feedback. The results obtained during the first two conditions (Casas et al.
2019; Céspedes et al. 2021) highlighted the benefits of a social robot in comparison
with the conventional CR programme in improving adherence, motivation, and phys-
ical activity performance. However, the studies suggested a need for enhancing the
sociability and social presence of the robot to further improve motivation and adher-
ence. We suggest that personalisation of the interaction is key to achieving this. In this
paper, we present the complete real-world study that lasted 2.5 years, drawing upon
results from 26 patients that completed the programme out of 43 patients recruited,
focusing on the benefits and challenges of personalisation in long-term interactions
in the real world. This paper evaluates the physiological progress of the patients (i.e.
training and recovery heart rate, exertion level, cervical posture), exercise intensity
parameters of the sessions (i.e. speed and inclination of the treadmill), interactions
with the robot, perceptions of the patients, and adherence to the programme for the
personalised robot condition in comparison with the other two conditions. This is
the first comprehensive study that explores the effects of personalisation in socially
assistive robots for cardiac rehabilitation.

2 Background

Social assistive robotics (SAR) shares with assistive robotics (AR) not only the goal of
providing assistance to patients, but also to support the user by offering social interac-
tion, through emotional, cognitive, and social cues to encouragedevelopment, learning,
or therapy (Feil-Seifer andMatarić 2005; Okamura et al. 2010; Breazeal 2011;Matarić
and Scassellati 2016). Because SAR aims to deploy robots in real-world therapy with
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users who have limited robotics expertise—such as doctors, nurses, and patients—the
robot needs to perform tasks with a high degree of autonomy. The robots need to
provide verbal and non-verbal communication to engage in a natural interaction with
the patient (Duffy et al. 1999; Feil-Seifer and Matarić 2005; Tapus et al. 2007). Other
features necessary for real-world deployment of SAR applications include automated
perception of the user’s behaviour, quantitative diagnosis and assessment, mobility,
sensor-based automated health data acquisition, and context-appropriate assistance
through user interfaces (Okamura et al. 2010; Prescott and Caleb-Solly 2017; Johan-
son et al. 2020). SAR-based applications have been developed in a range of clinical
areas (e.g. cognitive and developmental disorders, care for elderly, and rehabilita-
tion), all of which share common goals, such as providing physical, cognitive and
social support, monitoring and feedback, increasing user motivation, engagement and
adherence, and improving task performance and progress (Leite et al. 2013; Ahmad
et al. 2017).

However, most research in SAR has been carried out under laboratory conditions,
using short-term interventions that often rely on tele-operation (Leite et al. 2013; Lane
et al. 2016; Vandemeulebroucke et al. 2018). This restricts their relevance to long-term
therapies in real-world applications and does not address the novelty effect (Gockley
et al. 2005) or the challenges faced in the adoption of technology (Riek 2017; Coninx
et al. 2015). For instance, the only prior study with a socially assistive robot in cardiac
rehabilitation (for spirometry exercises in inpatient phase I) (Kang et al. 2005) is eval-
uated under laboratory conditions for one session with a low number (5) of healthy
participants, without analysing the physiological progress of the patients. Thus, despite
the positive feedback of the participants, these results cannot be generalised to long-
term rehabilitation. Nonetheless, real-world studies in other rehabilitation applications
showed the benefit of robots over long-term interactions. For instance, a robot was
used to support long-term post-stroke rehabilitation, which lasted 5 to 7 weeks (Fein-
gold Polak and Tzedek 2020). Preliminary results (based on 4 patients) indicated
that SAR helps to engage, motivate, and support upper limb rehabilitation. Another
study in cognitive rehabilitation (Feng et al. 2020) developed a combined platform
using augmented reality and an animal-like robot to engage dementia patients within
multi-sensory stimulation sessions over four weeks, which was found to elicit posi-
tive emotions, increase social bonding, and restore communication. Broadbent et al.
(2018) evaluated the usefulness of a home-based social robot as a supporting tool in
patients with the chronic obstructive pulmonary disease based on a 4-month study,
which highlighted the capability of SAR to increase adherence to medication and
exercise.

However, long-term interactions can cause a considerable decrease in user interest
and motivation compared to the initial interaction (Kidd and Breazeal 2008; Süssen-
bach et al. 2014; de Graaf et al. 2016). Thus, a number of studies focused on seeking
strategies to promote long-term interactions in real-world environments. For instance,
the Autom Robot (Kidd and Breazeal 2007, 2008) was developed with the aim to
address obesity and assist those who are willing to lose or maintain weight. To achieve
and maintain these goals in long-term interactions, several key features were used,
such as eye contact, hand, head and arms gestures, speech recognition and synthe-
sis, and tracking user progress. The study was conducted with 45 subjects over six
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weeks at the participants’ homes, and the Working Alliance Inventory (Horvath and
Greenberg 1989) (WAI) questionnaire was used to evaluate the interaction. The results
showed that the participants assisted by the social robot used the system for longer
periods than those who use other methods (i.e. tablet and paper logging of data), had
a stronger alliance with the proposed system and a higher interest in knowing calorie
consumption and exercise performed (Kidd and Breazeal 2008), which supports the
importance of embodiment in SAR. Other studies have shown that embodiment can
increase compliance (Bainbridge et al. 2008), likeability (Fasola and Matarić 2013;
Li 2015), social engagement (Lee et al. 2006; Wainer et al. 2006; Vasco et al. 2019),
adherence (Bickmore and Picard 2005a; Kidd and Breazeal 2007), and task perfor-
mance (Vasco et al. 2019; Deng et al. 2019), which are essential in, especially long
term, therapy.

Moreover, a variety of long-term studies on the adaptive and reactive seal-shaped
robot PARO showed the positive impact on elder care, such as reducing negative
emotions and behavioural symptoms of elderly residents, improving their social bonds
and engagement, and promoting positive mood and quality of care experience (Hung
et al. 2019). Adaptation and personalisation strategies (e.g. addressing the patient with
their name, tracking their progress, and consequently adapting feedback or therapy
tasks) were found to play an important role in long-term therapy (Rossi et al. 2017)
to elicit and maintain user engagement over extended durations (Tapus et al. 2009;
Blanson Henkemans et al. 2013; Scassellati et al. 2018; Winkle et al. 2018; Clabaugh
et al. 2019; Richardson et al. 2018; Cao et al. 2019), improve task performance (Tapus
et al. 2008; Tapus 2009; Matarić et al. 2009; Hemminahaus and Kopp 2017; Andriella
et al. 2020), increase perceived familiarity and sociability (Sabelli et al. 2011; Fasola
and Matarić 2013), and perceived competence and trust (Schneider and Kummert
2021). Moreover, previous studies in other domains showed the benefits of recalling
user’s personal attributes (e.g. name, gender, age) (Kanda et al. 2004; Gockley et al.
2005;Mutlu et al. 2006;Kanda et al. 2007, 2010; Sabelli et al. 2011; Fasola andMataric
2012; Belpaeme et al. 2013; Leite et al. 2014; Kennedy et al. 2015; Churamani et al.
2017; Campos et al. 2018; Zheng et al. 2019; Irfan et al. 2020b), preferences (Ho
et al. 2010; Belpaeme et al. 2013; Churamani et al. 2017; Zheng et al. 2019; Irfan
et al. 2020b), behaviour patterns (Glas et al. 2017; Zheng et al. 2019), and shared
history (Ho et al. 2010; Belpaeme et al. 2013; Matsumoto et al. 2012; Leite et al.
2014, 2017; Campos et al. 2018; Zheng et al. 2019; Ahmad et al. 2019) for improving
user experience in long-term interactions.

In our previous work (Lara et al. 2017; Casas et al. 2018), we described a SAR inter-
face for a long-term cardiac rehabilitation programme. The interface consists of two
mainmodules: (i) the sensormodule, in charge ofmeasuring the patients’ cardiovascu-
lar and spatiotemporal gait parameters through a set of sensors, and (ii) a robotmodule,
which consists of a social robot that monitors and provides immediate feedback and
motivation to patients to increase their engagement in CR programmes. The interface
was validated with laboratory (Lara et al. 2017) and clinical case studies (Casas et al.
2018; Casas et al. 2018a, b, 2019, 2020). The outcomes of these studies showed that
the interface is robust and offers additional monitoring during therapy, and that using a
robot improved motivation, trust and adherence in the CR programme. In addition, the
clinicians’ perception and attitudes towards the robot improved after the demonstra-
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tion of its potential benefits (Casas et al. 2019). Subsequently, we developed additional
features, such as user recognition, adherence tracking, and personalised immediate and
progress feedback. A case study of a patient assisted by that robot (Irfan et al. 2020a)
showed that personalisation helpsmaintain positive perceptions and social interactions
throughout the long-term programme and facilitates patient motivation and adherence.
Finally, we analysed the overall benefits of the non-personalised socially assistive
robot in comparison with conventional cardiac rehabilitation (Céspedes et al. 2021).
The results showed that the patients assisted by the robot had a higher adherence,
improved faster on their cardiovascular functioning, and showed better physical activ-
ity performance. Moreover, the clinicians acknowledged the motivational benefits of
the robot for the patients and the added value of continuous monitoring in cardiac
rehabilitation. This work draws on these conclusions and analyses whether personal-
isation can improve the benefits of the socially assistive robot and the perception of
the patients.

3 Conventional cardiac rehabilitation

Each exercise session in the outpatient phase (II) of CR typically lasts about an hour
at the Fundación Cardioinfantil-Instituto de Cardiología clinic and is generally con-
ducted twice per week for 18 weeks. Each session starts by measuring patients’ initial
parameters, such as the initial resting heart rate, weight and blood pressure, followed
by a warm-up consisting of low-paced walking and low-intensity stretching exercises
in a group. Afterwards, the patients attend the training session based on physical
exercises using a treadmill, lasting 15 to 20 minutes. The intensity of the training
session is determined by the speed and inclination of the treadmill, which are cho-
sen by the physiatrist at the start of each session. These parameters progressively
increase throughout the CR programme depending on the patient’s CR performance
and progress (Simms et al. 2007). Furthermore, during training, the healthcare staff
(i.e. physiatrists, occupational therapists, physical therapists, and nurses) manually
measure the patients’ heart rate (HR) and request a self-reported exertion level using
the Borg scale (Borg 1998) every 5 to 7 minutes, as shown in Fig. 2, to adjust the
intensity if necessary. After training, patients step off the treadmill to perform low-
intensity exercises for 10 to 15 minutes, referred to as cooldown, in order to gradually
decrease their HR. During this step, the resting HR and blood pressure are measured.

The CR sessions are conducted within a large group (e.g. 20 patients); thus, it
is challenging for clinicians to provide continuous and individual monitoring of the
patients (Turk-Adawi et al. 2019) due to the lack of a telemetry in the CR unit, espe-
cially during high-intensity exercises in trainingwhich can result in critical heart rates.
Moreover, clinical studies suggest that providing individual support and supervision
during exercise can improve a patient’s motivation within the CR programme (Shah-
savari et al. 2012). That is why, we designed a SAR system to provide continuous
monitoring and feedback during training to facilitate prompt intervention from the
healthcare staff, in addition to improving patients’ motivation and adherence to the
programme, as described in the next section.

123



Personalised robot for cardiac rehabilitation 503

Fig. 2 Conventional cardiac rehabilitation session during training exercises at the FundaciónCardioinfantil-
Instituto de Cardiología

Fig. 3 Architecture of the personalised patient–robot interface for cardiac rehabilitation programme

4 Personalised patient–robot interface

As previously described, cardiac rehabilitation is a long-term programme, where
adherence is critical to ensure a complete recovery. However, repetitive and rigor-
ous exercises may cause a decrease in patient motivation and consequently dropouts
from the programme. Thus, based on prior research in other areas of SAR and reha-
bilitation, we developed a personalised patient–robot interface to provide continuous
monitoring and individualised support to patients during exercise for improving their
motivation and engagement in the programme. All behaviours and responses of the
robot were created in collaboration with medical specialists to avoid incorrect medical
assessments and prevent negative perceptions of the programme and with the aim to
resemble the behaviours of the clinicians towards the patients. The interface, as pre-
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sented in Fig. 3, consists of a sensor interface to measure the patient’s performance,
the socially assistive robot to provide immediate feedback and motivation based on
sensor values, and personalisation features to track the patient’s progress throughout
the CR programme and provide a tailored experience to the patients.

4.1 Sensor interface

The patient–robot interface integrates a set of sensors to measure the patients’ physio-
logical progress regarding their cardiovascular functioning and exercise performance.
Cardiovascular parameters (i.e. training and resting HR) of the patient weremeasured
by a heart rate monitor (Zephyr HxM, Medtronic, New Zealand). Gait spatiotemporal
parameters (i.e. cadence, step length, speed) were measured with a laser range finder
(Hokuyo-URG 04LX-UG01, Hokuyo, Japan), shortly LRF. The treadmill inclination
was measured using an Inertial Measurement Unit (MPU9150, Invensense, USA),
shortly IMU. Finally, to visualise the data registered, receive self-reported data from
the patient, and control the sessions’ flow, a graphical user interface (GUI) was devel-
oped. A tablet (SurfacePro, Microsoft, USA) was used to display the GUI and the
tablet camera was used to measure the cervical posture of the patient using a head
gaze detection algorithm (Lemaignan et al. 2016) and take images for user recognition
during the sessions.

4.2 Socially assistive robot

We use a NAO (SoftBank Robotics Europe, France) robot, as shown in Fig. 1, which is
the most commonly used platform for human–robot interaction (HRI) research (Lam-
bert et al. 2020). The robot was located at the same place (in front of the patient) during
the study, for the conditions that include the robot. The robot’s goal is to support and
monitor the patient throughout the training (Fig. 4). At the start of the interaction,
the robot will greet the patient and describe the intensity of the session (treadmill
inclination and speed). During the session, the robot will periodically provide a ran-
domly selected verbal encouragement to facilitate motivation from three pre-scripted
responses for the first five minutes (e.g. “Let’s start well today!”), 13 responses until

Fig. 4 Finite-state machine presenting different behaviours of the robot during the monitoring phase

123



Personalised robot for cardiac rehabilitation 505

mid-session (e.g. “Let’s go! You can do it!”), and eight responses until the cooldown
period (e.g. “Only a few minutes left!”). Furthermore, similar to the medical staff in
conventional therapy, the robot requests the patient to report their exertion level on a
Borg scale every seven minutes, using a randomly selected phrase from 10 responses.
Additionally, the robot monitors the patient to ensure that their physiological parame-
ters remain in a healthy range. For example, if the patient’s cervical posture is incorrect
(i.e. when the patient is looking down instead of straight ahead), the robot reminds
the patient to look straight ahead through a randomly selected feedback from six
responses. If the patient’s HR is above a warning threshold set by the therapists at the
start of the session, the robot asks the patient whether they feel fine or need assistance
from the medical staff. If the HR is above a critical threshold, as calculated by the
medical staff using the Karvonen formula (She et al. 2014), or the patient requests it,
the robot directly alerts the medical staff verbally (e.g. “Your heart rate is too high,
I am calling for help. Doctor, could you please come here?”), waving its hand. The
warning behaviours have a cooldown period of three minutes to prevent overloading
the patient if a warning state is maintained. More details about the robot behaviours
can be found in Casas et al. (2018); Casas et al. (2020).

4.3 Personalisation

As discussed in Sect. 2, several studies showed the importance of personalisation for
socially assistive robotics in facilitating perceived familiarity and sociability, in addi-
tion to improving user performance and engagement within long-term interactions.
Personalisation in long-term interactions should not only focus on the inherent differ-
ences, such as a person’s name; it should also focus on the long-term changes, such as
their therapy progress, and incrementally learn and adapt to the user for maintaining
user engagement over the duration of the interaction (Tapus et al. 2007). Moreover, as
discussed in the introduction, low adherence is a big concern of the CR programmes.
To address these needs, we developed personalisation features focusing on users’ per-
sonal attributes (i.e. appearance and name) and behaviour patterns (i.e. adherence and
rehabilitation progress) by (i) recognising users autonomously, (ii) personalising the
verbal (motivational and sensory) feedback of the social robot by occasionally (every
2 to 4minutes) using their name, (iii) tracking their progress between sessions, and (iv)
referring to their attendance to improve theirmotivation in the programmeand facilitate
adherence. These personalisation features were developed based on the suggestions
of the medical specialists, and they correlate with therapists’ approaches in improving
the motivation, engagement and compliance of the patient, through feedback, positive
reinforcement, reminders, and prompts (Winkle et al. 2018). The personalised fea-
tures of the robot were validated in a pilot study under laboratory conditions before
deployment in the clinic.

4.3.1 Multi-modal user recognition

In a real-world environment such as a hospital, it is necessary to have a robust system
that can autonomously recognise and learn new users with minimum efforts from
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Fig. 5 Architecture for multi-modal user recognition in CR programme using the Multi-modal Incremental
Bayesian Network (MMIBN) with online learning

the patients and the doctors (Reig et al. 2021). Moreover, user recognition allows
more natural interaction with the robot. Thus, we applied Multi-modal Incremental
Bayesian Network (MMIBN)1 with online learning (Irfan et al. 2018b, 2021), which
is the first method for sequential and incremental learning of users that does not
require any preliminary training for user recognition. It combines face recognitionwith
soft biometrics, which are ancillary physical or behavioural characteristics, such as
gender, age, height and time of interaction, that can be used to improve the recognition
performance (Jain et al. 2004; Dantcheva et al. 2016). The structure of user recognition
is shown in Fig. 5.

An image is taken from the tablet camera and transferred to the robot to obtain the
face recognition similarity scores, and gender, age, and height estimations through the
NAOqi2 proprietary software of the robot. Time of interaction is a suitable ancillary
behavioural characteristic, because patients in the CR programme have set appoint-
ments twice a week on certain days and times. The biometric data are combined using
MMIBN. If the quality of the estimation (i.e. the difference between the highest and the
second-highest probability scores,multiplied by the number of known users) is above a
certain threshold, then the identity that corresponds to the highest posterior probability
score is returned; otherwise, the user is believed to be a new patient. Explicit confirma-
tion of the identity is obtained after each recognition (e.g. “Hello PATIENT_NAME, it
is nice to see you again! Could you confirm that it is you please?”) through the tablet
interface, in order to avoid any errors in personalisation of the session and to improve
the user recognition through online learning. Online learning of biometric data helps
adapt to the changes of user appearances (e.g. different hair styles and glasses) and the
interaction patterns (e.g. time of interaction). If the user enters an identity that is not
in the system for the confirmation (i.e. the user is new), ground truth values (i.e. name,
age, and height) are requested from the tablet interface to apply incremental learning

1 Code available at: https://github.com/birfan/MultimodalRecognition
2 http://doc.aldebaran.com/2-4
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on MMIBN and face recognition database. Overall, the system is able to recognise
and learn new users without the need for intrusive methods or external devices, such as
QR codes or access cards, to offer a more natural interaction, and it is suitable for non-
expert users. Moreover, MMIBN was found to significantly outperform NAOqi face
recognition and a state-of-the-art open world recognition method (Rudd et al. 2018)
on a long-term (4 weeks) HRI study in the real world with 14 participants (93.2%
identification rate) and on a large artificial multi-modal dataset with 200 users (65.7%
identification rate) (Irfan et al. 2018b, 2021).

4.3.2 Progress tracking

CRaims to improve cardiovascular functioning and recovery of the patients throughout
the long-term programme. The session’s intensity (as determined by the treadmill
speed and inclination) progressively increases, but can be scaled back based on the
patient’s progress determined by a variety of physiological factors, such as the recovery
and training heart rate and exertion level, and whether these parameters stay within
healthy levels. Thus, it is challenging to determine the progress of the patient from
session to session. Correspondingly, the medical specialists suggested session-based
feedback for progress, i.e. comparing the current session to the previous session of
the patient using the alerts for critical heart rate and exertion level, and the cervical
posture corrections, such that the patient can track whether they are responding well
to the rehabilitation on a session per session basis, which is expected to improve their
motivation.

In order to prepare and motivate the patient for the session, the relative session
intensity is indicated by the personalised robot at the beginning of each session after
the announcement of session intensity parameters, such as “Today, we are starting
with a speed of 2.1 miles per hour with an inclination of 0.8 degrees, which will be
more intense than the last time.”. The relative intensity is defined by the clinicians at
Fundación Cardioinfantil-Instituto de Cardiología, to be higher (i.e. more intense) if
the treadmill speed or inclination is higher than that of the previous session, and lower
(i.e. less intense) if both of these parameters are lower. Subsequently, the previous
session progress is mentioned, followed by a motivational phrase, such as “In the
previous session, you experienced difficulty with your heart rate. I am sure it will be
all fine this time!” or “I am sure that it will be as good as last time!”. At the end of
the session, the performance of the patient is compared to the previous session. To
avoid demotivating the patient, the relative session intensity is also noted only if it is
higher. For instance, “We had a lower number of difficulties in this session than the
previous one, even though the session intensity was higher. Let’s keep up the good
work, PATIENT_NAME!”, or “We had a higher number of difficulties this session than
the previous one. Next time will be better, PATIENT_NAME!”.

4.3.3 Adherence tracking

Patients are prescribed two sessions per week for the outpatient phase of CR for
a total of 18 weeks (4.5 months). However, the medical records in the Fundación
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Cardioinfantil-Instituto de Cardiología clinic3 show that patients take 5.7 months
on average to finish the outpatient phase. The long duration of the programme also
decreases the willingness to continue, resulting in dropouts, as mentioned in the intro-
duction. Hence, in order to encourage patients to come to their appointed sessions and
improve adherence, we tracked the patient’s attendance per week. Since the lack of
attendance can be either due to justifiable reasons, such as sickness or leaving town, as
well as negligence, the robot comments on the missed sessions (excluding holidays)
in a positive manner, such as “You didn’t come to the last (X) session(s). I hope every-
thing is all right!”. Moreover, to increase the sociability of the robot and familiarity,
we tracked weekends and the national holidays, with comments such as “I hope you
had a nice weekend/holiday!”.

5 Experimental procedure

A longitudinal study was carried out at the Fundación Cardioinfantil-Instituto de Car-
diología (Bogotá, Colombia) for 2.5 years to evaluate the impact of socially assistive
robots and personalisation in the outpatient phase (II) of cardiac rehabilitation, which
is designed to last 18 weeks (36 sessions) per patient.

5.1 Hypotheses and predictions

In general, our study was designed to evaluate the benefits of using a socially assistive
robot for long-term cardiac rehabilitation with the aim to improve user motivation
and adherence to the programme. However, as previous research outlined in Sect. 2
shows, user motivation and interest towards a generic robot can wane over long-term
interactions, which could be overcome by the personalisation of the interaction. More-
over, previous studies in SAR showed that personalisation leads to an improvement
in task performance and user perceptions (e.g. competence, trust, sociability, famil-
iarity). In addition, our previous work showed that using a social robot improves
adherence, physical activity performance, and cardiovascular functioning in compari-
son with conventional CR programme (Céspedes et al. 2021) and leads to a significant
increase in the patients’ perceptions of the robot (i.e. perceived trust, utility, usefulness,
and ease of use) (Casas et al. 2019). Correspondingly, this work aims to address the
research question, what the impact is of personalisation in socially assistive robotics
for long-term cardiac rehabilitation? and the consequent hypotheses and predictions:

H1 Personalisation will improve patient motivation and adherence to the CR pro-
gramme.

– Prediction P1a : A higher ratio of patients will complete the CR programme
with the personalised robot than the control or social robot.

– Prediction P1b: Patients will report higher intrinsic motivation to improve in
their sessions with the personalised robot than the other conditions.

H2 Personalisation will improve the cardiovascular performance of the patients.

3 Obtained from 14 CR patients that are not part of the study.
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– Prediction P2a : Patients will have a higher gain of normalised recovery heart
rate in the personalised condition than the other conditions.

– Prediction P2b: The personalised robot will lead to a lower number of alerts
to medical staff than the social robot.

H3 Interaction with the personalised robot will bemaintained throughout the long-
term programme.

– Prediction P3a : Patients will comply with the robot’s posture correction
requests throughout the CR programme.

– Prediction P3b: There will be no significant decrease in the gazing behaviour
to the robot throughout the programme.

– Prediction P3c: Social interaction between the human and the robot will be
maintained throughout the programme.

– Prediction P3d : Patients will maintain their bond with the robot (as measured
by the Working Alliance Inventory) throughout the programme.

H4 Personalisation will improve patients’ perceptions of the robot.

– Prediction P4a : The personalised robot will be rated as more useful than the
other conditions.

– Prediction P4b: Patients will enjoy the personalised features of the robot.

5.2 Conditions

Based on our research question, we designed three conditions for the study:

– Control The patients perform conventional CR sessions (i.e. without a robot),
where they are supervised by the healthcare staff. In order to compare the physio-
logical progress between the groups, the sensor interface (as described in Sect. 4.1)
is used to measure the patients’ physiological parameters. Patients only interact
with the tablet to enter their Borg scale, when it is requested through the tablet with
an audible signal and a change of colour. While the health parameters (i.e. heart
rate, gait speed, cadence, step length, treadmill inclination, and the self-reported
Borg scale value) are visible on the tablet interface for informing the medical
staff, patients do not receive any motivational or physiological verbal feedback to
emulate the conventional CR sessions.

– Social Robot The patients perform the CR sessions assisted by the robot, as
described in Sect. 4.2, and the sensor interface.

– Personalised Robot The patients perform the CR sessions assisted by the person-
alised robot, as described in Sect. 4.3, and the sensor interface.

The control and social robot conditions started in August 2017, and the person-
alised robot condition started in October 2019. The non-personalised (social) robot,
the personalised robot, and the sensor interface operated fully autonomously. Nev-
ertheless, an experimenter was present during the CR sessions for all conditions, to
interfere only in the case of system failures.
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5.3 Experimental criteria

– Inclusion Criteria The study targeted the patients starting the outpatient phase (II)
of the cardiac rehabilitation programme, which lasts 18 weeks with two sessions
per week. Patients who are over 25 years old with acute myocardial infarction,
percutaneous coronary intervention, coronary artery bypass graft, valve replace-
ment, ischaemic heart disease and hypertension, and ejection fraction greater than
40%were recruited.Moreover, the participants should be able to perform treadmill
exercises.

– Exclusion CriteriaThe patient–robot interfacemay pose limitations on the patients
with visual, auditive, or cognitive impairments that may impede the manipula-
tion and correct understanding of the system; hence, such patients were excluded
from the study based on their clinical records presented upon entrance to the CR
programme. The patients with a different cardiovascular pathology than the afore-
mentioned were also not considered for the study.

– Dropout and Incomplete Criteria The initial duration of the CR programme
was considered to be 18 weeks, where patients would attend twice per week as
appointed. However, due to some of the patients missing their sessions, this initial
policy resulted in a shorter CR duration for the patients (23-33 sessions). Corre-
spondingly, the study policy was reviewed in 2018 to last 36 sessions, in order
to improve the programme offered to the patients. Thus, we define a drop-out
from the study to be the case when the patient does not attend three sessions in
a row without a justification. The patient, in that case, is dropped from the study,
but may continue the CR programme without the robot or tablet interface. On the
other hand, if the patient could not complete the programme due to a critical health
condition, funding (e.g. health insurance coverage) or COVID-19 outbreak, their
CR programme is considered incomplete, since these reasons are beyond their
control.

5.4 Participants and demographic data

Totally, 43 patients were recruited for the study: 15 patients for control and social
robot conditions and 13 for the personalised robot. However, due to dropouts and
incomplete therapies due to critical health conditions, funding, or the COVID-19
outbreak in March 2020, only 26 patients could complete the study. The demographic
data of the patients that actively participated in the rehabilitation and completed the
outpatient phase are presented in Table 1.

Of all patients present at a group-based CR session, only one patient was a partici-
pant of the study. This decision wasmade to prevent patients in the study frommeeting
each other, which could potentially influence their perception of the robot. However,
this places additional restrictions on the scheduling; hence, only 3 to 5 patients enrolled
in the study could attend a CR session per day.
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Table 1 Demographic data of the patients that actively participated and completed the outpatient phase of
the CR programme within the study

Control Social Robot Personalised Robot

Participants 9 11 6

Age (years), mean (SD) 56.6 (7.8) 55.7 (11.2) 60.3 (6.5)

Gender 9 males 10 males, 1 female 6 males

Age range 44–70 43–80 56–69

Body Mass Index, mean (SD) 26.2 (2.6) 29.2 (3.9) 25.0 (2.1)

Obese 54.5%

Overweight 66.7% 36.4% 50%

Healthy weight 33.3% 9.1% 50%

5.5 Measures

To evaluate the impact of personalisation in SAR for long-term CR, we developed the
following measures based on the parameters taken during a conventional CR session
and our hypotheses.

5.5.1 Physiological progress

The patient’s physiological progress is assessed using the variables measured by the
sensor interface.
Cardiovascular parameters These parameters reflect the patient’s cardiovascular per-
formance during the exercise performed in cardiac rehabilitation. Primarily, two
measurements are analysed: (i) average heart rate during the training phase (THR)
and (ii) recovery heart rate (RHR), which represents the difference between the heart
rate one minute after ending the training phase of the exercise, and the THR. RHR is
normalised (RH Rnormalised ) with the patient’s initial resting heart rate measured at
the beginning of the session (IHR) to allow comparison between patients. Equation 1
shows the calculation for the RHR.

RH R = T H R − H Rpost−training

RH Rnormalised = RH R/I H R
(1)

Gait Spatiotemporal parameters Measuring the gait parameters is important to track
the patient’s performance during the exercise. Themain components of analysis during
the gait can be classified in distance (spatial) measurements and time (temporal param-
eters). Within the CR programme, three of these variables are assessed: (i) cadence,
which represents the total number of full cycles taken within a given period (Thomp-
son 2002), (ii) the step length that describes the distance between the point of initial
contact of one foot and the initial contact of the opposite foot (Thompson 2002), and
(iii) the patient’s gait speed, which also represents the treadmill’s speed and is used to
measure exercise intensity.
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Cervical Posture Because the CR sessions are performed on a treadmill, a healthy pos-
ture is essential to avoid dizziness, falls and achieve a correct gait performance (Martin
and McConahay 1972). Thus, we measure the cervical posture (i.e. head inclination)
using the camera of the tablet located in front of the patient through a head gaze estima-
tor (Lemaignan et al. 2016). The output data acquired using the estimator correspond
to a binary value (e.g. ‘looking straight ahead’, ‘not looking straight ahead’), which
was used for immediate feedback and was not recorded for analysis.
Exercise Intensity parameters To measure the exercise intensity, the following param-
eters were acquired and measured, in addition to the treadmill speed: (i) The treadmill
inclination that was measured by an IMU (MPU9150) located on the treadmill’s floor
(the values vary between 0 and 5 degrees angle), and (ii) the patient’s perceived exer-
tion, as measured using the self-reported Borg Scale (Borg 1998). The Borg Scale
assesses in a subjective manner the exertion and intensity perceived by a patient
during the exercise (Aamot et al. 2014). At Fundación Cardioinfantil-Instituto de
Cardiología, the Borg scale varies between 6 and 20 (6 corresponds to a very low
level of the perceived exertion, 20 corresponds to a very high level of exertion). The
clinicians consider values between 6 and 13 as a safe (healthy) perceived exertion
level.
Warnings and Alerts Count As mentioned in Sect. 4.2, the social robot provides dif-
ferent types of feedback. As an additional indicator of the patient’s physiological
progress, call medical staff alerts and high heart rate warnings during the session
were counted.

5.5.2 Long-term perception of the robot

The Unified Theory of Acceptance and the Use of Technology (UTAUT) (Venkatesh
et al. 2003) questionnaire and its extension the Almere model (Heerink et al. 2010)
are commonly used to evaluate key aspects of a socially assistive therapy through sev-
eral concepts, such as perceived utility, trust, and adaptivity. We previously adapted
UTAUT and the Almere model for a CR programme with a robot and applied it to 8
patients that completed the social robot condition, and a baseline group of 20 patients
in their early outpatient ormaintenance phase,without any prior experiencewith robots
or our system (Casas et al. 2019). The baseline group served as a baseline perception
of the robot and our system; hence, we did not include the patients from the control
condition (the interface only condition) to avoid biasing the results with their expec-
tations and perceptions of the system. A debriefing was organised for the baseline
group about SAR, its potential benefits, and the parameters measured by the system,
in addition to a video presentation of the social robot condition. The results showed
that the social robot improved the expectations and had a significant increase in the
patients’ perceived trust, utility, usefulness, and ease of use. However, the patients and
clinicians highlighted that the robot needs to have more social skills, such as person-
alised feedback, reminders, and physical activity updates, to enhance the interaction
and improve compliance. At the time of the work, the study was not completed and
the personalised robot condition has not yet started. In this work, we compare the per-
ceptions of all the patients that completed the social robot condition and evaluate how
personalisation changes these perceptions. Moreover, we developed additional ques-
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tions to evaluate the personalisation features, as shown in Table 10 in Appendix A. The
social and personalised robot conditions are compared to the baseline group based
on the same (non-personalised) questions, whereas the personalisation questions are
analysed separately.

Moreover, to evaluate whether personalisation helps build a relationship with the
robot and how this is affected over the long term, we applied the Working Alliance
Inventory (WAI) (Horvath and Greenberg 1989) to the patients in the personalised
robot condition. WAI is a 36-item self-report instrument based on Bordin’s pantheo-
retical tripartite conceptualisation, i.e. Bond, Task and Goal. This questionnaire was
used in long-term social robotics studies to evaluate the perceived task performance
and sociability of a robot (Bickmore and Picard 2005b; Hoffman and Breazeal 2010;
Kidd and Breazeal 2008). The Bond construct measures the degree of trust and famil-
iarity between the robot and the patient (e.g. “My relationship with the robot is very
important to me”). The Task construct evaluates the degree to which the robot and the
patient agree on therapeutic tasks (e.g. “The things that the robot is requesting from
me do not make sense”). The Goal construct aims to measure the degree to which
the robot and the patient agree on the goals of the CR programme (e.g. “The robot
perceives accurately what my goals are”). WAI uses negative (e.g. “I disagree with
the robot about what I ought to get out of therapy.”) and positive (e.g. “The robot and
I are in agreement on what is important for me to work on.”) formulations to limit the
bias in the results. We adapted WAI for cardiac rehabilitation to analyse the long-term
perception, as presented in Table 11 in Appendix A. WAI was applied at the middle
of the CR programme (18 sessions) and at the end of the programme (36 sessions).

5.5.3 Video analysis

One of the most common measurements used in SAR is the analysis of videos
(Sabanovic and Simmons 2006; Anzalone et al. 2015; Leite et al. 2012). Initially,
video recordings were not considered for the control or social robot conditions as we
did not expect to observe changes that would require video analysis, and due to the
lack of available resources. However, during these conditions, we observed a change of
behaviour towards the robot throughout the programme in the social robot condition,
which prompted the necessity to analyse the behaviour in detail. Correspondingly, the
consent forms were modified to include video recording for the personalised robot
condition, which started the other two conditions. The sessions were recorded with a
GoPro (GoPro, Inc., USA) camera installed in the CR service.

Gaze is an important factor in human–human interaction and human–robot inter-
action (Ruhland et al. 2015). Most of the work in HRI has focused on generating
meaningful robot gaze (Mutlu et al. 2009; Mwangi et al. 2018; Admoni and Scassel-
lati 2017); however, other studies also explored the importance of human gaze in HRI,
how to measure it and interpret it (Broz et al. 2012; Lemaignan et al. 2016; Oertel
et al. 2020). We draw from these works to interpret human gaze in our study and
use it as a metric for engagement. Moreover, non-verbal emotional responses, such
as gestures and facial expressions, and verbal social interactions with the robot, are
other methods for detecting engagement (Clave et al. 2016; Oertel et al. 2020). In
addition, analysing patients compliance can help determine the effectiveness of the
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socially assistive robot in achieving good task performance and engagement in long-
term therapy (Matarić et al. 2007; McColl and Nejat 2013; Fasola and Matarić 2013).
Correspondingly, the video analysis was made by two independent coders based on
the following interactions: (i) gaze of the patient to the robot, (ii) social interaction
of the patient’s verbal and non-verbal (e.g. positive or negative expressions, gestures)
responses to the robot, and talking about the robot to other patients, (iii) medical staff
interactionwith the robot, such as the doctor touching the head of the robot to suppress
the call medical staff alert, or interacting with it verbally and non-verbally beyond the
requirements of the task, and (iv) patient compliance to the cervical posture request.
Prior to the analysis, a coding session was performed with the coders to unify the
measurement method. All the variables were coded as binary (e.g. 1: gaze triggered
or 0: no gaze behaviour) and comments were added to specify the nature of the event
(e.g. when a social interaction was triggered, the event was coded, and a comment
was used to describe the situation). We set a 11.8% overlap (randomly selected 24
sessions corresponding to 8.95 hours) for the coding data to verify the validation of
the coding results, which is sufficient to establish inter-rater reliability (O’Connor and
Joffe 2020).

5.6 Statistical analysis

The patient’s performance in a session is affected by the exercise intensity, as well as
external factors, such as illness and tiredness prior to the session. Thus, to decrease
the intrasubject variability, the data are analysed within six stages (i.e. 6 sessions
per stage), as suggested by the medical staff at Fundación Cardioinfantil-Instituto de
Cardiología.

5.6.1 Numerical data

Our study is a two-waymixed design, that is, it contains repeatedmeasures for different
groups. However, the data for physiological progress, cervical posture corrections, and
the interactions with the robot are not normally distributed (Shapiro–Wilk test gives
p < .001on residuals, and the visual inspection of the residuals shows a large diversion
from linear reference lines). Moreover, the homogeneity of variances assumption of
ANOVA is violated (p < .05 in Levene’s test and Box’sM-test) in almost all the cases,
except for exertion levels and social interactions. Hence, ANOVA cannot be applied.
The nonparametric test that corresponds to a repeated-measures ANOVA is a Fried-
man test; however, it requires a complete block design, whereas the group sizes are
not equal (unbalanced data) due to the dropouts and the incomplete CR programmes.
In addition, due to the change in the experimental criteria, some of the patients com-
pleted the CR programme earlier, and the sensor failures within some of the sessions
caused incomplete (missing) data. Thus, we apply Johansen’s (Johansen 1980) general
formulation ofWelch (Welch 1938)–James (James 1951)’s statistic with Approximate
Degrees of Freedom (Villacorta 2017; Welch 1951; Keselman et al. 2003), which is
suitable for applying to repeatedmeasures and two-waymixeddesigns.Weevaluate the
differences between the stages and the conditions using pairwise tests, with Hochberg
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correction for multiple comparisons and Least-Squares Estimators (i.e. without trim-
ming), which are default parameters of the implementation (Villacorta 2017)4. In order
to evaluate the consistency and the magnitude of a particular phenomenon across dif-
ferent studies in the literature, effect sizes are reported for pairwise tests based on
Glass’s delta (Glass et al. 1981; Keselman et al. 2003; Villacorta 2017). This measure
does not classify effect sizes, such as ‘small’, ‘medium’ and ‘large’, in contrast with
Cohen (1988), because the practical importance of an effect depends on the context of
the applications, such as relative costs and benefits, and a small effect size can make a
substantial difference. A negative effect size denotes a decrease in the mean between
group 1 (e.g. social robot) and group 2 (e.g. personalised robot), whereas a positive
effect size denotes an increase. Inter-rater reliability agreement on the video data is
measured by Cohen’s kappa (κ) (Cohen 1960) and interpreted according to McHugh
(2012). Furthermore, the McNemar test, which enables comparing two classification
algorithms that are run only once (Dietterich 1998), is applied to compare MMIBN to
NAOqi face recognition. A more detailed analysis of user recognition in comparison
with a state-of-the-art open world recognition algorithm (Rudd et al. 2018) is available
in (Irfan et al. 2021).

5.6.2 Ordinal data

Likert scales are ordinal; hence, non-parametric tests should be applied to analyse
the questionnaires (Jamieson 2004). Correspondingly, Wilcoxon signed-rank test is
applied on WAI results with Bonferroni correction, because the same test is applied
to the patients twice (i.e. at the middle of their CR programme and at the end). Mann–
WhitneyU-test is applied for UTAUT for analysing the significant differences between
the conditions (i.e. independent samples).

6 Results

As previously stated, thiswork focuses on the impact of the personalisation of the robot
for the CR programme. Correspondingly, the results are analysed in that perspective,
comparing the effects of the personalised robot to that of the social robot, as well as
to the conventional CR programme, through various measures described earlier.

6.1 Adherence

While 43 patients participated in the study within the 2.5 year study duration, corre-
sponding to 1050 sessions, due to the reasons beyond the control of the patients—such
as funding, medical condition, and the outbreak of COVID-19—8 patients could not
complete the CR programme, and an additional 9 patients dropped out of the pro-
gramme. The control condition was completed in January 2019; however, the social
and personalised robot conditions were halted due to the COVID-19 pandemic in
March 2020; hence, 6 patients in the personalised robot condition and one patient

4 https://cran.r-project.org/web/packages/welchADF/index.html
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Fig. 6 CR programme status of the users in the control, social robot, and personalised robot conditions:
‘complete’ refers to the completed cardiac rehabilitation programmeas determinedby the clinicians; ‘incom-
plete’ is when patients need to stop the programme due to reasons beyond their control (e.g. funding,medical
condition, the outbreak of COVID-19), and ‘dropout’ refers to not attending 3 sessions in a row without a
justification

in the social robot condition could not complete the programme. Thus, we do not
have conclusive evidence on adherence to validate our initial prediction (P1a) for the
personalised robot condition. However, the attended sessions per condition in Fig. 6
shows that the dropouts occur at earlier stages of the CR programme mostly in the
control condition, which could indicate a higher tendency to continue the programme
with the presence of a (social or personalised) robot.

While the intended duration of the CR programme is 18 weeks (4.5 months) with
sessions twice per week, patients who attend the conventional CR sessions take on
average 5.7 months to finish the outpatient phase of the programme, as previously
highlighted in Sect. 4.3.3. This duration is decreased in the control condition to 4.7
months, which could be due to being part of a study. Nonetheless, both the patients
assisted by the social robot and the patients assisted by the personalised robot finished
their CR programme earlier within 4.6 months on average. Although the difference
between conditions is small, the findings suggest that SAR could encourage patients
to attend more actively to the sessions. Patients performing in the social robot and
personalised robot conditions were closer to the intended duration, which have multi-
ple benefits, not only in their cardiovascular response, but also for their rehabilitation
process, such as reducing the risk of a new cardiovascular event, and faster initiation
of the maintenance phase (III) of the CR programme to acquire more independence,
and reinforce the results obtained during the outpatient phase (II).

6.2 Physiological progress

As mentioned in the previous sections, the recovery heart rate (RHR) and the train-
ing heart rate (THR) are the most important physiological parameters of the CR
programme that determine a patient’s health progress. The increase in RHR signals
an improvement in the patient’s cardiovascular functioning and healthy recovery. As
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Fig. 7 Normalised recovery heart rate (RH Rnormalised ) throughout the cardiac rehabilitation programme
for control, social robot and personalised robot conditions. Recovery heart rate is normalised with the
initial resting heart rate on each session. The mean RH Rnormalised per stage is marked with X

Table 2 Welch–James ADF results (p-value and effect size in parentheses) of comparisons between stages
per condition for normalised recovery heart rate (RH Rnormalised ). Significant differences (p < .05)
are highlighted in bold. Consecutive stages and other pairwise comparisons do not exhibit any significant
differences

Control Increment Social Increment Personalised Increment
% Robot % Robot %

Stage 1/Stage 2 .27 (0.47) 49.35 .052 (0.53) 54.89 .51 (0.51) 71.08

Stage 1/Stage 3 .72 (0.37) 34.24 .002 (0.75) 82.43 .10 (0.72) 64.83

Stage 1/Stage 4 .11 (0.55) 48.55 p < .001 (0.99) 98.96 .10 (0.73) 55.01

Stage 1/Stage 5 .01 (0.75) 92.44 p < .001 (0.90) 96.93 .02 (0.84) 74.74

Stage 1/Stage 6 .85 (0.40) 68.24 p < .001 (1.13) 135.82 .005 (1.02) 109.98

previously described in Sect. 5.5.1, we analyse the normalised RHR to reduce the
subjectivity of the measurements that change between the patients and increase the
homogeneity. Figure 7 shows how this parameter changes throughout the CR pro-
gramme for the patients in all conditions. As was expected, the normalised RHR is
significantly different between the stages (TW J (5, 305) = 14.36, p < .001). Table 2
shows the percentage of increments of the normalised recovery heart rate and sig-
nificance analysis between the initial stage and subsequent stages. The results show
that the increments are generally greater and more rapid in the social robot condition
in comparison with other conditions, in contrast with our prediction P2a . Neverthe-
less, the patients assisted by the personalised robot present significant differences
starting from stage 5, demonstrating an improvement in the RHR and a success-
fully CR. The overall comparison between the conditions also exhibits significant
differences (TW J (2, 359) = 19.62, p < .001). In accordance with this result, the
pairwise comparison between conditions presents differences, (control-social robot:
p = .001, δ = 1.83, control-personalised robot: p = .02, δ = −1.29, and social-
personalised robot: p < .001, δ = −3.47), elucidating an effect of the robot over
the conventional CR sessions and the personalisation features (when comparing the
robot-assisted sessions). As mentioned before, the patients of the social robot con-
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Table 3 Welch–James ADF results (p-value and effect size in parentheses) of comparisons between con-
ditions per stage for normalised recovery heart rate (RH Rnormalised ). Significant differences (p < .05)
are highlighted in bold. Consecutive stages and other pairwise comparisons do not exhibit any significant
differences

Control - Control - Social Robot -
Social Robot Personalised Robot Personalised Robot

Stage 1 .48 (0.13) .25 (−0.36) .07 (−0.54)

Stage 2 .72 (0.06) .24 (−0.34) .09 (−0.46)

Stage 3 .05 (0.46) .99 (−0.003) .07 (−0.46)

Stage 4 .14 (0.32) .14 (−0.33) p < .001 (−0.81)

Stage 5 .63 (0.10) .13 (−0.42) .02 (−0.59)

Stage 6 .03 (0.64) .66 (0.12) .03 (−0.63)

dition presented a greater increment; however, as shown in Fig. 7, the distribution is
more symmetric (as depicted with a median that is in the centre of the distribution)
for the personalised robot condition, which is a positive finding signifying that the
patients tend to maintain a pattern in their RHR. In contrast, the comparison between
conditions per stage (Table 3) shows that most of the differences occurred between
the social robot and personalised robot, in particular for stages 4, 5, and 6. The cor-
responding reason could be due to the high-intensity training applied to the patients
in the personalised robot condition, as explained below, which might had an adverse
effect on the RHR.

Figure 8a shows the progress of the THR throughout the programme for all con-
ditions. The comparison between the conditions does not present differences for
the THR, neither in an overall approach (TW J (2, 402) = 1.05, p = .35), nor
for the comparison of conditions per stage (TW J (10, 275) = 1.03, p = .42). On
the other hand, the comparison between the stages shows significant differences
(TW J (5, 290) = 9.2, p < .001), in correlation with the expected behaviour during
the cardiovascular rehabilitation programme. The subsequent stages present signifi-
cant differences from the initial stage (Table 4) for the conditions assisted by a robot,
showing that the patients assisted by the social and personalised robot improved their
cardiovascular functioning. In the case of the personalised robot, most of the stages
present a greater increment than the social robot condition. This outcome can be due
to the physical activity intensity determined by the treadmill speed (as measured by
the gait speed of the patient) and inclination, which was higher for the personalised
robot (Fig. 8b and c).

For the gait speed, the statistical analysis shows that there are differences between
the stages (TW J (5, 330) = 17.47, p < .001) corresponding to the expected increase
in the treadmill speed within the CR programme. However, the analysis performed
for stages within each condition (Table 5) shows that the gait speed for the per-
sonalised robot only presents differences between stages 1 and 4 and stages 1 and
6, whereas the differences are significant starting from stage 2 in the other con-
ditions. This result can suggest that the treadmill speed for the personalised robot
condition was more homogeneous across time with slight differences in increments.
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Fig. 8 Physiological parameters of the patients in all conditions: (a) training heart rate (THR), (b) gait
speed, (c) treadmill inclination, (d) exertion level of the patients based on Borg Scale (range 6-20). The
mean value per stage is marked with X

Table 4 Welch–James ADF results (p-value and effect size in parentheses) of comparisons between stages
per condition for training heart rate (THR). Significant differences (p < .05) are highlighted in bold.
Consecutive stages and other pairwise comparisons do not exhibit any significant differences

Control Increment Social Increment Personalised Increment
% Robot % Robot %

Stage 1/Stage 2 .97 (0.34) 6.10 .03 (0.55) 8.72 .008 (0.89) 7.78

Stage 1/Stage 3 .84 (0.39) 5.88 .002 (0.70) 11.47 p < .001 (1.28) 11.90

Stage 1/Stage 4 .97 (0.29) 4.04 .006 (0.64) 10.47 p <.001 (1.47) 12.06

Stage 1/Stage 5 .69 (0.42) 6.94 .01 (0.63) 10.71 p < .001(1.23) 8.50

Stage 1/Stage 6 .97 (0.18) 4.50 .01 (0.77) 13.21 p < .001 (1.48) 15.43
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Table 5 Welch–James ADF results (p-value and effect size in parentheses) of comparisons between stages
per condition for gait speed. Significant differences (p < .05) are highlighted in bold. Consecutive stages
and other pairwise comparisons do not exhibit any significant differences

Control Increment Social Increment Personalised Increment
% Robot % Robot %

Stage 1/Stage 2 .17 (0.48) 22.66 .12 (0.46) 16.18 .91 (0.36) 3.20

Stage 1/Stage 3 p < .001 (0.96) 44.06 .003 (0.66) 22.64 .15 (0.65) 6.66

Stage 1/Stage 4 .002 (0.79) 41.66 .02 (0.57) 22.98 .04 (0.82) 8.30

Stage 1/Stage 5 p < .001 (0.89) 42.56 .001 (0.78) 24.36 .91 (0.03) 3.23

Stage 1/Stage 6 p < .001 (1.20) 45.58 p < .001 (1.04) 41.49 .04 (0.83) 12.00

Table 6 Welch–James ADF results (p-value and effect size in parentheses) of comparisons between condi-
tions per stage for gait speed. Significant differences (p < .05) are highlighted in bold. Consecutive stages
and other pairwise comparisons do not exhibit any significant differences

Control - Control - Social Robot -
Social Robot Personalised Robot Personalised Robot

Stage 1 .69 (0.08) p < .001 (2.09) p < .001 (2.07)

Stage 2 .86 (0.03) p < .001 (1.45) p < .001 (1.39)

Stage 3 .15 (−0.27) p < .001 (0.88) p < .001(1.24)

Stage 4 .40 (−0.15) p < .001 (0.95) p < .001 (1.13)

Stage 5 .71 (−0.08) .12 (0.43) .03 (0.55)

Stage 6 .87 (0.04) .002 (0.94) .006 (0.75)

The comparison between the conditions shows significant differences, for the over-
all perspective (TW J (2, 439) = 110.24, p < .001) and considering the stages
(TW J (10, 298) = 2.39, p = .01). As shown in Fig. 8b, the gait speed was con-
sistently higher for the personalised robot condition, which is confirmed with the
significant differences found between the conditions (control and personalised robot:
TW J (1, 386) = 125.87, p < .001, δ = 6.33, social robot and personalised robot:
TW J (1, 415) = 163.36, p < .001, δ = 6.75). Similarly, the comparison between
conditions per stage (Table 6) shows that there are significant differences between the
personalised robot with the control and social robot conditions.

In the case of the treadmill inclination, there are no significant differences between
the stages (TW J (5, 166) = 1.20, p = .31). We observed that during the study, the
healthcare staff do not drastically change the inclination to minimise patient exertion
and assure a safe rehabilitation programme. However, the outcomes of the Welch–
James ADF test show that there are significant differences between the conditions
overall (TW J (2, 280) = 156.51, p < .001) and when considering the ‘interaction’
between conditions and stages (TW J (10, 224) = 3.93, p < .001). This difference is
due to the higher treadmill inclination applied in the personalised robot condition:
control and personalised robot (TW J (1, 220) = 232.87, p < .001, δ = 9.67), social
and personalised robot (TW J (1, 192) = 303.04, p < .001, δ = 10.89), control and
social robot (TW J (1, 347) = 3.07, p = .08, δ = −0.90). These differences are
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Table 7 Welch–James ADF results (p-value and effect size in parentheses) of comparisons between con-
ditions per stage for treadmill inclination. Significant differences (p < .05) are highlighted in bold.
Consecutive stages and other pairwise comparisons do not exhibit any significant differences

Control - Control - Social Robot -
Social Robot Personalised Robot Personalised Robot

Stage 1 .09 (0.33) p < .001 (2.43) p < .001 (2.01)

Stage 2 .28 (0.21) p < .001 (1.32) p < .001 (1.00)

Stage 3 .14 (−0.28) p < .001 (1.72) p < .001 (2.06)

Stage 4 .049 (−0.41) p < .001 (1.38) p < .001 (2.00)

Stage 5 .17 (−0.28) p < .001 (1.03) p < .001 (1.45)

Stage 6 .13 (−0.38) p < .001 (1.85) p < .001 (3.45)

shown in Fig. 8c and Table 7 (the analysis between stages), where the inclination in
the personalised robot group is significantly different from the other conditions.

The differences in the gait speed and treadmill inclination indicate that high-
intensity training is applied for the personalised robot condition. This type of training
did not have a negative effect on the training heart rate because the medical team
could intervene when the value reached a critical level based on the robot’s alerts.
High-intensity training might have resulted due to the following reasons: (i) clini-
cians trusted the continuous monitoring and capabilities of the robot more over time,
thus applying it in the personalised robot condition, which started two years after the
social robot condition, (ii) clinicians relied on the progress feedback of the person-
alised robot to adjust the session intensity, or (iii) the patients in the personalised
robot condition had a better cardiovascular functioning initially; hence, further study
is necessary to confirm the findings and reveal the underlying reasons, which could
shed a more clear light on how personalisation affects cardiovascular performance and
explain why P2a was not validated in this study. Nonetheless, the interviews with the
clinicians (Céspedes et al. 2021) provide support for trust in continuous monitoring
and correlate with their initial perspectives on applying high-intensity training based
on this feature (Casas et al. 2019).

There are significant differences for the Borg scale between the stages for all con-
ditions (TW J (5, 255) = 2.34, p = .04), which indicate that the exertion level changes
throughout the rehabilitation due to the physical activity intensity. However, Fig. 8d
shows that the sessions mostly remained within the safe exertion level (between 6
and 13) of the patients. On the other hand, the comparison between the conditions
(TW J (2, 377) = 0.18, p = .84) and the ‘interaction’ of the stage with the conditions
(TW J (10, 269) = 1.67, p = .09) did not exhibit significant differences. Nonetheless,
a significant difference was found in stage 5, between control and social robot condi-
tions (p = .01, δ = −0.59) and control and personalised robot (p = .04, δ = −0.53).
Furthermore, there are only significant differences for the control condition between
the initial stage and stage 4 (p = .004, δ = 0.73), and stage 5 (p < .001, δ = 1.12),
indicating that the control group perceived a higher level of exertion in these stages.
While these differences occurred only in the control group, the patients assisted by
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Fig. 9 Number of high heart rate warnings and critical heart rate (call medical staff ) alerts of the patients
throughout the CR programme. The results show that in contrast with the low perceived exertion levels
(Borg scale), warning and critical heart rate values may arise in the sessions throughout the programme.
The mean value per stage is marked with X

the robot in both scenarios maintained a healthy exertion level throughout the CR pro-
gramme, despite having a higher intensity training in the personalised robot group.

Thewarning and critical heart rates detected by the robot shed a different light on the
story (Fig. 9). For instance, the high HR warning significantly differs between stages
(TW J (5, 227) = 4.79, p < .001) due to the physical intensity changes. However, only
the personalised robot condition presents significant differences between the initial
stage and the subsequent stages (except for stage 5). Comparison between the robot
conditions presents differences for the overall analysis (TW J (1, 408) = 5.53, p =
.02). However, there is only a significant difference in stage 1 (p = .003, δ = −0.71).
Similar to the high HR warning, the call medical staff alert significantly differs
between the stages (TW J (5, 119) = 3.38, p = .007), supporting that the heart rate
changes across the CR programme due to the physical activity intensity, and may
reach critical values. Our previous work showed that these critical alerts could be
crucial in promptly detecting any complications and facilitate fast intervention by the
medical staff for life-saving measures (Irfan et al. 2020a). In particular, the analysis
between the stages based on the condition shows significant differences mostly in the
social robot (between the initial stage and stages 3, 4 and 6) than the personalised
robot, where the significant differences were only observed between stages 2 and 3.
There were no significant differences between the conditions on the number of alerts
received (TW J (1, 132) = 0.20, p = .66); however, in stage 2 (p = .03, δ = −0.44)
and stage 6 (p = .01, δ = −0.70) the patients in the personalised robot condition had
a lower number of alerts, as observed in Fig. 9. The lower number of alerts despite the
higher intensity training could indicate a positive effect of personalisation on increas-
ing patients’ cardiovascular functioning, thus, validating P2b.

6.3 Interaction with the robot

As previously highlighted, a correct cervical posture is important for the safety of the
patient during exercise on a treadmill, to prevent dizziness and falls. The comparison
between stages shows significant differences (TW J (5, 209) = 3.16, p = .009), corre-
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Table 8 Welch–James ADF results (p-value and effect size in parentheses) for cervical posture correction
in the social robot and personalised robot conditions, and the patients’ compliance in the personalised
robot condition. Significant differences (p < .05) are highlighted in bold. Consecutive stages and other
pairwise comparisons do not exhibit any significant differences

Social Robot - Personalised Robot

Stage 1 p < .001(−1.04)

Stage 2 .001 (−0.71)

Stage 3 .001 (−0.70)

Stage 4 .10 (−0.35)

Stage 5 p < .001 (−0.95)

Stage 6 .10 (−0.41)

Fig. 10 Number of cervical posture correction requests by the social robot and the personalised robot
conditions. The results show that the corrections were significantly less in the personalised robot condition.
The mean value per stage is marked with X

lating with the expected posture behaviour of the patients depending on the physical
activity intensity. On the other hand, no significant differences were found between the
stages per condition, in addition to a lack of interaction between stages and condition
(TW J (5, 209) = 1.16, p = .33). However, significant differenceswere found between
the social robot and personalised robot conditions (TW J (1, 421) = 58.24, p < .001),
as detailed in Table 8. Figure 10 shows that the posture corrections were lower for
the patients assisted by the personalised robot. The underlying reason could be the
progress feedback given by the personalised robot to the user in an individualised
manner. For instance, two events are highly relevant to influence a patient’s cervical
posture: (i) the feedback provided at the end of the sessions could positively affect
the patient’s intrinsic motivation to improve their next sessions (which would validate
P1b) and (ii) including the patient’s name as part of the feedback could improve the
patient’s perception and reaction over this type of feedback. However, considering that
the number of posture correction requests was lower for the patients in the person-
alised robot condition starting from the first stage, the result may also be due to the
differing characteristics of the patients; hence, further study with a larger population
is necessary to confirm the effects.
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Fig. 11 Number of cervical posture correction requests by the personalised robot and the corresponding
patients’ compliance to the requests. The results show that the patients complied well to the personalised
robot throughout the CR programme, except on the final stage. The mean value per stage is marked with X

The patients in the personalised robot condition complied well with the requests of
the robot, i.e. no significant differences were observed between requests and patient
posture corrections (TW J (1, 107) = 2.81, p = .10), as visible in Fig. 11, with a
moderate agreement between raters of the video analysis (Cohen’s κ = 0.665, z =
8.87, p < .001). While this compliance does not significantly differ with stage in
general (TW J (5, 71) = 0.87, p = .51), the in-depth analysis showed that the patients’
corrections significantly differed from the robot requests in the last stage of the CR
programme (p = .03, δ = −0.77), which indicates that the patients mostly main-
tained their compliance throughout the long-term rehabilitation, validating P3a , only
to decrease towards the end of the programme. The patients’ corrections are higher
in stage 3 (p = .004, δ = 1.28) and stage 4 (p = .03, δ = 1.16) in comparison with
the initial stage, which may have resulted from the physical intensity of the exercise.
During the sessions, the experimenters observed that the patients had more difficulty
in achieving a straight posture when the physical activity intensity was higher. We
could not analyse the compliance for the social robot condition, due to the lack of
video data or recorded gaze direction.

Figure 12 shows the gaze and social interaction for the personalised robot scenario,
as obtained from the video analysis. There is a moderate agreement between raters
for gaze (Cohen’s κ = 0.712, z = 9.55, p < .001) and a minimal agreement for
social interactions (κ = 0.319, z = 3.54, p < .001), which could be due to the subtle
cues in facial expressions that may go unnoticed. While gaze generally decreased
over the duration of the CR programme (TW J (5, 26) = 4.43, p = .005), in contrast
with P3b, a significant difference only exists between stage 2 and 5 (p = .02, δ =
−1.24). Although we expected that gaze would be maintained over time due to the
personalisation features, either a decrease in the novelty effect or an increase in the
physical activity intensity may have affected the gaze. The experimenters observed
that as the intensity is increasing during the sessions, focusing on the robot becomes
more challenging. On the other hand, social interaction was maintained throughout
the programme (TW J (5, 27) = 1.31, p = .29) validating P3c, and social interactions
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Fig. 12 Gaze and social interaction of the patients with the robot over the duration of the CR programme.
While gaze decreased over time, social interaction was maintained throughout the long-term rehabilitation.
The mean value per stage is marked with X

occurred often in response to the personalised behaviours of the robot (such as progress
feedback or correct user recognition), which indicate that the personalisation features
help maintain the social interaction over the long-term rehabilitation.

The patients interacted with the personalised robot in a variety of ways, such as
talking to the robot, smiling at being recognised or giving a negative response for an
incorrect recognition, smiling after motivational feedback, or saying “Bye!” to the
robot on their last session. They also talked to other patients about the benefits of the
robot during the session. The video recordings showed that the medical staff promptly
responded to the robot’s requests for assistance, and also interacted with the robot
repeatedly in several sessions, such as playfully trying to capture its gaze, thanking
the robot, joking with it, or talking about its benefits to other medical staff, which
often elicited positive reactions (e.g. smile, laugh, nod) during the interaction from
the patients in the study and those around.

6.4 Perception of the robot

Figure 13 and Table 9 present the Unified Theory of Acceptance and the Use of
Technology (UTAUT) questionnaire results and the significant differences between
the conditions. The perceptions of the patients that completed the CR programmewith
the social robot are significantly more positive than the expectations of the baseline
group, in terms of perceived usefulness, utility, ease of use, and trust, in agreement
with the preliminary results (Casas et al. 2019). On the one hand, the patients perceived
the personalised robot significantly safer and trusted it more than the baseline group.
On the other hand, the perceived utility of the personalised robot was significantly
less than the social robot, in contrast with P4a . We believe this may be due to the
user recognition and recall problems that was experienced within the sessions, which
may have caused negative experiences (Hancock et al. 2011). Only 38% of the known
users were correctly recognised by user recognition, and 44% of the new users were
correctly detected. The poor performance was due to the failures arising from face
recognition, which identified most users as new, only correctly identifying 35% of
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Table 9 Mann–Whitney U-test results for the Unified Theory of Acceptance and the Use of Technology
(UTAUT) questionnaire (non-personalised questions) for the baseline group, the social robot and person-
alised robot conditions. The significant differences (p < .05) are highlighted in bold

Construct Baseline Group -
Social Robot

Baseline Group
- Personalised
Robot

Social Robot - Per-
sonalised Robot

Perceived Usefulness (U) .002 .35 .07

Perceived Utility (PU) p < .001 .49 .04

Safety (S) .22 .02 .28

Ease of Use (EU) .03 .13 .70

Perceived Trust (PT) p < .001 .03 .17

Perceived Sociability (PS) .10 .26 .65

Social Presence (SP) .17 .34 .78

Fig. 13 Unified Theory of Acceptance and the Use of Technology (UTAUT) questionnaire results for the
baseline group, the social robot, and personalised robot conditions. The patients in the baseline group did
not have prior experience of the system and completed the questionnaire after the debriefing and video
demonstrations of the social robot. The patients in the robot conditions completed the questionnaire after
their last session of the outpatient phase of the cardiac rehabilitation programme (i.e. after completing the
study). Significant differences are denoted with p < .05:*, p < .01:**, p < .001:***, as presented in
Table 9
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known users, significantly less than the multi-modal user recognition model, MMIBN
(p = .01). Nonetheless, both the social robot and the personalised robot conditions
improved the expectations about the robot and the system. Moreover, the responses
to the questions developed for the personalised robot condition (Table 10) showed
that the patients highly enjoyed the personalisation features (perceived enjoyment
(PE): Mdn = 5 on a scale from 1 to 5), especially because the robot used their
name, recognised them, and tracked their progress, validating P4b. Moreover, the
usefulness of the personalised robot, such as feeling engaged with the programme
and motivation to come to the sessions, was highly positive (perceived usefulness,
Mdn = 5), validating P1b. Usefulness and enjoyment are important factors for long-
term acceptance of the robot (de Graaf et al. 2016). In addition, most patients felt
attached to the robot at the end of the programme (Mdn = 4.5).

The additional feedback (through open questions) of the patients in the person-
alised robot condition was similar to that of previous findings of the social robot
condition (Casas et al. 2019). All patients recommended the system for future patients
and commented on its usefulness, personalisation, and effects on user motivation, such
as:

– “The cardiac rehabilitation with the robot will help you to recover as quickly as
possible, and you will be able to progress by being linked to the robot.” - P6

– “I feel confident in doing the rehabilitation with the robot, because I know that it
is personalised and constantly monitoring my performance and progress.” - P6

– “I really like the idea of the robot, as he was constantly monitoring. Also, I think
the corrections the robot made are good, it keeps me focused on the therapy.” - P5

– “It feels more comfortable being on a treadmill with the robot and because the
robot is more aware of the patient.” - P5

– “Working with the robot motivates me.” - P1, P6
– “Working with the robot makes me feel happy.” - P1
– “The robot interacts in a positive way with me, it helps me along with the medical

staff, and it is also a good tool for them. I would not change anything (about the
robot).” - P3

– “I would recommend the robot, it is a great help.” - P2

Nonetheless, the patients noted the need for improving the robustness of the user
recognition and sensors, and decreasing the repetitiveness of the robot phrases, which
was also mentioned in the previous study with the social robot (Casas et al. 2019). In
addition, one patient found the appearance and the sound of the robot to be childish.
Furthermore, because the progress feedback addressed the difficulties experienced in
the sessions, some of the patients had concerns that they were not recovering well.

Through the WAI questionnaire (Table 11), we can analyse how the patients’ over-
all perception of the robot changed over the long-term CR programme. Figure 14
shows the patients’ responses at the middle of the programme and at the final session.
Wilcoxon signed-rank test shows that there is a significant improvement between the
perceived goal construct in the positive formulation (p = .003, V = 42) from the
middle of the CR programme to the final session. No significant differences are found
in the other constructs between the tests (p > .05). The positive formulation (on the
right of the scale) of Bond,Goal, and Task shows that the robot and the CR programme
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Fig. 14 Working Alliance Inventory responses for the personalised robot condition evaluated at the middle
of the CR programme (18th session) and the final session. The results suggest that the patients’ positive
perception of the robot wasmaintained throughout the programme. A significant improvement was achieved
for the perceived goal construct in positive formulation (p = .003, V = 42)

were generally positively perceived, and the patients maintained their bond with the
robot over the duration of the programme, validating P3d . Furthermore, the patients
generally disagree with the negatively formulated questions (on the left of the scale),
such as “I feel uncomfortable with the robot.”, indicating that despite the negative user
experience due to sensor and recognition failures, patients perceived the robot highly
positively, which may support that personalisation mitigates the negative user expe-
rience, similar to (Irfan et al. 2020b). Another possibility is that the benefits patients
felt from the intervention mitigated their negative feelings about the errors.

7 Discussion

7.1 Hypotheses and predictions

Previous studies in SAR (in Sect. 2) highlighted the importance of encouraging feed-
back and continuous monitoring during repetitive exercise for healthcare programmes
to increase motivation and enhance task performance. Other research has shown the
value of personalisation for long-term HRI to improve users’ motivation, task perfor-
mance, engagement, and perceptions. Correspondingly, this work aimed to address
how these previous findings translate to long-term cardiac rehabilitation programmes,
through the use of fully autonomous generic and personalised socially assistive robots
in a clinical environment with non-expert users, that is, the patients and the clinicians.

Our study showed partial support forH1 (Personalisation will improve patient moti-
vation and adherence to the CR programme): adherence (P1a) could not be evaluated
properly, but an increase in motivation for the programme (P1b) was validated. H2
(Personalisation will improve the cardiovascular performance of the patients) was
also partially supported: while a lower gain of normalised recovery heart rate was
found with the personalised robot, thus, not validating P2a probably due to an imbal-
ance of participants’ initial health levels or the higher training intensity, the lower
number of alerts (P2b) was validated.H3 (Interaction with the personalised robot will
be maintained throughout the long-term programme) was mostly supported by our
study: except for an initial decrease in gaze (in contrast with P3b), patients complied
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with the robot (P3a), and the social interaction (P3c) and bond (P3d ) with the robot
were maintained throughout the long-term programme, validating these predictions.
Finally,H4 (Personalisation will improve patients’ perceptions of the robot) was par-
tially supported by our results: while the personalised robot was rated lower in utility
(in contrast with P4a) due to recognition and recall problems, personalised features
were acknowledged and enjoyed (validating P4b).

Overall, our long-term study showed that personalisation presents promises for
SAR in cardiac rehabilitation programmes. We draw on these findings and highlight
our key takes and suggestions based on the drawbacks and limitations, to benefit future
researchers exploring SAR for long-term interactions in the real world.

7.2 Benefits of personalisation

The main challenges of cardiac rehabilitation are providing close monitoring of
patients within the group sessions and assuring adherence to the long-term programme
to ensure that the patients recover fully and retain healthy habits. Our study showed that
robots motivate patients to continue the programme and finish the programme earlier.
Moreover, patients assisted by the personalised robot acknowledged that the person-
alisation features, such as the progress feedback and adherence tracking, encourage
them to come to the CR sessions.

The goal of the outpatient phase of the cardiac rehabilitation programmes is
improving cardiovascular functioning through structured exercises that progressively
increases in intensity to reduce the risk of suffering recurrent events and accelerating
recovery. Our results indicate that the patients assisted by a (generic or personalised)
robot achieved a significant improvement in their training and recovery heart rate
and, thus, cardiovascular functioning. Moreover, the clinicians trusted the continuous
monitoring aspects of the robots (Casas et al. 2019; Céspedes et al. 2021), which
may have reinforced applying high-intensity training throughout the CR programme
for the personalised robot, causing a greater increment in the patients’ training heart
rate. The high-intensity training did not increase the perceived exertion level, and the
patients experienced a lower frequency in reaching the critical heart rates in compari-
son with the patients in the social robot condition, further supporting the improvement
in patients’ cardiovascular functioning. Nonetheless, the adoption of the technology by
the medical staff and their immediate intervention in critical cases played an important
role in achieving this improvement (Irfan et al. 2020a).

Throughout the CR programme, the patients assisted by the personalised robot
maintained a better posture than the patients assisted by the social robot despite a
higher exercise intensity. Moreover, the patients mostly complied with the person-
alised robot’s requests throughout the long-term rehabilitation. These findings show
the importance of personalisation through addressing the person by their name and
progress feedback such that the patients are more motivated to maintain and improve
their good posture. Personalisation features also elicited gaze and social interaction
with the robot, such as smiling when the robot addressed them with their name or
upon correct user recognition, thanking the robot or talking to it after receiving per-
sonalised feedback. While gaze decreased after the initial session, which could be due
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to the fading novelty effect or the increasing exercise intensity requiring the patients
to focus on the exercise, the social interaction with the personalised robot was main-
tained throughout the long-term programme, as intended. Future work can examine
the behaviours of the patients assisted by the social robot through video analysis to
compare the benefits of personalisation more thoroughly. However, the presence of a
camera and videotaping may lead to a change of behaviour when observed (Irfan et al.
2018a), known as the Hawthorne effect (Roethlisberger et al. 1939), as well as selec-
tion bias on willingness to participate in the experiment, which could have affected
the interaction of patients with the personalised robot, but this might have been offset
during the long-term programme. Recording the gaze direction and duration through
the tablet could be an alternative approach in detecting engagement (Oertel et al. 2020)
that could eliminate such confounds.

Both the social robot and the personalised robot met the expectations about the
system. The patients commended the use of both robots, and expressed feeling more
secure due to continuous monitoring and immediate feedback. In addition, since the
patients participated in group sessions, other patients that were not part of the study
were able to observe its benefits, and several of them declared interest in working
with a robot in their CR programme. Personalisation features were highly enjoyed by
the patients, and the progress and adherence feedback were reported to be useful by
the patients, suggesting improvement in motivation and increased adherence to the
programme, as initially aimed. While the patients felt initially sceptical towards the
robot’s role due to their lack of prior experience (as observed by the experimenters),
the clinicians noted that their trust in the measurements and its feedback increased
over time. These observations were supported by the WAI questionnaire results in
which the perceived goal was significantly improved over time. Moreover, patients
maintained their bond with the personalised robot and their perceptions over the
duration of the programme. These findings are in line with the clinicians’ perceptions
that the personalisation of the robot improves the quality of the interaction (Céspedes
et al. 2021).

Continuous monitoring and immediate feedback aspects of both robots were highly
appreciatedby thepatients and the clinicians in termsof the awareness of patient perfor-
mance within the session. Additionally, progress tracking throughout the programme
by the personalised robot helped inform both the medical staff and the patients, which
increased the awareness of themedical staff further to detect complications (Irfan et al.
2020a; Céspedes et al. 2021), and provided knowledge of their recovery to the patients,
thereby improving their perception of the CR programme and their motivation. While
all of these aspects could be provided without the presence of a robot, i.e. through ver-
bal feedback from the tablet interface, previous studies showed the added benefits of
embodiment in improving compliance, likeability, social engagement, adherence, and
task performance, as discussed in Sect. 2. However, having a robot in a rehabilitation
programme is not cost efficient, in terms of the initial investment and maintenance
requirements; thus, future work can investigate whether the lack of a robot could
reproduce the benefits found in this study.
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7.3 Drawbacks of personalisation and suggestions for future work

Long-term studies are labour- and time-intensive; thus, it is challenging to recruit
subjects willing to participate, especially for a rehabilitation programme with a novel
system, as the patients may be sceptical towards the approach (Casas et al. 2019).
Moreover, dropouts and the incomplete rehabilitation experienced due to unforeseen
reasons such as funding, the outbreak of COVID-19, and other medical conditions,
caused a relatively limited number of patients with skewed characteristics (i.e. gender,
age, and obesity) that may have affected the overall results. Furthermore, the patients
were progressively recruited over 2.5 years and the personalised robot condition was
started two years after the initial two conditions, which could have affected the initial
technological acceptance and perceptions of patients towards robots (Pino et al. 2015).
Nevertheless, our statistical analyses and the effect sizes indicate that the patients
assisted by the personalised robot improved their cardiovascular functioning in terms
of their training heart rate and endurance (evident by low exertion levels and lower
critical heart rate alerts) with the high-intensity training, along with a better cervical
posture, in comparison with the social robot. However, personalisation was found to
have drawbacks.

While the personalised robot led to a higher increment from the patients’ initial
recovery heart rate than the conventional CR programme, which is one of the primary
parameters that reflect the patient’s cardiovascular performance, the social robot pre-
sented a greater and more rapid improvement. However, this result could be due to
the higher intensity training applied to the patients assisted by the personalised robot;
hence, a further balanced (i.e. same level of exercise intensity) experiment is necessary
to confirm the findings.

Relying on full autonomy in a real-world environment brought about challenges
such as malfunctioning in the sensors and the robot, as well as connection problems
with the tablet interface, which may have caused negative perceptions of the robot,
in addition to missing data. Especially relying on a user recognition system for per-
sonalisation decreased the perceived usefulness, utility, and trust to the robot, and the
low reliability of the user recognition system was remarked by the patients. While the
multi-modal incremental Bayesian network (MMIBN) with online learning is the only
method that supports sequential and incremental recognition of previous and newusers
without requiring pre-training for real-time HRI, user recognition can be improved by
using identifiers with lower noise, integrating additional non-intrusive modalities (e.g.
voice, facial marks, eye colour) or by using other online learning methods. Another
option is to remove user recognition, e.g. through requesting the patient’s name from
the tablet interface either from the patient or the clinician; however, the questionnaires
and video analysis showed that the patients enjoyed being recognised, and it could
also decrease the naturalness of the interaction. Moreover, the acquisition of more
robust medical sensors is necessary to ensure the reliability of the data. Nonetheless,
the highly positive perceptions of the patients indicate that negative user experiences
can be overcome with the added benefits of the robot.

Patients and clinicians remarked that both robots were repetitive; thus, novel and
a larger variety of robot responses should be added to improve the sociability and
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social presence of the robot, especially in long-term interactions. A future research
direction can be to adapt these responses based on the patient’s sensory values and
adapt progress feedback to reflect the overall (or stage) progress instead of comparing
with the previous session, to keep the interactions engaging and interesting in the
long-term (Matarić and Scassellati 2016).

While speech and emotion recognition can be integrated with the robot to improve
the naturalness and adaptivity of the interaction, these may not reliable in a noisy real-
world environment. For instance, Fundación Cardioinfantil-Instituto de Cardiología
plays loud music to motivate the patients in their exercise, which could cause failures
in speech recognition. Thus, gesture recognition could be a better alternative. Emo-
tions can be misleading due to the patients’ exertion levels; hence, extracting fatigue
levels from cameras and wearable sensors could be more reliable and provide a com-
plementary measure to the Borg scale for detecting when to provide motivation and
additional alerts (Pinto et al. 2020).

The appearance and voice of the (NAO) robotwere found to be childish by one of the
patients, which could have affected the underlying perceptions of the patients (Goetz
et al. 2003; Pino et al. 2015). Future work can use other taller and mobile platforms,
such as a Pepper robot (SoftBank Robotics Europe, France), to also address other
patients in thegroup session.Moreover, other robotic platformswith facial expressions,
such as Nexi (MIT Media Lab, USA), can be used to improve the sociability of the
robot (Johanson et al. 2020).

While the architecture of our patient–robot interface and personalisation features
were designed in collaboration with medical specialists, this study showed various
additional features that can be changed (e.g. progress feedback structure) or added to
the system based on the needs of the patients, highlighting the importance of co-design
(or participatory design). Co-design is the process where users (stakeholders) are
involved in designing a product from the idea generation stage (Sanders and Stappers
2008). Involving patients and medical specialists in the design of a socially assistive
system not only allows adapting to their (changing) needs, but also enabling them to
understand the limitations of the system and actively contribute to the design of their
care (Bate and Robert 2007; Šabanović 2010).

8 Conclusion

This paper presented a personalised socially assistive robot for the outpatient phase of
a long-term cardiac rehabilitation programme. The aim of the socially assistive robot
is to improve motivation and adherence to the programme. Personalisation features,
such as recognising patients, addressing by their name, tracking their attendance, and
providing progress feedback, were developed to improve andmaintainmotivation over
the long-term interaction. Three conditions were designed to evaluate the impact of
socially assistive robotics and personalisation on conventional cardiac rehabilitation,
labelled as social robot, personalised robot, and control, respectively. 43 patients
were recruited for the study; however, due to the dropouts and the external unforeseen
reasons, such as funding, the outbreak of COVID-19, and other medical conditions,
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26 patients (9 for control, 11 for social robot, 6 for personalised robot) actively
participated and completed the outpatient phase of cardiac rehabilitation and the study.

The social and personalised robots were found to improve cardiovascular function-
ing in comparisonwith a conventional cardiac rehabilitation programme. Furthermore,
the patients assisted by a robot completed their rehabilitation in a shorter duration,
suggesting benefits on adherence. Moreover, the perceptions of the patients and the
clinicians improved in comparison with expectations, and they were recommended
for future use by both groups. The continuous monitoring of the robot enabled prompt
detection of critical conditions, which may have reinforced the trust of the clinicians
in the robot and thus, providing high-intensity training in the personalised robot con-
dition. This resulted in a higher training heart rate without an adverse effect on the
endurance (low perceived exertion levels and critical heart rates), however, a lower and
slower improvement in the recovery heart rate in comparison with the patients assisted
by a social robot. Moreover, relying on a fully autonomous robot for personalisation
in long-term rehabilitation brought along sensor and user recognition failures, which
decreased the perceived utility of the robot. On the other hand, personalised features
often elicited gaze and social interaction, facilitated a bond with the user, and were
highly positively perceived and this perception was maintained in the long-term, sug-
gesting that various benefits of personalisation can overcome its drawbacks, supporting
the potential for improving the conventional cardiac rehabilitation programmes and
the long-term interaction with a socially assistive robot.
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A Questionnaires

Table 10 Additional questions
developed for the Unified
Theory of Acceptance and the
Use of Technology (UTAUT)
questionnaire to evaluate the
perceptions of the patients
specific to the personalised robot
condition, in terms of perceived
usefulness (U), perceived utility
(PU), perceived enjoyment (PE),
perceived adaptivity (PA),
perceived sociability (PS), social
presence (SP), and attitude (A)

Construct Question

U I feel encouraged to come to the sessions.

I feel engaged in the therapy.

I feel that the robot helped me progress in my therapy.

I feel encouraged about my therapy when the robot
comments on my session performance.

PU The robot recognises me correctly.

The robot remembers my previous sessions correctly.

The robot tracks my session performance correctly.

PE I am pleased that the robot recognises me.

I am pleased that the robot uses my name.

I am pleased to hear about my therapy progress.

I am pleased that the robot remembers me.

I am pleased to work with the robot.

PA I feel that the robot personalises its interaction.

PS I feel that the robot knows me well.

SP I feel that the robot has a personality.

I feel compelled to come to the sessions because the
robot comments on my absence.

A I feel attached to the robot.

Table 11 Adapted Working Alliance Inventory (WAI) that measures the long-term perception of the robot
within the personalised robot condition, with Bond, Task and Goal constructs

Construct Formulation Question

Bond Positive The robot and I understand each other.

I believe the robot likes me.

I believe the robot is genuinely concerned for my welfare.

The robot and I respect each other.

I am confident in the robot’s ability to help me.

I feel that the robot appreciates me.

The robot and I trust one and other.
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Table 11 continued

Construct Formulation Question

My relationship with the robot is very important to me.

I feel the robot cares about me even when I do things that the robot
does not understand me.

Negative I feel uncomfortable with the robot.

I feel the robot is not totally honest about its feelings toward me.

I have the feeling that if I say or do the wrong things the robot will
stop working with me.

Task Positive The robot and I agree about the things I will need to do in the
therapy to help improve my situation.

What I am doing in the therapy gives me new ways of looking at
my problem.

I am clear on what my responsibilities are in therapy.

I feel that the things I do in therapy will help me to accomplish the
changes that I want.

I am clear as to what the robot wants me to do in these sessions.

The robot and I are in agreement on what is important for me to
work on.

I believe the way that the robot and I are working in my problem is
correct.

Negative I find what I am doing in therapy confusing.

I believe the time robot and I are spending together is not spent
efficiently.

I find that the robot tasks during the therapy are unrelated to my
concerns.

I am frustrated by the things I am doing in therapy.

The things that robot is requesting from me do not make sense.

Goal Positive The robot perceives accurately what my goals are.

I wish that the robot could configure the therapy according the
purpose of our session.

The goals of these session are important to me.

The robot and I are working towards mutually agreed upon goals.

As a result of these session I am clearer as to how I might be able to
change.

The robot and I collaborate on setting goals for my therapy.

The robot and I established a good understanding of the kind of
changes that would be good for me.

Negative I am worried about the outcome of these sessions.

I disagree with the robot about what I ought to get out of therapy.

The robot does not understand what I am trying to accomplish in
therapy.

The robot and I have different ideas on what my problems are.

I do not know what to expect as the result of my therapy.
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