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Abstract

In dose-finding clinical trials, it is becoming increasingly important to account for individual level 

heterogeneity while searching for optimal doses to ensure an optimal individualized dose rule 

(IDR) maximizes the expected beneficial clinical outcome for each individual. In this paper, we 

advocate a randomized trial design where candidate dose levels assigned to study subjects are 

randomly chosen from a continuous distribution within a safe range. To estimate the optimal IDR 

using such data, we propose an outcome weighted learning method based on a nonconvex loss 

function, which can be solved efficiently using a difference of convex functions algorithm. The 

consistency and convergence rate for the estimated IDR are derived, and its small-sample 

performance is evaluated via simulation studies. We demonstrate that the proposed method 

outperforms competing approaches. Finally, we illustrate this method using data from a cohort 

study for Warfarin (an anti-thrombotic drug) dosing.
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1 Introduction

Dose finding plays an important role in clinical trials, which aim to assess drug toxicity, 

identify maximum tolerated doses for safety, and determine drug efficacy, while at the same 

time recognizing the potential that overdosing can increase the risk of side effects and 

underdosing can diminish the effects of the therapeutic drug. A typical design for dose 

finding trials is a double-blinded Phase II trial that is conducted to identify the no-effect, the 

mean effective, and the maximal effective doses (Chevret, 2006). In such trials, patients are 

randomized to a few fixed safe dose levels for a candidate drug. A single dose level is 

usually determined by comparing the average outcome of each dose level and then 

extrapolating for future recommendations. However, this one-size-fits-all approach is not 

optimal when treatment responses to the drug are heterogeneous among patients, since what 

HHS Public Access
Author manuscript
J Am Stat Assoc. Author manuscript; available in PMC 2018 January 04.

Published in final edited form as:
J Am Stat Assoc. 2016 ; 111(516): 1509–1521. doi:10.1080/01621459.2016.1148611.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



works for some patients may not necessarily work for others. Hence, personalized treatment, 

which tailors drug dose levels according to individual health conditions and disease 

prognosis, is desirable. Furthermore, the flexibility of using continuous individualized dose 

levels can help improve clinical practice and increase a patient’s compliance. For example, it 

is widely known that Warfarin, a common drug for the prevention of thrombosis and 

thromboembolism, is administered in varying doses, ranging from 10mg to 100mg per week 

depending on the patient’s individual clinical and genetic factors (The International Warfarin 

Pharmacogenetics Consortium, 2009).

As the future of personalized medicine continues to gain prominence as a vital mechanism 

for the effective treatment of multiple diseases and conditions, there is a growing amount of 

literature dedicated to the development of study designs and methods for personalized 

treatment, yet these approaches remain restricted to a finite number of options. A 

randomized trial design, where the finite treatment options are randomly assigned to 

patients, is the most valid design to estimate the optimal individualized treatment rule (ITR), 

which is the treatment decision rule determined by a patient’s pre-treatment condition that 

aims to maximize the expected beneficial clinical outcome, also known as the reward. To 

infer the ITR using data from such a trial, earlier work has proposed certain parametric or 

semiparametric models to group patients into subgroups according to their risk levels (Eagle 

et al., 2004; Marlowe et al., 2007; Cai et al., 2010). However, the parametric/semiparametric 

model assumption is likely to be invalid due to the complexity of disease mechanisms and 

individual heterogeneity. More recently, the literature has proposed the use of powerful 

statistical learning methods, which perform well in analyzing data with high complexity and 

can be categorized into two groups, namely indirect methods and direct methods. The most 

popular indirect method is called Q-learning, which is essentially a two-step regression-

based approach (Qian and Murphy, 2011; Chakraborty and Moodie, 2013; Moodie et al., 

2014; Zhao et al., 2009). Its first step consists of fitting a regression model for the 

conditional expectation of the reward given the treatments, covariates, and the treatment-

covariate interactions. The regression model can be either a parametric regression with 

complexity penalization, such as LASSO, or a nonparametric learning method, such as a 

regression tree (Breiman et al., 1984) or support vector regression (SVR, Vapnik (1995); 

Smola and Schölkopf (2004)). In the second step, the optimal treatment for a given covariate 

value is obtained as the treatment option that maximizes the predicted mean reward 

estimated from the regression model in the first step. Some alternative regression-based 

methods based on regret or contrasts between treatment responses have also been suggested 

for the first step (Robins, 2004; Moodie et al., 2009; Henderson et al., 2010; Schulte et al., 

2014; Wallace and Moodie, 2015), which are equivalent to Q-learning in a randomized trial 

setting (Schulte et al., 2014).

In regards to the potential over-fitting in the first step of Q-learning, which can lead to a less 

than optimal ITR, direct methods have been proposed by Zhao et al. (2012). Specifically, 

Zhao et al. (2012) introduced the framework of outcome weighted learning (O-learning) to 

directly find the optimal binary treatment rule, where the problem of finding the optimal ITR 

is formulated as a weighted binary classification with the rewards as weights. The authors 

demonstrated superior performance of O-learning over indirect methods especially when the 

sample size is small, which is not uncommon in clinical trials. In other relevant work, Zhang 
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et al. (2012a,b) proposed a robust semiparametric regression function for maximization to 

infer the optimal rule; comparatively, the O-learning approach in Zhao et al. (2012) is more 

robust and can handle higher dimensional covariates.

Extending the current designs and methods to personalized dose finding is not trivial 

because there can be an infinite number of treatment options per a given interval. To infer 

the optimal individualized dose rule (IDR), a good design should ensure each candidate dose 

level has a potential chance to be observed in the trial and the different outcomes from 

patients receiving different dose levels should only be attributed to dose level difference. 

Therefore, a randomized dose trial design, where each patient receives a dose level randomly 

chosen from a continuous distribution within the range of safe doses, should be adopted. 

Indeed, we will show that such a design can lead to a consistent optimal IDR asymptotically.

When analyzing data from such a design, the existing methods for handling finite treatment 

options can no longer be applied. First, for Q-learning, the performance can be sensitive to 

the regression model specification in the first step. To identify the IDR, both the main and 

interaction effect of a continuous dose variable and many covariates on the reward need to 

be correctly specified. Furthermore, since the regression model in the first step has a high 

potential for nonlinear interactions, the optimization in the second step will be a nonlinear 

optimization problem for each given set of covariate values, which can be very unstable and 

computationally intensive when the dimension of covariates is not small. On the other hand, 

existing direct methods, including for example outcome weighted learning, which 

maximizes the value associated with each IDR by using patients whose dose assignment 

follows this rule, are not applicable since only a few patients are likely to be given the dose 

level specified by the rule for each covariate value. This is because the dose level follows a 

continuous distribution, so that the probability of observing a dose equal to the rule-specified 

dose is zero. We will further elaborate on this in the next section.

In this paper, we advocate the randomized trial design for personalized dose finding and 

show that this design leads to a consistent optimal IDR. Using data from such a design, we 

propose a robust outcome weighted learning method to infer the optimal IDR. Our proposed 

method is a non-trivial extension of O-learning for binary treatments proposed by Zhao et al. 

(2012). Specifically, we show that the dose finding problem is a weighted regression with 

individual rewards as weights. We then propose a nonconvex loss function for optimization, 

and provide a difference of convex functions (DC) algorithm to solve the corresponding 

optimization problem. We show that this loss function can lead to consistent estimation of 

the optimal dose. As far as we know, this is the first direct method for estimating IDR where 

treatment options are on a continuum.

The outline of the rest of the paper is as follows: In Section 2, we first introduce appropriate 

background information on IDRs and provide an overview of O-learning for binary 

treatment options. We then discuss how to extend O-learning for estimating an optimal IDR 

using data from a randomized dose trial, such that there is no unmeasured confounding. 

Section 3 describes the DC algorithm for solving the optimization problem. The theoretical 

properties of our method are provided in Section 4. Since existing data comes mostly from 

observational studies, we extend our approach to analyze such data in Section 5. In Section 
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6, we demonstrate through simulation studies that our proposed method can identify optimal 

IDRs which lead to a better predicted clinical outcome than competing methods. In Section 

7, the proposed method is applied to analyzing data from a Warfarin study. A concluding 

discussion is given in Section 8. Most of the proofs are deferred to the Appendix. Sample 

simulation codes are included as the web supplementary file.

2 Method

2.1 Individualized Dose Rule

As previously mentioned, we consider a randomized dose trial where each patient receives a 

dose level randomly selected from a continuous distribution in an interval within a safe dose 

range. Particularly, this assignment can be achieved using a random number generator. Thus, 

we assume the data are collected from a randomized trial with dose assignment A, which 

could have many dose levels even in this finite sample, and we assume patient-level 

covariates consist of a d-dimensional vector X = (X1, X2, …, Xd)T ∈ . The traditional dose 

finding trial is usually designed to identify the best dose level among some small number of 

fixed dose levels. In contrast, we allow A to be continuous over a bounded interval  (a safe 

dose range). Without loss of generality, we assume that  = [0, 1]. The clinical beneficial 

outcome, the reward, is denoted as R and assumed to be bounded and positive. An IDR is a 

map f :  →  that outputs a dose suggestion based on a patient’s covariate value. A value 

function corresponding to this IDR, as denoted by (f), is defined as the expected reward in 

the population if the dose levels for the subjects follow the rule f, i.e., A = f(X). Specifically, 

if we let R*(a) be the outcome that would be observed if the dose level a were given, then 

(f) = E[R*(f(X))].

We assume the Stable Unite Treatment Value Assumption (SUTVA) (see Rubin (1978)). 

That is, R = Σa I(A = a)R*(a). Then under a randomized dose design, since A is independent 

of R*(a) given X, we obtain

(1)

As a result, the optimal rule fopt = argmaxf (f). Note that fopt does not change if R is 

replaced by R + g(X) for any known function g(X) (a common choice of g(X) is a constant 

function). Also, fopt is invariant in the scale of R. Thus, without loss of generality, we 

assume that R is positive by subtracting from R its lower bound.

Therefore, we conclude that for any IDR f, (f) can be estimated consistently using the 

mean of the reward among subjects whose dose levels are the same as f(X). In other words, a 

randomized dose design can consistently evaluate the values from all IDRs to lead to a 

consistent optimal IDR when the sample size is large enough. This justifies the use of such a 

design in personalized dose finding.

Chen et al. Page 4

J Am Stat Assoc. Author manuscript; available in PMC 2018 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2 O-learning for personalized dose finding

In this section, we propose a learning method to estimate fopt using data from a randomized 

dose trial which consist of n observations (Ai, Xi, Ri), i = 1, …, n. The essential idea is to 

use empirical data to estimate (f) then directly optimize this estimated function for fopt. 

Specifically, we extend the O-learning method in Zhao et al. (2012) for binary treatment 

options to our setting, but with non-trivial modifications.

When A is a binary treatment, both Qian and Murphy (2011) and Zhao et al. (2012) show 

that (f) is equal to E[RI(A = f(X))/p(A|X)], where p(a|X) is the randomization probability 

of A = a given X. Therefore, (f) can be empirically approximated by 

. Thus, estimating fopt can be carried out by 

maximizing the above function, which is also equivalent to minimizing

However, since minimizing this function is infeasible due to the discontinuity of the 

indicator function, the O-learning method in Zhao et al. (2012) proposes to minimize a 

surrogate version of the above loss function by replacing the indicator function with a hinge 

loss function defined as

where x+ = max(x, 0), ||f|| is the seminorm for f from a normed space (usually, a reproducing 

kernel Hilbert space) and λn is a tuning parameter. Equivalently, O-learning is a weighted 

version of a support vector machine (SVM), where each subject is weighted by his/her 

reward value Ri. For the binary treatment options, this minimization leads to a consistent 

optimal treatment rule.

Direct adaption of O-learning to our dose finding setting is not feasible when A is 

continuous. First, the probability p(A|X) is always zero since A is continuous. Second, in the 

empirical approximation to (f) in O-learning, only a few subjects satisfy Ai = f(Xi), so this 

approximation is very unstable. On the other hand, it may be tempting to modify ℛn(f) to 

resolve these two issues by replacing p(Ai|Xi) with the density function of Ai given Xi and 

replacing I(Ai ≠ f(Xi)) with a smooth loss, such as (Ai − f(Xi))
2 or |Ai − f(Xi)|. However, our 

Lemma 1 in the Appendix shows that the estimated dose rule resulting from such a loss is 

not consistent for the optimal IDR. Therefore, this motivates us to find a different 

approximation to (f) as detailed in the following.

First, assuming E[R|A = a, X] to be continuous in a, we note that
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where p(a|X) is the conditional density of A = a given X, which is known and positive by 

design. As a result,

If we let

then �̃ϕ(f) approximates (f) when ϕ is sufficiently small. Hence, an IDR maximizing 

�̃ϕ(f), or equivalently, minimizing

(2)

will be close to the optimal IDR. The zero-one loss I(|A − f(X)| > ϕ) in the expression often 

causes difficulty when optimizing using empirical data (Zhang, 2004). Thus, a continuous 

surrogate loss to replace the zero-one loss is more desirable. Specifically, in our method, we 

choose such a surrogate loss to be

Note that ℓϕ(x) is the difference of two convex functions |x|/ϕ and (x/ϕ − 1)+. Figure 1 plots 

the curve of ℓϕ(x) and these two convex functions. Clearly, when ϕ goes to zero, ℓϕ(x) 

converges to the indicator function I(x ≠ 0). After replacing the zero-one loss by the new 

surrogate loss in (2), the objective function to be minimized for the optimal IDR becomes

and the counterpart to �̃ϕ(f) is
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Finally, using the data from a randomized dose trial, we propose to minimize the empirical 

version of ℛϕn(f) for some constant ϕn, which will be chosen data adaptively, denoted by

to estimate the optima IDR. Furthermore, to prevent overfitting, we penalize the complexity 

of f(X) as in the standard support vector machine. Consequently, our O-learning method 

solves the following optimization problem:

(3)

where ||f|| is some seminorm for f, and λn controls the severity of the penalty on f. For 

example, if we assume a linear decision rule, f(X) = XTw + b and ||f|| is the Euclidean norm 

of w, kernel tricks can be used to obtain a nonlinear rule by assuming f is from a 

reproducing kernel Hilbert space and || · || is the corresponding norm.

3 Computational Algorithm

The objective function in (3) is nonconvex, and nonconvex optimization is known to be 

difficult. However, noting that ℓϕ is the difference of the two convex functions defined earlier, 

we will adapt the difference of convex functions (DC) algorithm (An and Tao, 1997) to 

tackle this nonconvex optimization. We first discuss the algorithm for the linear learning 

rule, where f(X) is a linear function of X, and then extend it to a nonlinear learning rule 

where f(X) is chosen from a Reproducing Kernel Hilbert Space (RKHS).

3.1 Learning a linear IDR

Consider f(X) = XTw + b. To simplify the notation, we absorb the p(A|X) into R, as p(A|X) 

is known in a randomized trial. We can formulate the objective function as follows:

where λn is the tuning parameter and Θ = (wT, b)T. From Figure 1, we express the objective 

function S as the difference of two convex functions, S(Θ) = S1(Θ) − S2(Θ), where
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and

Then, the DC algorithm is essentially an iterative sequence of convex minimization 

problems for solving the original nonconvex minimization problem. Specifically, we 

initialize Θ0, then repeatedly update Θ via

until convergence of Θ, where ∇S2(Θt) is the gradient function of S2(Θ) evaluated at Θt. For 

the initial value of Θ, we use a least squares estimator to predict A with X as predictors 

using the observations with a large observed reward, e.g. the observations with Ri in the 

upper 50th percentile of the training data.

The minimization step to obtain Θt+1 is a convex minimization, which we will detail in the 

following. In this step, if we define , where  is the 

temporary predicted optimal dose with wt and bt being the solution from the t-th iteration, 

then after some algebra, the objective function for this step, denoted by S(t+1)(Θ), equals

Consequently, the convex subproblem is a weighted penalized median regression problem. 

Note that the t-th iteration result only impacts St+1 through . Thus, if the observed patient 

receives a dose that is close to the surrogate optimal dose ( ), then that observation 

will contribute to the objective function of the t + 1 step subproblem, otherwise it will not 

contribute. Let . Divide the objective function by λn and introduce slack 

variables into S(t+1)(Θ); then the primary optimization problem at the t+1-th iteration 

becomes

(4)
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subject to ξi, ξ̃i ≥ 0, , ∀i ∈ . Using Lagrangian 

multipliers and employing some algebra, we end up minimizing

subject to

After plugging in the equations obtained from the above constraints, we obtain the following 

convex dual problem:

subject to

where 〈·, ·〉 denotes inner product, i.e. . This dual problem is a quadratic programming 

(QP) problem and is solvable via many standard optimization packages. Once its solution is 

obtained, the coefficients w can be recovered by the relation w = Σi∈ (αi − αĩ)Xi. After the 

solution of w is derived, b can be obtained by solving either a sequence of Karush-Kuhn-

Tucker conditions or linear programming (Boyd and Vandenberghe, 2004).

In the DC algorithm, the iterations stop when ||wt+1 − wt|| is smaller than a pre-specified 

small constant (10−8 in our simulations). Note that since the convex function S2(Θ) is 

replaced by its affine majorization, the DC algorithm is also a special case of the minorize-

maximize or majorize-minimize (MM) algorithm (Hunter and Lange, 2004). Additionally, 

the objective function S(Θ) is bounded below by 0, and S(t) is descending after each 

iteration, and it is thus guaranteed that the DC algorithm converges to a local minimizer in 

finite steps (An and Tao, 1997).

3.2 Learning a nonlinear IDR

To allow more flexible functional forms for the decision, we define the kernel K(·, ·) as a 

symmetric, continuous and positive semidefinite function mapping from  ×  to ℝ. A 

Reproducing Kernel Hilbert Space (RKHS) HK associated with K is the completion of the 
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linear span of all functions K(·, X), X ∈ . In addition, there always exists a transform of X, 

Φ(·) such that Φ(Xi)
T Φ(Xj) = K(Xi, Xj). We further assume that the decision function for 

optimal dose f(X) is from HK, i.e., f(X) = wT Φ(X) + b (Vapnik (1995); Smola and 

Schölkopf (2004)). Using similar derivations to that done in the linear learning setting, we 

obtain the following dual problem for nonlinear learning:

subject to

After solving the above QP problem, we can recover the coefficients w via

Then we obtain the intercept b using the same methods as in Section 3.1. According to the 

representation theorem of Kimeldorf and Wahba (1971), we obtain that at each iteration 

. In our paper, we implement nonlinear learning 

via the Gaussian kernel, i.e. , where γ > 0 is the 

parameter for K(., .). We denote the RKHS induced by the Gaussian kernel as Hγ.

3.3 Tuning parameter selection

We choose the tuning parameters by cross validation. Ideally, we wish to find an unbiased 

estimate for the true value function so that one can use it to evaluate the prediction 

performance associated with each tuning parameter using tuning data. However, since the 

true value function, (f), cannot be well estimated in the current setting with continuous 

dose levels, we suggest the use of an approximate estimate ε(f) where ε is a very small 

parameter as the criterion function (we set ε = 0.01 in our numerical studies). Therefore, we 

propose the following procedure for tuning ϕn: We divide the data into training and tuning 

sets and consider a sequence of candidate values for ϕn, say Φ = {0.4, 0.35, 0.3, 0.25, 0.2, 

0.15, 0.1, 0.05}. For each ϕn, we estimate the optimal IDR, denoted by f̂ϕn, using the training 

data where λn is selected using another cross-validation with the training data only. We then 

evaluate the predicted value function as the empirical estimate of ε (f̂ϕn) using the tuning 

data. Then, the optimal choice of ϕn is the one maximizing the average of the predicted 

values across all the tuning sets.
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4 Theoretical Results

In this section, we study the asymptotic behavior of the minimizer (f̂n), which solves the 

optimization problem (3). In particular, we will show that (fn̂) converges to (fopt) with a 

certain rate. This result implies that the estimated rule is an optimal rule asymptotically. As 

an interesting supplement to this argument, we prove in the Appendix that it is not 

appropriate to use convex losses, such as least squares loss or absolute deviations loss, to 

replace the nonconvex loss ℓϕ under the O-learning framework. Our first result shows that 

our approximation of the value function is valid.

Theorem 1—For any measurable function f :  → ℝ, if sup(a,x)∈ ×  |∂E(R|A = a,X = 

x)/∂a| ≤ C for a bounded constant C, then | ϕ(f) − (f)| ≤ Cϕn.

Proof: First, we have

After Taylor expansion, we obtain

Therefore,

By the condition in Theorem 1, we conclude that

The theorem thus holds.

Assume that the kernel function in the reproducing kernel Hilbert space in (3) is a Gaussian 

kernel. Then our main result establishes the convergence rate of (fn̂) − (fopt), as given in 

the following theorem.
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Theorem 2—Assume that the optimal rule , a Besov space, i.e. 

, where ω is the modulus of 

continuity. Then, for any ε > 0, d/(d + τ) < p < 1, τ > 0, and parameter γn for the Gaussian 

kernel,

with probability Pn not less than 1 − 3e−τ. The constants c1 to c6 are independent of n.

With properly chosen parameters γn, λn, ϕn, the right hand side of the inequality will go to 0 

as n goes to infinity. The last term is due to the use of ϕ to approximate . The other terms 

are from the approximation error due to Hγ and the stochastic error due to the finite sample 

size. We can choose λn, γn, and ϕn to balance the approximation accuracy and the stochastic 

variability as follows:

Then, the optimal rate for the value function approximation using the estimated rule is

Theorem 2 implies that the value of the estimated rule f̂n from O-learning converges to the 

optimal value function. Clearly, the convergence rate decreases as the dimension of 

prognostic variables increases. Moreover, if fopt is smooth enough, i.e. α goes to infinity, the 

optimal convergence rate of O-learning with Gaussian kernel is close to the rate n−1/4. Note 

that the rate cannot be close to n−1, the rate proved by Zhao et al. (2012) for a binary 

treatment rule. The main reason is due to the continuous nature of the dose, i.e. the data used 

for learning are only from subjects who have received similar dose levels.

5 Extension to Observational Studies

In the above development, we assumed that the training data was from a randomized dose 

trial. However, in practice, the training data can also come from observational data, where 

the distribution of receiving a particular dose given the covariates is unknown and therefore 

needs to be estimated. More importantly, similar to causal inference using observational 

data, we make the no unobserved confounders assumption. That is, conditional on all 

covariates X, the observed dose level, A, is independent of all potential outcomes R*(a). 

Under this assumption, the proposed O-learning approach remains valid except that the 

density p(a|X) needs to be estimated by the observed data.
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A simple approach to estimate p(a|X) is based on some parametric model, for example, the 

logarithm of the observed dose follows a normal distribution with mean as a linear function 

of the covariates and splines of the covariates (Imai and Van Dyk, 2004). In addition, more 

nonparametric methods such as boosting (Bühlmann and Hothorn, 2007; Zhu et al., 2015), 

Random Forests (Breiman, 2001), and SVR can be used to estimate the mean function in the 

above model. In our numerical studies, we will utilize the latter to estimate the mean of the 

normal distribution for the logarithm of A given X.

6 Simulation Study

6.1 Simulation for a randomized trial

We have conducted extensive simulations to assess the performance of the proposed method 

with various training sample sizes. In these simulations, we generate d-dimensional vectors 

of prognostic variables, X = (X1, …, Xd)T, independently from Uniform[−1, 1]. Treatment A 

is generated from Uniform[0, 2] independently of X. The response R is normally distributed 

in N(Q0(X,A), 1), where Q0(X,A) reflects the interaction between the treatment and the 

prognostic variables and is chosen to vary according to the following scenarios:

Scenario 1:

Scenario 2:

In Scenario 1, we set d = 30, and the optimal IDR is a linear function of X, and in Scenario 

2, d = 10, and the optimal IDR is a nonlinear function of X.

We apply the proposed method to estimate the optimal IDR for each simulated data set. We 

estimate both a linear IDR (called L-O-learning) and a non-linear IDR using the Gaussian 

kernel (called K-O-learning). In our O-learning methods, we fix ϕn to be 0.1, and the tuning 

parameters λn and γn are selected by 5-fold cross validation. For comparison, two 

competing regression-based methods (the LASSO and SVR) are also considered for 

estimation. Both methods are two-step procedures similar to Q-learning: in the first step, we 

estimate the conditional mean of R given (A,X) using either a linear regression model with 

LASSO penalty (Tibshirani, 1996) or support vector regression (Vapnik, 1995; Smola and 

Schölkopf, 2004). Then in the second step, for each X, we search for the optimal dose level 

for A which maximizes the estimated regression mean. Specifically, the covariates used in 

the LASSO model are (X, A,X2,XA,A2). In other words, we assume that given X, the 

treatment dose and the reward have a quadratic relationship. Therefore, the second step for 

finding the optimal dose can be solved analytically. In the SVR method, a Gaussian kernel is 

used to estimate the non-linear relationship between R and A, as well as the interaction 

between A and X (Zhao et al., 2009). However, the closed form of the optimal dose in the 
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second step does not exist. We use a grid search procedure to find the optimal treatment 

dose. In particular, we choose 400 equally spaced grids within the interval (0, 2). The tuning 

parameters in both LASSO and SVR are selected using 5-fold cross validation. We utilize 

the R (R Core Team, 2013) package “glmnet” for the LASSO (Friedman et al., 2010) and 

the “kernlab” package for SVR (Karatzoglou et al., 2004). We evaluate the performance of 

all methods by comparing the expected values under the estimated rules. The expected 

values are calculated from the average values of a testing set with 5000 observations. The 

estimated reward is calculated by plugging the estimated optimal dose into the true 

underlying value function.

The results from 200 replicates are summarized in Table 1. Each column is the average value 

function of a method evaluated from the testing set. The standard deviation of the estimated 

values are given in parentheses. Our methods clearly outperform the competing regression-

based methods in most cases, and the difference is more dramatic for small sample size 

situations. When the sample size is large, L-O-learning and the LASSO work better in 

Scenario 1, where the true optimal IDR is linear; while K-O-learning and SVR work better 

in Scenario 2 with a nonlinear true optimal rule. In Figure 2, we also show the mean 

absolute deviation between the predicted optimal doses and the true optimal doses for all the 

simulations. The results in the figure show a similar pattern as that in Table 1: the proposed 

O-learning methods perform best in scenarios with small sample sizes.

Furthermore, regression-based methods tend to be more sensitive to covariate dimension. To 

demonstrate this, we conduct additional simulations for Scenario 1 with covariate dimension 

d = 50 and training sample size n = 800. The estimated value of SVR is 5.51, which is much 

smaller than the result of the SVR in Table 1 with d = 30. On the other hand, the average 

value based on our K-O-learning is 7.45, which is comparable to its value when d = 30 and n 

= 800.

Finally, we also compare the values from the proposed methods to the ones corresponding to 

fixed dose levels. Specifically, the respective optimal fixed doses are 1.00 for Scenario 1 and 

0.85 for Scenario 2, with the respective values equal to 3.8 and 2.7. From Table 1, when the 

sample size is greater than 100, our methods already yield a larger value function than the 

optimal value based on either fixed dose. This result indicates that our proposed randomized 

trial design with our proposed O-learning method can lead to a better dose rule than the 

fixed dose rule identified through a traditional dose finding trial.

6.2 Simulation for an observational study

In this section, we study three scenarios where the training data are from observational 

studies. In particular, we want to quantify the performance change of our methods when the 

propensity score estimation is biased. The simulation setting is the same as in Scenario 2, 

except the distribution of A may depend on X. Specifically, let TruncN(μ, a, b, σ) denote the 

truncated normal distribution with mean μ, lower bound a, upper bound b, and standard 

deviation σ. The dose assignment for Scenario 3–5 follows:

Scenario 3:
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Scenario 4:

For both scenarios, dose levels are skewed as compared to the randomized scenarios. When 

implementing the proposed methods, we first estimate p(a|X) using a log-normal model 

where the mean is estimated using the boosting algorithm from Zhu et al. (2015). Then, we 

estimate the optimal IDR using the O-learning procedure. For comparison, we also evaluate 

the estimated optimal IDR from the proposed method which ignores the propensity score 

adjustment, i.e., setting p(a|X) to be constant, and from SVR (a regression-based approach).

From the results in Table 2, we observe that the effect of using propensity score adjustment 

is small for the proposed O-learning methods. In Scenario 3, the O-learning method ignoring 

the propensity score adjustment performs slightly worse as compared to the one using the 

propensity scores, yet it is slightly better in Scenario 4. In both scenarios, our methods still 

outperform SVR. The current simulation scenarios show that the proposed method appears 

to not be sensitive to misspecified propensity score models, in contrast to the usual 

observation when treatment options are discrete or even binary. The apparent robustness of 

our method for the mis-specification of the propensity score is probably due to the choice of 

the loss function ℓϕ and the use of the DC algorithm. We have shown in Section 3 that in each 

subproblem of the DC algorithm, only observations whose observed dose is close to the 

predicted optimal dose will contribute to the loss function. It is reasonable to assume that 

observations with large observed rewards are more likely to receive the dose close to the 

optimal. Hence, the observed reward will largely determine which observations contribute 

most to the loss function and the propensity score will only impact the scale of such 

contributions. Furthermore, it appears that the errors in the propensity score are largely 

diluted when treatment is continuous, i.e. patients with large propensity score receiving 

nearly optimal treatment is a rare occurrence within a simulation. For these reasons, the 

performance of our methods does not change much with or without using the propensity 

score. This is an issue we plan on investigating more in the future, along with deriving an 

accompanying theoretical explanation. Note that for Scenario 4, patients receive doses near 

the optimal dose level. In particular, the value function of the observed dose assignment rule 

is about 2.7. As compared to Scenario 2, this suggests our method may have advantages 

when the observed dose is close to the optimal dose level; however, this is not observed for 

the SVR approach.

7 Warfarin Dosing

Warfarin is a commonly used medicine for preventing thrombosis and thromboembolism. 

Proper dosing of Warfarin is vitally important, as overdosing predisposes patients to a high 

risk of bleeding, while underdosing diminishes the drug’s preemptive protection against 
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thrombosis. The international normalized ratio (INR) is a measure of how rapidly the blood 

can clot, and the INR is actively monitored to ensure the dose of Warfarin is safe and 

effective. For normal people, the INR is typically 1, but for patients prescribed Warfarin, the 

therapeutic INR range is typically between 2 to 3 (The International Warfarin 

Pharmacogenetics Consortium, 2009). Predicting the optimal dose for Warfarin remains an 

open problem in the medical community, with many methods having been proposed to refine 

the optimal dose rule (The International Warfarin Pharmacogenetics Consortium, 2009; Hu 

et al., 2012). The InternationalWarfarin Pharmacogenetics Consortium (2009) compared 

three methods for predicting Warfarin dose: models by clinical data, models by 

pharmacogenetic data, and a single fixed dose rule. The paper concluded that 

pharmacogenetic data yields a better performance for predicting the optimal dose. In The 

International Warfarin Pharmacogenetics Consortium (2009), patient samples were used for 

training the prediction model only if the patient’s INR was therapeutically stable and 

between the 2 to 3 range upon habitually taking Warfarin. The authors fitted a linear model 

with the received dose as the response and the pharmacogenetic data result as the predictor. 

Such an approach is valid when the doses received by the patients in the training data are 

optimal (optimal dose assumption). Later studies found that the pharmacogenetic model 

proposed by The International Warfarin Pharmacogenetics Consortium (2009) for optimal 

Warfarin dose identification is suboptimal for elderly patients. Hence, it is reasonable to 

assume that the optimal dose assumption may be violated in some settings.

For the following analysis, we use the data set from The International Warfarin 

Pharmacogenetics Consortium (2009). To estimate the optimal dose, we utilize both 

pharmacogenetic and clinical variables, including age, height, weight, race, CYP2C9 

genotype, and VKORC1 genotype, and the use of two classes of medications: Cytochrome 

P450 enzyme (including phenytoin, carbamazepine, and rifampin) and Amiodarone 

(Cordarone)). After removing observations with missing data in these covariates, there 

remained a total of 1732 patients with 189 patients having INRs not in the 2 to 3 range. 

Instead of using patients with INRs between 2 to 3 after treatment and making the optimal 

dose assumption, we include all of these 1732 patients in our analysis. To convert the INR to 

a direct measure of reward, we code Ri = −|INRi − 2.5| for the i-th individual, as INR = 2.5 

is in the ideal range. Note that the study consists of observational data rather than a 

randomized trial, hence we need to estimate the propensity score for O-learning. 

Particularly, we use the method described in Section 5 to estimate the optimal IDR.

We randomly split the data into training and testing sets 100 times, independently. We 

consider the scenario that the training set contains 800 samples, and the testing set contains 

the rest. The performances of different methods are evaluated by comparing the predicted 

doses and observed doses across these 100 splits. We choose the interval 10 to 100 for the 

grids since the 5th and 95th quantiles are 14.77mg/week and 70mg/week in the observed 

data, respectively.

Usually, in practice, the true relationship between dose and reward is unknown, hence we 

need to estimate the value function for a given dose rule. A potential criterion is ϕ (·), 

which will involve tuning parameters. We examine whether the methods can yield a 

reasonable estimated optimal dose as an alternative criterion. The LASSO method predicts 

Chen et al. Page 16

J Am Stat Assoc. Author manuscript; available in PMC 2018 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



all optimal doses to be 10mg/week or 100mg/week due to a vanishing quadratic term for all 

100 random splits. Instead, the SVR method predicts that about 70 percent of the patients 

have optimal doses at extreme values: 20 percent with 10mg/week and 50 percent with 

100mg/week. On the other hand, the dose prediction from O-learning is more reasonable, as 

shown in the density plots from Figure 3 (from one random split for illustration). In the 

dataset, the majority of the observed doses yield an INR within 2 to 3, hence the observed 

values should not be far away from optimal. For this reason, we expect the correlation of 

predicted optimal dose and observed dose to be relatively high if the prediction model 

performs well. The correlation between predicted dose and observed dose (Corr) for L-O-

learning is about 0.60 (sd = 0.08), and the Corr for K-O-learning is 0.32 (sd = 0.06), Corr for 

SVR is −0.06 (sd = 0.02). In general, L-O-learning performs the best. In addition, L-O-

learning suggests decreasing the dose if patients are taking Amiodarone and increasing the 

dose if patients are taking Cytochrome P450 enzyme (including phenytoin, carbamazepine, 

and rifampin). This dose suggestion is consistent with what is reported in the literature 

(Holbrook et al., 2005; The International Warfarin Pharmacogenetics Consortium, 2009). As 

a remark, our results only reveal some potential predictive biomarkers which the optimal 

dose levels should depend on. Future trials based on the proposed randomized dose designs 

are warranted to confirm these findings.

8 Discussion

The proposed O-learning method appears to be more effective than alternative approaches in 

both simulation studies and in the Warfarin example, especially when the training sample 

size is relatively small. Our method has advantages over regression-based methods through 

the direct estimation of the optimal dose. As a result, our method is more robust to model 

specification of the reward. In contrast to O-learning, one needs to correctly specify the 

model between reward (outcome) and treatment together with the covariates to successfully 

identify the optimal dose using the indirect methods. Note that the loss function proposed in 

this paper can be further generalized to |A − f(X)|ϕ1 − |A − f(X)|ϕ2 with 0 ≤ ϕ1 < ϕ2. In 

particular, the current loss function is a special case of this general loss with ϕ1 = 0. Such a 

generalization provides further robustness to our method at the cost of adding additional 

tuning parameters in the implementation. Future investigation will also include a comparison 

between our approaches and other methods based on regrets or contrasts (Murphy, 2003; 

Robins, 2004).

From the formula in Section 2.1, it is clear that the theoretical solution of fopt(X) is invariant 

if we replace the R by R + g(X), where g(X) can be any known function of X. However, 

analogous to the phenomenon illustrated in Zhou et al. (2015) for personalized binary 

treatment, the choice of g(X) will impact the performance of O-learning especially when the 

sample size is small. Choosing a function that can minimize the variance for the dose finding 

problem would be of great interest. Zhou et al. (2015) recommended a choice of g(X) such 

that R + g(X) can be interpreted as the residual of a regression model. The authors argued 

that the residual better reflected the net treatment benefit than the original outcome. In 

Section 6, we have shown that O-learning and regression-based approaches have different 

strengths and weaknesses, hence a potential choice of g(X) could come from the regression-

based approach.
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In practice, the reward could be censored. Techniques such as the inverse probability of 

censoring weighting could be used to weight the observations; however, such a procedure 

can yield a less efficient rule. A similar problem can occur when the training data comes 

from an observational study, as in the Warfarin example. For both situations, it would be 

valuable to develop doubly robust estimators for IDR. Additional considerations can include 

accounting for drug toxicity (Thall and Russell, 1998; Laber et al., 2014) and variable 

selection when estimating the optimal treatment dose.

For some complex diseases, sequential treatments are needed, hence dynamic treatment 

regimes in place of single stage treatment rules are more useful. For Warfarin dosing, 

patients need to take the medicine for a set amount of time to become therapeutic, possibly 

causing the optimal dose to vary over time. Recently, Rich et al. (2014) proposed an adaptive 

strategy under the framework of structured nested mean models. In addition, other methods 

for estimating dynamic treatment regimes under a reinforcement learning framework (Sutton 

and Barto, 1998) have also been proposed in several papers, including Murphy (2003), Zhao 

et al. (2009) and Moodie et al. (2012), to solve multiple stage optimal treatment problems. 

Extensions of our proposed method for dynamic treatment regimes would be of great 

interest.
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APPENDIX

A Inconsistency of weighted SVR for IDR estimation

The following Lemma 1 demonstrates that the theoretical minimizer for weighted support 

vector regression with absolute deviations loss (a special case of ε-insensitive loss used in 

SVR) is not consistent, i.e. it does not yield a function that maximizes (f).

Lemma 1

Let , then fabs(X) ≠ fopt(X).

Proof—By definition, . Let p̃(a|x) ∝ E(R|a, 

x)p(x), then for any given x, fabs(x) is the median of a with respect to density p̃(a|x). On the 

other hand, we have proved that fopt = argmaxEX[E{R|A = f(X), X}]. This implies that for 

any given x, fopt(x) is the mode of a with respect to density p̃(a|x). If p̃(a|x) is not symmetric, 

then fabs(x) ≠ fopt(x). As a result, fabs(X) ≠ fopt(X).

Hence, it is not proper to use the absolute deviance loss in O-learning for dose finding. 

Similarly, we can show that using certain other loss functions, such as quadratic loss, is not 

consistent either. This follows by the argument that , and 

for given x, fquad(x) is the mean of a with respect to density p̃(a|x).
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B Proof of Theorem 2

Let  be the minimizer of ℛϕ(f) and by definition . Then

(5)

The first inequality is due to Theorem 1, and the second follows by the definition of ℛϕ. C is 

the same constant used in Theorem 1 and c6 = 2C. Denoting , we can see that

(6)

Next, we want to bound . The reason for scaling by the 

factor ϕn is that the corresponding loss function after scaling becomes 

. Lϕ(X, A, f(X)) is a bounded loss function when ϕn → 0, and 

such a property will facilitate the proof. In the following theorem, let fn̂ = fD,λn, ℛL,P = 

ϕnℛϕ, and . Hence,  is also the minimizer for ℛL,P. In the following 

steps, we rely on the theorem proved by Steinwart and Christmann (2008), given as follows:

Theorem 7.23 (Oracle inequality for SVMs using benign kernels, Steinwart and 

Christmann, 2008)

Let L : X × A × ℝ → [0, ∞) be a loss function. Also, let H be a separable RKHS of a 

measurable kernel over X and P be a distribution on X × A. If the following conditions are 

satisfied:

(A1) L satisfies the supremum bound L(.) ≤ B for a B > 0.

(A2) L is a locally Lipschitz continuous loss that can be clipped at M > 0.

(A3)
The variance bound  is 

satisfied for constants ν ∈ [0, 1], V ≥ B2−ν, and all f ∈ H.

(A4) For fixed n ≥ 1, there exist constants p ∈ (0, 1) and a ≥ B such that the entropy 

number , i ≥ 1.

Fix an f0 ∈ H and a constant B0 ≥ B such that L ∘ f0 ≤ B0. Then, for all fixed τ > 0 and λn > 

0, the SVM using H and L satisfies
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with probability Pn not less than 1 − 3e−τ, where K0 ≥ 1 is a constant only depending on p, 

M, B, ν, and V.

We will verify conditions (A1)–(A4) for our setting as follows: The loss function in our 

problem is . For our problem, it is reasonable to assume the 

rewards are bounded and p(A|X) is bounded such that R/p(A|X) ∈ [0, B], where B is some 

finite constant. Hence, we have Lϕ(.) ≤ B for (A1).

Note that f̃ is a clipped version of f (via Winsorization) for some value M, such that t ̃= I(|t| ≤ 

M)t + I(|t| > M)sign(t)M. The risks of Lϕ(.) loss satisfy ℛ(f)̃ ≤ ℛ(f), if we set M to be some 

large value, i.e. larger than the range of the dose. Hence, Lϕ(·) can be clipped. This implies 

we can investigate the clipped version of the loss instead of the original loss function 

without loss of generality (Steinwart and Christmann, 2008). Furthermore, Lϕ(.) is Lipschitz 

continuous with Lipschitz constant equal to B/ϕn, hence it is also locally Lipschitz 

continuous. As a result, condition (A2) is satisfied.

Furthermore, (A3) is true since 

.

The benign kernel we implement in the algorithm is the Gaussian kernel. By Theorem 7.34 

of Steinwart and Christmann (2008), we have that (A4) holds with the constant a being set 

equal to .

So far, all the conditions needed for Theorem 7.23 are satisfied, hence by plugging in 

, ν = 0, V = 4B2, and B0 = B, we obtain

(7)

where .
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The next step is to bound the approximation error A(λn). Since any f0 ∈ Hγ is valid for 

Equation (7), we can study a specific choice of f0 and the corresponding bound for A(λn). 

To construct this f0, for r ∈ ℕ and γ > 0, we define the function  : ℝd → ℝ as 

, where  for all x ∈ 

Rd. Assuming that , we can define f0 by convolving  with this 

optimal decision function (Eberts and Steinwart, 2013), that is

(8)

With the help of two theorems in Eberts and Steinwart (2013), we can show that f0 is 

contained in Hγ, and that it is a suitable function for bounding A(λn).

By the construction of f0, the approximation error for our problem is written as:

By Theorem 2.3 of Eberts and Steinwart (2013), we have:

By the Lipschitz continuity property of the loss function Lϕ,

By Theorem 2.2 of Eberts and Steinwart (2013),

(9)

Recall that we assume , a Besov space, and if we further assume 

, i.e. , then 

, where c0 is a constant. Plugging this into inequality (9), and 

combining with the assumption , we obtain
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(10)

Combining Equation (6), Equation (7) and Equation (10), we obtain that:

(11)

Combining Equation (5) and Equation (11) now yields the desired result.
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Figure 1. 
Loss function ℓϕ for dose finding in an IDR. ℓϕ (black, dash) is the difference between the V 

shaped function (gray, solid) and U shaped function (gray, solid).
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Figure 2. 
Boxplots of the absolute difference of the predicted optimal doses from the truth.
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Figure 3. 
Distribution of observed and predicted Doses.
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Table 2

Average �̂(f) from 200 replicates for observational studies

n K-O-learning K-O-learning-ps SVR

Scenario 3 200 2.68 (0.30) 2.74 (0.29) 1.99 (0.83)

800 4.06 (0.30) 4.19 (0.20) 4.09 (0.28)

Scenario 4 200 3.29 (0.28) 3.23 (0.28) −0.95 (1.57)

800 4.91 (0.14) 4.73 (0.17) 3.04 (0.52)

Note: “K-O-learning” is the proposed method for a nonlinear IDR, but treating p(A|X) as constant; “K-O-learning-ps” is the proposed method for a 

linear IDR using the estimated p(A|X). The numbers in boldface are the largest in each row.
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(f)| ≤ Cϕn.Proof: First, we haveAfter Taylor expansion, we obtainTherefore,By the condition in Theorem 1, we conclude thatThe theorem thus holds.Assume that the kernel function in the reproducing kernel Hilbert space in (3) is a Gaussian kernel. Then our main result establishes the convergence rate of 
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(f̂n) − 
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(fopt), as given in the following theorem.Theorem 2—Assume that the optimal rule , a Besov space, i.e. , where ω is the modulus of continuity. Then, for any ε > 0, d/(d + τ) < p < 1, τ > 0, and parameter γn for the Gaussian kernel,with probability Pn not less than 1 − 3e−τ. The constants c1 to c6 are independent of n.With properly chosen parameters γn, λn, ϕn, the right hand side of the inequality will go to 0 as n goes to infinity. The last term is due to the use of 
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ϕ to approximate 
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. The other terms are from the approximation error due to Hγ and the stochastic error due to the finite sample size. We can choose λn, γn, and ϕn to balance the approximation accuracy and the stochastic variability as follows:Then, the optimal rate for the value function approximation using the estimated rule isTheorem 2 implies that the value of the estimated rule f̂n from O-learning converges to the optimal value function. Clearly, the convergence rate decreases as the dimension of prognostic variables increases. Moreover, if fopt is smooth enough, i.e. α goes to infinity, the optimal convergence rate of O-learning with Gaussian kernel is close to the rate n−1/4. Note that the rate cannot be close to n−1, the rate proved by Zhao et al. (2012) for a binary treatment rule. The main reason is due to the continuous nature of the dose, i.e. the data used for learning are only from subjects who have received similar dose levels.
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