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OBJECTIVE

Current clinical guidelines formanaging type 2 diabetes do not differentiate based
on patient-specific factors. We present a data-driven algorithm for personalized
diabetes management that improves health outcomes relative to the standard
of care.

RESEARCH DESIGN AND METHODS

We modeled outcomes under 13 pharmacological therapies based on electronic
medical records from 1999 to 2014 for 10,806 patients with type 2 diabetes from
Boston Medical Center. For each patient visit, we analyzed the range of outcomes
under alternative care using a k-nearest neighbor approach. The neighbors were
chosen to maximize similarity on individual patient characteristics and medical
history that were most predictive of health outcomes. The recommendation al-
gorithm prescribes the regimen with best predicted outcome if the expected im-
provement from switching regimens exceeds a threshold.We evaluated the effect of
recommendations on matched patient outcomes from unseen data.

RESULTS

Among the 48,140 patient visits in the test set, the algorithm’s recommendation
mirrored the observed standard of care in 68.2% of visits. For patient visits in
which the algorithmic recommendation differed from the standard of care, the
mean posttreatment glycated hemoglobin A1c (HbA1c) under the algorithm was
lower than standard of care by 0.44 6 0.03% (4.8 6 0.3 mmol/mol) (P < 0.001),
from 8.37% under the standard of care to 7.93% under our algorithm (68.0 to
63.2 mmol/mol).

CONCLUSIONS

A personalized approach to diabetes management yielded substantial improve-
ments in HbA1c outcomes relative to the standard of care. Our prototyped dash-
board visualizing the recommendation algorithm can be used by providers to
inform diabetes care and improve outcomes.

Type 2 diabetes is typically managed through healthy eating, physical activity, oral
medication, and/or insulin injections. Although there are evidence-based clinical
guidelines for glycemic control (1), how to choose among pharmacological therapies
to maximize effectiveness for a given patient is not well understood. There has been
growing interest in using clinical evidence to understand the effects of treatments
in different populations with type 2 diabetes. In a joint statement from 2012, the
American Diabetes Association and the European Association for the Study of
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Diabetes highlighted theneed for a patient-
centered approach to diabetes manage-
ment (2). The need for an individualized
approach is especially pressing given the
variety of disease symptoms, comorbid
conditions, pharmacological treatments, in-
dividual treatment histories, and other in-
dividual characteristics that may inform
treatment (3).
Evidence suggests that the response

to blood glucose regulation agents can
differ among population subgroups. A
post hoc secondary analysis found that
African American adults with prediabe-
tes responded better to metformin than
Caucasian adults with prediabetes (4).
Another study recommended less ag-
gressive treatments for older patients,
as they were more likely to experience
severe consequences from hypoglycemia
(5). These studies each provide valuable
insights with respect to a single subgroup
or treatment, but do not offer a decision
rule for the general population that pro-
viders can easily apply in practice.
Tailoring glycemic management for

specific subpopulations can be critical.
Among patients with chronic kidney dis-
ease, contraindication to metformin
needs to be taken into consideration
when prescribing medication (6). Sepa-
rate glycated hemoglobin A1c (HbA1c)
goals may be needed for subgroups or
individuals differentiated by age, comor-
bidities, and other clinical characteristics
(3). A personalized treatment recommen-
dation using a quantitative approach could
readily incorporate different glycemic tar-
gets and contraindications and thus al-
low for more systematic management of
subgroups.
We provide an algorithm that generates

a personalized type 2 diabetes treatment
recommendation for any given patient
based on evidence from historical out-
comes of similar patients drawn from an
electronicmedical records (EMR)database.
EMR analysis allows for pinpoint com-
parisons of effectiveness because of the
abundance of clinical evidence frommulti-
ple treatment options administered to a
diverse population over long-term patient
clinical histories. EMR data combine the
large sample sizes found in some insurance
claims databases with the depth of longi-
tudinal clinical evidence typically found in
clinical trials. One caveat is that EMR data
are not controlled via randomization.
Our methodological approach applies

machine learning techniques and causal

inference to make personalized recom-
mendations based on comparative ef-
fectiveness among subpopulations in
the EMR database. Machine learning
techniques have been increasingly adopted
in health care, along with many other
fields (7–9). Our novel approach lever-
ages the power of analytics and abundant
data in the EMR system to improve qual-
ity of care.

The recommendations are personal-
ized by patient characteristics, including
age, sex, race, BMI, treatment history,
and diabetes progression. We evaluate
the effectiveness of the personalized
treatment recommendations against
the current standard of care by estimat-
ing patients’ counterfactual outcomes
from historical outcomes of similar pa-
tients in the EMR database. We develop a
prototype clinical support dashboard that
provides evidence for the algorithm’s rec-
ommendations and could guide providers
in caring for patients with type 2 diabetes
in a personalized manner.

RESEARCH DESIGN AND METHODS

Analytic Overview
Wemodeled outcomes for patients with
type 2 diabetes based on EMR data. We
divided each patient’s medical history
into distinct lines of therapy, each char-
acterized by a particular drugmonother-
apy or combination therapy. Within
each line of therapy, we considered pa-
tient visits occurring every 100 days. At
each visit, the provider decides whether
to proceed with the patient’s current line
of therapy or to recommend an alterna-
tive regimen.Wedevelopedanonparamet-
ric prescriptive algorithm that provides
personalized treatment recommendations.
For each patient visit, we used k-nearest
neighbor (kNN) regression (10) to predict
the potential HbA1c outcome under each
treatment alternative. The nearest neigh-
bors were chosen to control for confound-
ing that may be present in nonrandomized
data (11) and to maximize similarity on the
patient characteristics that were most
predictive of outcomes. The algorithm
then prescribed the regimen with best
predicted outcome, provided the pre-
dicted improvement relative to the
patient’s current regimen exceeded a
confidence threshold. The outcomemet-
ric was the average HbA1c measurement
75 to 200 days after the visit date. The
effect of the prescriptive algorithm was
evaluated by comparing the expected

HbA1c outcome under our recommended
therapy to the observed outcome under
the standard of care (ground-truth) ther-
apy, according to a commonly used
matching approach (12). We conducted
additional simulations to ensure that the
results were robust to training models on
different datasets and using alternative
predictive modeling techniques.

Data
Through a partnership with Boston Med-
ical Center (BMC), an academic medical
center in Boston, MA, we obtained EMR
for .1.1 million patients from 1999 to
2014. In this dataset, 10,806 patients
met all of the following inclusion criteria:

c Were present in the system for an
observation period of at least 1 year;

c Received a prescription for at least one
blood glucose regulation agent, includ-
ing insulin, metformin, sulfonylureas,
or one of the other blood glucose reg-
ulation agents listed below, and had at
least onemedical record 100 days prior
to the date of this prescription;

c Had at least three recorded labora-
tory measurements of HbA1c; and,

c Did not have a recorded diagnosis of
type 1 diabetes, as defined by the pres-
ence of ICD-9 diagnosis code 250.x1 or
250.x3 combined with the absence of
any subsequent prescriptions for oral
blood glucose regulation agents. (If the
patient received oral blood glucose
regulation agents subsequent to one
of these diagnosis codes, we assumed
the diagnosis record was an error.)

For each patient, we had access to de-
mographic data, including date of birth,
sex, and race/ethnicity, and to all BMC
EMR data, including a history of drug pre-
scriptions and measurements of height,
weight, BMI, and HbA1c, as well as creat-
inine levels (Table 1). Neither the size of
the population nor the proportion with
good glycemic control changed substan-
tially over the course of the study.

Interpreting Individual Medical
Histories
We divided each patient’s medical
history into distinct lines of therapy,
each characterized by a particular drug
regimen (Supplementary Fig. 1). Within
each line of therapy, we considered pa-
tient visits occurring every 100 days,
corresponding to the life cycle of a red
blood cell (13). These patient visits
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provided the basis for our definition of
patient outcomes.

Lines of Therapy

We developed an algorithm to define
precisely when each line of therapy
ends and the next line begins according
to when the combination of drugs pre-
scribed to the patient changes in the
EMR data. Each line of therapy was
characterized by a unique drug regimen,
defined to include all blood glucose reg-
ulation agents prescribed to the patient
within the first 6 months after starting
that line of therapy.
Regimens were defined as combina-

tions of drugs from one or more drug
classes. The drug classes we consid-
ered were metformin, insulin, and other
blood glucose regulation agents; the
other agents included sulfonylureas,
thiazolidinediones, dipeptidyl peptidase

4 inhibitors, meglitinides, a-glucosidase
inhibitors, glucagon-like peptide 1 ago-
nists, and other antihyperglycemic
agents. If a sufficient number of HbA1c
observations existed during a period in
which no drugs were prescribed, we de-
fined the patient’s line of therapy as
“NoRx.” We considered 13 possible reg-
imen types (Table 1). A combination of
drug classes was included as a regimen
type if it was observed in a sufficient
number of patient visits.

We determined that a patient’s current
line of therapy had ended whenever the
patient’s drug regimen changed in some
way, such as when one or more drugs
were added to or removed from the drug
regimen, or when the phase was interrupted
by a period of at least 500 days with no
new prescriptions, in which case the sub-
sequent line of therapy was determined

to be NoRx. This definition of end date
for each line of therapy intends to capture
the period when the patient was experi-
encing the effect of the drug regimen.

Patient Visits

Within each line of therapy, we consid-
ered patient visits occurring every
100 days, beginning with the visit at
which that regimen was initiated and
continuing until no later than 80 days
prior to the start of the subsequent reg-
imen. There were 48,140 unique patient
visits in our dataset (Table 1). At each
visit, we defined a set of visit-specific
patient characteristics, including the
current line of therapy (i.e., therapy
given during the 100 days immediately
preceding the current visit) and recent
HbA1c and BMI history. The outcome
was measured as average HbA1c 75 to
200 days after the visit. This effect period
was chosen to allow for a complete red
blood cell life cycle to elapse beforemea-
suring the effect of a drug therapy.

We defined the standard of care for
each visit as the drug regimen that was
administered. For 16.3% of visits, the
provider prescribed an adjustment to
the current line of therapy; in the other
83.7%, the provider’s prescription was
to continue the current regimen.

Prescriptive Algorithm
Our novel prescriptive algorithm con-
siders a menu of available treatment op-
tions, including the patient’s current
treatment; uses kNN regression models
to predict potential outcomes under
each option; rejects any noncurrent treat-
ment option with predicted outcome
above a prespecified HbA1c threshold;
and chooses the remaining option with
best predicted outcome. Themenu of op-
tions for a given patient could be deter-
mined by the provider, accounting for
contraindications and other preferences,
such as not using intensive control for
elderly patients or patients with a history
of severe hypoglycemia.

For the purposes of this analysis, the
menu of options for each patient was
chosen relative to the intensity and
composition of the patient’s current
treatment regimen. Specifically, the al-
gorithm considered only regimens that
represented an incremental addition
or subtraction of a drug, or substitution
of a drug of comparable intensity; met-
formin and insulin were considered to
be of the lowest and highest intensity,

Table 1—Demographics, medical history, and treatment history of patients (N =
10,806)

Feature

Age (years)* 59.7 (13.6)

Percent male 42.4

Percent black 58.5

Percent Hispanic 15.1

Percent white 16.6

BMI (kg/m2)* 33.1 (8.1)

HbA1c (%)* 7.9 (1.8)

HbA1c (mmol/mol)* 62.8 (19.7)

Percent with good glycemic control (i.e., HbA1c #7.0%
[53 mmol/mol])* 37.7

Years since first treatment in EMR* 3.52 (3.66)

Percent with current prescription for metformin*† 45.6

Percent with current prescription for insulin*† 30.2

Percent with contraindication to metformin*‡ 17.4

Number of patients with first visit prior to 2007 (%) 6,175 (57.1)

Observed standard of care regimen (abbreviation) Number of patient
visits (N = 48,140)

No regimen prescribed, new patient (NEWPT) 5,449
No regimen prescribed, existing patient (NORX) 2,137
Metformin monotherapy (MET0) 9,649
Insulin monotherapy (INS0) 7,539
Other blood glucose regulation agent monotherapy (OTHER0) 4,671
Metformin combined with one other noninsulin agent (MET1) 6,959
Metformin combined with insulin (METINS0) 3,977
Insulin combined with one nonmetformin agent (INS1) 2,139
Combination of two nonmetformin, noninsulin agents (OTHER1) 1,047
Metformin combined with two other noninsulin agents (MET2) 1,749
Metformin combined with insulin and one other agent (METINS1) 2,005
Insulin combined with two nonmetformin agents (INS2) 249
All other multidrug ($3) combinations (MULTI) 570

Data are mean (SD) unless otherwise indicated. *Sample statistics are calculated across all
patient visits. Individual patients with longer medical histories may be overrepresented in the
sample. †Individuals may have a current prescription for both metformin and insulin. ‡A patient
was considered to be contraindicated to metformin when current serum level of creatinine
was .1.5 mg/dL.
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respectively. Patients with serum creati-
nine levels.1.5mg/dL (6), a sign of kidney
disease, were not offered metformin-
based regimens. The menu options used
in our analysis, differentiated by current
treatment, are depicted in Fig. 1; by def-
inition, the algorithm never recom-
mended metformin-based therapies for
patients with the contraindication de-
scribed above.
For eachpatient visit, theoutcomespre-

dicted by kNN under each treatment were
compared. Our algorithm selected the
treatment with the best predicted HbA1c
outcome subject to the condition that this
best predicted outcome improve upon
the predicted outcomeunder the patient’s
current treatment by at least some thres-
hold d. We chose the optimal threshold

value of 0.8% by testing the algorithm
on a single test set, using values of d rang-
ing from 0 to 1.5%. Increasing the thresh-
old d causes the algorithm to recommend
switching for fewer patients, but the
mean benefit among those who switch
increases. Above a certain threshold, the
recommendation fits to noise in the train-
ing data and does not provide better
mean benefits in the testing set. The op-
timal threshold balances these concerns.

kNN regression is a nonparametric,
instance-based algorithm that makes pre-
dictions by averaging the outcomes for
the subset of observations most similar
to the target as defined by some dis-
tancemetric (10). Topredict potential out-
comes under each regimen, we used a
kNN regression based on a treatment-

specific weighted Euclidean distance
across normalized patient and visit-
specific factors. The weights were de-
rived by training a separate ordinary least
squares linear regression model for each
treatment regimen and using the mag-
nitudes of the regression coefficients
(Supplementary Table 1). This weighted
distance improves upon classical kNN by
selecting neighbors based on the factors
most predictive of HbA1c outcome, rather
than weighting all factors equally.

We considered factors from the fol-
lowing categories: demographic informa-
tion, medical history, and treatment
history. Specifically, the demographic fac-
tors used in the model were age, sex, and
race. The medical history factors were
days since first diabetes diagnosis, the

Figure 1—HbA1c benefit of prescriptive algorithm for patients switching regimens. Each cell in the figure represents patients for whom the
prescriptive algorithm recommended switching from the regimen on the vertical axis to the regimen on the horizontal axis. The color in each
cell indicates the mean HbA1c benefit (%) of the prescriptive algorithm for patients in that cell, with red indicating benefits of the algorithm and blue
indicating worsening relative to standard of care. Each cell is labeled with the number of patients who made that switch; cells labeled with a dash
were not on the menu of options provided to patients currently on a given regimen. Patients with serum creatinine levels .1.5 mg/dL were not
considered for metformin-based regimens and therefore are never assigned by the algorithm to columns with metformin-based regimens.
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patient’s average serumcreatinine level in
the previous year, the patient’s past two
HbA1c and most recent BMI observations
up to and including the current visit, the
patient’s average, median, 25th percen-
tile, and 75th percentile HbA1c and BMI
in the 1,000-day period up to and includ-
ing the current visit, and the patient’s
frequency of HbA1c measurements. The
treatment history factors were the num-
ber of regimens the patient had tried, the
number of visits since starting the current
regimen, whether or not the patient had
been previously prescribed metformin,
and the patient’s current regimen.
The prediction step of our algorithm is

best illustrated through an example. Sup-
pose wewould like to estimate a patient’s
potential outcome under metformin
monotherapy. To identify the importance
of each factor in predicting outcomes, we
used patient visits in which metformin
monotherapy was prescribed to train an
ordinary least squares regression on nor-
malizedvalues ofeachpatient factor listed
above. The most predictive factors were:
the patient’s most recent HbA1c measure-
ment (regression coefficient magnitude
0.22), whether the patient was currently
prescribed insulin (0.11), the patient’s
mean BMI over the past 1,000 days
(0.11), and several other HbA1c and
BMI measurements (coefficient magni-
tudes ranging from 0.03 to 0.10) (see
Supplementary Table 1 for full details).
To estimate the patient’s potential out-
come,weused the coefficientmagnitudes
to weight the Euclidean distance between
this patient visit and each patient visit in
which metformin monotherapy was
prescribed. Thus, for any choice of k, we
could rank the k closest neighbors from
this treatment group. This procedure was
repeated for each therapy in the patient’s
menu of treatment options.

Intuitively, the number of neighbors k
used to estimate posttreatment HbA1c
levels should increase with the size of
the dataset. For each treatment t, we
found the value k�t that minimized the
root mean square error of the kNN pre-
dictions on a subset of the data not used
to evaluate the algorithm. We regressed
k�t on

ffiffiffiffi

nt
p

and thus derived the depen-
dence function k�t ¼ 0:34

ffiffiffiffi

nt
p

, which
was used to select k in the prescriptive
algorithm.

To verify the accuracy of the kNNHbA1c
predictions, we evaluated the R2 metric.
Positive values of R2 suggest patient char-
acteristics are predictive of future HbA1c.
For comparison, we evaluated the predic-
tive accuracy of least absolute shrinkage
and selection operator (LASSO) regres-
sion (14) and random forest (15), two
state-of-the-art machine-learning meth-
ods usedwidely because of their high pre-
diction accuracy.We used the predictions
from thesemodels in two alternative pre-
scriptive algorithms.

Model Evaluation
To evaluate the performance of the kNN-
based prescriptive model, we tested the
algorithm’s recommendations on a set of
patient data that hadnot beenusedwhen
training the models.

Because counterfactual treatment ef-
fects are not observable, we used the
weighted matching approach embedded
in the kNN regression to impute potential
outcomes, an approach commonly used
for causal inference in observational stud-
ies when randomization is unavailable
(12). For each visit, we applied our pre-
scriptive algorithm to recommend a ther-
apy. If that recommendationmatched the
prescribed standard of care therapy, we
observed the trueeffect from the therapy.
Otherwise, the outcome was imputed by

averaging the outcomes of the most
similar patient visits at which the rec-
ommended therapy was administered;
these similar visits were chosen from a
test set not used for training, and the
number of neighbors k�t was selected to
fit the size of the test set. This estimated
outcome was compared with the true
outcome under standard of care at the
given patient visit.

Our hypothesis was that the average
predicted HbA1c outcome after applying
our prescriptive algorithm would be less
than that observed from administering
standard of care, resulting in a net aver-
age improvement in outcomes.

Sensitivity Analysis
To ensure the evaluation of our algo-
rithm was not sensitive to the particular
random split of the database into train-
ing and test data, we evaluated the ef-
fectiveness of our algorithm (with fixed
threshold d ¼ 0:8) under additional ran-
dom splittings of the data.

Software
All analyses were performed in R 3.3.0
(16).

RESULTS

The R2 of the kNN predictions on unseen
data ranged from 0.20 to 0.54 depending
on the regimen (Supplementary Table 2).
The strongest models were for insulin
monotherapy, metformin monotherapy,
metformin plus insulin, and multidrug
($3) therapies. The R2 values from the
LASSO and random forest models ranged
from 0.24 to 0.53. The predictive power
was similar across the three methods.

The performance of the prescriptive
algorithm is summarized in Table 2. The
mean HbA1c outcome after treatment
was 0.14% lower under the prescriptive
algorithm thanunder the standardof care

Table 2—Performance of prescriptive algorithms

kNN LASSO Random forest

All patient visits (N = 48,140)
Mean HbA1c benefit relative to standard of care (SE)
Percent 20.14 (0.01)* 20.13 (0.01)* 20.07 (0.01)*
mmol/mol 21.5 (0.1)* 21.4 (0.1)* 20.8 (0.1)*

Visits for which algorithm’s recommendation differed from
observed standard of care

Number of visits (%) 15,323 (31.8) 12,684 (26.3) 14,302 (29.7)
Mean HbA1c benefit relative to standard of care (SE)
Percent 20.44 (0.03)* 20.45 (0.03)* 20.26 (0.03)*
mmol/mol 24.8 (0.3)* 24.9 (0.3)* 22.8 (0.3)*

*P , 0.001.
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treatment,with SE 0.01% and significance
levelP, 0.001; equivalently,meanHbA1c
was 1.56 0.1mmol/mol lower under the
algorithm. Of the 48,140 patient visits in
our dataset, the algorithm differed from
the standard of care for 15,323 visits,
31.8% of all visits. For this subset of visits,
themean HbA1c outcome under the algo-
rithm was lower by 0.446 0.03% (4.86
0.3 mmol/mol) compared with standard
of care, with P, 0.001, a reduction from
8.37% under the standard of care to
7.93% under our algorithm or, equiva-
lently, from 68.0 to 63.2 mmol/mol. The
median outcome for these visits was
0.21% (2.3 mmol/mol) lower under the
prescriptive algorithm compared with
standard of care. For comparison, theme-
dian difference for all visits was zero be-
cause, for 68.2% of visits, there was no
difference between the algorithm’s rec-
ommendation and the standard of care.
In our analysis, the mean difference

in HbA1c was more negative than the
median because of a left-skewed distri-
bution. Some patients received partic-
ularly large benefits from using the
prescriptive algorithm, which had an

outsize effect on the mean but did not
affect the median.

Fig. 1 depicts thenumber of patients for
whom the prescriptive algorithm recom-
mended switching from a given current
line of therapy to a given new line of ther-
apy, along with the mean reduction in
HbA1c for patient visits in each category.
Among trajectories with at least 300 pa-
tients, the largest benefit of the algorithm
was achieved through personalized rec-
ommendations for 7,564 patients cur-
rently on insulin monotherapy to switch
to monotherapy with metformin or an-
other blood glucose regulation agent.
However, for the vast majority of patients
currently on insulin-based regimens, the
algorithm recommends that those pa-
tients continue with that therapy. Among
the 7,564 patient visits, those who were
recommended to switch from insulin
were on average younger (mean 52.9 vs.
61.4 years of age) and had substantially
higher average HbA1c (11.0 vs. 8.0% or
97 vs. 64 mmol/mol).

The performance of the prescriptive al-
gorithm in specific patient subgroups is
summarized in Supplementary Table 3.

The overall mean HbA1c outcome using
the prescriptive algorithm was 0.14%
(1.5 mmol/mol) lower than standard of
care for both male and female patients.
The benefit of using the algorithm was
0.14% (1.5 mmol/mol) for black patients
(29,120 visits), 0.09% (1.0 mmol/mol) for
white patients (7,444 visits), 0.22%
(2.4 mmol/mol) for Hispanic patients
(6,732 visits), and 0.11% (1.2 mmol/mol)
for all other patients (4,844 visits). The
benefit of the algorithm was 0.20%
(2.2 mmol/mol) for patients ,60 years
of age and 0.08% (0.9 mmol/mol) for pa-
tients aged$60 years or older. The ben-
efit was 0.20% (2.2 mmol/mol) for
patients with poor glycemic control (i.e.,
current HbA1c .7.0% [53 mmol/mol]) as
comparedwith 0.05% (0.4mmol/mol) for
those with good glycemic control.

Our methodology motivates a provider
dashboard that would report information
on the demographics, medical history, and
response to treatment for patients similar
to an index patient. A prototype dashboard
visualization for one sample patient visit is
shown in Fig. 2. The dashboard would
include the patient’s demographic and

Figure 2—Visualization of prescriptive algorithm: provider dashboard prototype. This figure visualizes how the prescriptive algorithm can be used by
providers for a single patient. A: Displays the algorithm’s treatment recommendation along with the predicted posttreatment HbA1c under that
treatment. B: Depicts the mean, SD, and full distribution of posttreatment HbA1c outcomes for the k�t most similar patient visits in the data set for
each of the six regimens on this patient’s menu of options. In each subpanel in panel B, the posttreatment HbA1c level is on the horizontal axis, and
the number of visits is on the vertical axis. The table in panel C presents basic information about the patient’s demographic and medical history. D:
Depicts the history of diabetes progression and treatment for the patient, with date along the horizontal axis. The vertical axis of the top subpanel
indicates various drug classes; the vertical axis of the bottom subpanel depicts HbA1c percentage.
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health information along with visualiza-
tions of the patient’s treatment history
and HbA1c progression. In addition, the
dashboard would display the mean, SD,
and full distribution of HbA1c outcomes
among the k�t nearest neighbors who re-
ceived each treatment in the menu of
options. Based on this evidence, the dash-
board would display a treatment recom-
mendation. The provider would have the
ability to override this recommendation
given any special management needs of
the patient. For instance, if the patient is
elderly and the distribution of HbA1c out-
comes indicates that the recommended
therapy has an elevated risk of hypogly-
cemia, the provider may opt for an alter-
native treatment.
The overall mean HbA1c outcome using

the LASSO-based prescriptive algorithm
was lower by 0.13 6 0.01% (1.4 6
0.1 mmol/mol; P , 0.001) compared
with the mean standard of care outcome.
The benefit fromusing the random forest–
based prescriptive algorithm relative to
standard of care was 0.07 6 0.01%
(0.86 0.1 mmol/mol; P , 0.001).
In the sensitivity analyses, under three

alternate random splittings of the data-
set, the overall mean benefit of using
the prescriptive algorithm compared
with standard of care ranged from 0.11
to 0.15% (1.2–1.6 mmol/mol; P , 0.001
in all instances).

CONCLUSIONS

To our knowledge, we present the first
prescriptive method for personalized
type 2 diabetes care. Using historical data
from a large EMR database, this novel pre-
scriptive method resulted in an average
HbA1c benefit of 0.44% (4.8 mmol/mol)
at each doctor’s visit for which the algo-
rithm’s recommendation differed from
standard of care.
Our method incorporates patient-

specific demographic and medical his-
tory data to determine the best course
of treatment. Compared with other
machine-learning methods considered,
the kNN prescriptive approach is highly
interpretable and flexible in clinical app-
lications. The novelty of our approach is
in personalizing the decision-making pro-
cess by incorporating patient-specific fac-
tors. Thismethod can easily accommodate
alternative disease-management ap-
proaches within specific subpopulations,
such as patients with chronic kidney dis-
ease and elderly patients. We believe this

personalization is the primary driver of
benefit relative to standard of care.

In practice, the algorithm can be inte-
grated into existing EMR systems to dy-
namically suggest personalized treatment
paths for each patient based on histori-
cal records. The algorithm ingests and
analyzes EMR data and generates rec-
ommendations. An intuitive, interactive
dashboard summarizes the evidence for
the recommendation, including the ex-
pected distribution of outcomes under al-
ternative treatments (Fig. 2).

Because of the nature of retrospective
data from existing EMR, this study has
several limitations. Patients were not ran-
domized into treatment groups. Although
our matching methodology controls for
several confounding factors that could ex-
plain differences in treatment effects, we
can only estimate counterfactual out-
comes. EMR data do not include socio-
economic factors or patient preferences
that may be important in treatment deci-
sions. Becaue of a lack of sufficient data,
glucagon-like peptide 1 agonists were not
considered as a separate drug class. If
more data were available, we could fur-
ther differentiate regimen types beyond
the 13 we include in this analysis. In ad-
dition, the study population from BMC
may not be representative of the U.S.
population as a whole.

With EMRmedication-order data alone,
we cannot be certainwhether a prescribed
medication was filled or taken and cannot
know precisely when the medication was
stopped. Although this data quality issue
could hamper attempts to make drug
efficacy comparisons, our analysis aims to
address the question of which drugs to
prescribe under real-world scenarios. We
optimize for an outcome that takes into
account unobserved factors such as non-
adherence. For instance, if nonadherence
is more prevalent among patients pre-
scribed insulin than other regimens, this
perspective may explain why, in our study
population, the algorithm recommends in-
sulin less often than it is prescribed in clin-
ical practice.

Our method can be extended to be
more flexible and comprehensive. Cur-
rently, the prescriptive algorithm does
not support individualized glycemic tar-
gets;weassume that a lower glycemic level
is always preferred. The study currently op-
timizes only for a single health outcome; a
more comprehensivealgorithmwould con-
sider adverse event outcomes as well.

Despite these limitations, the study es-
tablishes strong evidence of the benefit of
individualizing diabetes care. The success
of this data-driven approach invites fur-
ther testing using datasets from other
hospital and care settings. Testing the pre-
scriptive algorithm in a clinical trial setting
would provide even stronger evidence of
clinical effectiveness. As large-scale geno-
mic data become more widely available,
the algorithm could readily incorporate
such data to reach the full potential of
personalized medicine in type 2 diabetes.

In this study, we developed a novel
data-driven prescriptive algorithm for
type 2 diabetes that improves significantly
on the standard of care when tested on
patient-level EMR data from a large med-
ical center.Ourwork is a key step toward a
fully patient-centered approach to diabe-
tes management.
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