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Abstract

Background: Calorimetry is both expensive and obtrusive but provides the only way to accurately measure energy expenditure
in daily living activities of any specific person, as different people can use different amounts of energy despite performing the
same actions in the same manner. Deep learning video analysis techniques have traditionally required a lot of data to train;
however, recent advances in few-shot learning, where only a few training examples are necessary, have made developing
personalized models without a calorimeter a possibility.

Objective: The primary aim of this study is to determine which activities are most well suited to calibrate a vision-based
personalized deep learning calorie estimation system for daily living activities.

Methods: The SPHERE (Sensor Platform for Healthcare in a Residential Environment) Calorie data set is used, which features
10 participants performing 11 daily living activities totaling 4.5 hours of footage. Calorimeter and video data are available for
all recordings. A deep learning method is used to regress calorie predictions from video.

Results: Models are personalized with 32 seconds from all 11 actions in the data set, and mean square error (MSE) is taken
against a calorimeter ground truth. The best single action for calibration is wipe (1.40 MSE). The best pair of actions are sweep
and sit (1.09 MSE). This compares favorably to using a whole 30-minute sequence containing 11 actions to calibrate (1.06 MSE).

Conclusions: A vision-based deep learning energy expenditure estimation system for a wide range of daily living activities can
be calibrated to a specific person with footage and calorimeter data from 32 seconds of sweeping and 32 seconds of sitting.

(JMIR Form Res 2022;6(9):e33606) doi: 10.2196/33606
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Introduction

Background
The ability to measure energy expenditure is important in a
wide variety of settings. Examples range from sports training
[1] to diabetes and cardiovascular disease monitoring [2]. Of
particular interest is obesity management, where the amount of
activity found in sedentary people at work and in the home can
make a large difference to their overall fitness [3], especially
when energy expenditure that is not due to exercise is taken
into account [4]. The most accurate ways to measure

person-specific energy expenditure are to use a sealed chamber
[5] or indirect calorimetry [6]. However, other than the upfront
costs and time with such equipment, they are also intrusive and
cumbersome when used for a significant length of time, and
they require expert installation. Further, they are unsuitable for
long-term deployment in homes (eg, for health monitoring
applications), whether for large scale studies or for individual
cases.

In the absence of such accurate measurements, clinicians have
used metabolic equivalent task (MET) tables [7,8] as an
approximation, where each action has an associated energy
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expenditure value. This can be a time-consuming process,
especially for a long sequence containing multiple activities, as
each activity must be manually assigned start and end times.
However, most importantly, METs are highly inaccurate
compared to calorimetry. Hence, other approaches have sought
to bridge the accuracy gap, while also reducing the burden on
clinicians and annotators. For example, wearables have been
explored as a cheaper, less intrusive, and more portable
alternative [9-16] with improved results over METs. Large-scale
home monitoring systems [17-19] have started to provide
enough data to investigate computer vision approaches [20-22],
which are cheap, much less intrusive, and more accurate. This
provides the opportunity to extend the monitoring of energy
consumption from stationary work environments [23-25], where
variation between different people cannot be accurately captured
by self-reporting.

The main problem with noncalorimeter-based approaches is
that they still offer a general model only. That is, they will
provide the same energy expenditure estimation for 2 individuals
carrying out an action in a similar way, even though they may
be using different amounts of energy.

Our aim is to estimate energy expenditure from observations
of a person’s physical movement. To this end, we train a deep
learning model using footage of participants wearing
calorimeters. Traditionally, deep learning methods have required
a vast amount of data to personalize [26,27]. However, we
exploit recent advances that can adapt general models to specific
tasks [28-32] and determine which small set of actions is best
suited to personalizing a general model. This will reduce the
amount of calorimeter time per participant necessary for model
personalization and will demonstrate that vision-based deep
learning models are suitable for use in real-world settings. This
is the first time in the literature a personalized vision-based
energy expenditure estimation training regime has been
addressed. On a more fundamental level, determining which
actions are most suitable for fine-tuning a deep neural network
can also give an indication about which types of activity are
necessary to indicate a person’s calorific profile. The approach
introduced in this paper will be of practical use in many fields
that monitor energy expenditure, such as sports training [1],
nutrition [33], obesity management [34,35], and so on.

Materials
For this study, we used the SPHERE (Sensor Platform for
Healthcare in a Residential Environment) Calorie data set [36].
We briefly recap the key properties here before explaining our
neural network approach to provide personalized energy
expenditure estimations.

Data Collection
A total of 10 participants performed a variety of daily living
activities while using a K4b2 (COSMED) calorimeter. The

activities consisted of the following: stand, sit, walk, wipe,
vacuum, sweep, lie, exercise, stretch, clean, and read. The
participants are filmed using an off-the-shelf RGB-D (Red,
Green, Blue plus Depth) sensor, and the video footage is
pseudonymized by extracting silhouettes [37]. In total, 4.5 hours
of footage at 30 frames per second and calorimeter data are
available. To obtain a ground truth label for each video frame,
calorimeter data are interpolated between each breath reading.

Methods

Ethics Approval
No ethics approval was required for this study, as we only used
publicly available anonymized data for the purpose it was
designed for.

Overview
In this section, we will use our recently developed deep learning
method [30] and provide a brief overview. Deep learning models
consist of a neural network architecture, which processes a data
stream (to give the energy expenditure estimation in our case)
with an associated training regime to adapt a randomly
initialized model to the desired task—often referred to as a
learned model.

Architecture
Deep neural network video architectures typically consist of 2
subnetworks, which are as follows: (1) a spatial subnetwork to
extract useful features from each video frame—this part is
necessary as the type of action currently being performed and
the participant's body position can be an indicator of how much
energy they are consuming. This is the convolutional neural
network (Figure 1). Specifically, ResNet-18 [38] with pretrained
ImageNet [39] weights is used; and (2) a temporal subnetwork
to combine features extracted from each frame and to use this
information to make an estimation—this part is necessary
because just using 1 video frame is insufficient for energy
consumption estimation; how fast participants move as well as
their previous behavior and actions can have a great effect and
must therefore be considered. For this stage, we deploy a
temporal convolutional network [40] (Figure 1).

These 2 subnetworks are trained jointly (in this paper, we refer
to this combined architecture as the “network”), so they can
learn to specialize short- or long-term observations effectively.
Previous works have shown that around 30 seconds of video
footage is required to accurately regress calorie values [21,36]
as previous activity affects the current calorimeter reading.
Thus, we take advantage of an architecture that uses the spatial
subnetwork to observe at 1 frame per second and a temporal
subnetwork to combine 30 seconds worth of spatial subnetwork
features.
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Figure 1. Neural network architecture for processing silhouette video streams, consisting of a convolutional neural network (CNN) for extracting frame
features and a temporal convolutional network (TCN) for combining frame features over a period of 30 seconds. To achieve an initialization that can
be quickly adapted to unseen participants, the main training objective is to minimize the calorie loss while maximizing the person loss. Seq: sequence.

Training
Given an architecture to process the video data, along with
silhouette videos and calorimeter readings, a training regime is
required to learn from examples in a training set. As a large
amount of data is usually required to train a neural network
[26,27], they are often “pretrained” on a related large data set,
then “fine-tuned” on the data set being used. However, in the
case of learning a personalized model, the data requirements
are still too large to be used for conventional fine-tuning. Thus,
we use our recently developed few-shot (otherwise known as
“meta-learning” or “learning to learn”) technique [30], which
aims to learn a model that can be fine-tuned with very little
amount of data.

Instead of optimizing the estimation of the current network, the
training process optimizes the estimation of the network after
it has been fine-tuned to a random participant from the training
set, while an adversarial component aims to make the
initialization agnostic to the participants in the training set.
Figure 2 provides an illustration of this process. Specifically,
it shows that first, a small “task” is constructed from the training
set, containing a small amount of silhouette video and associated

calorimeter readings. Subsequently, 2 copies of the network
initialization (ie, primary weights) are taken, which are named
the task specialization and adversarial weights. The task
specialization network is fine-tuned for a small number of
iterations and becomes well suited to the current task. The
adversarial weights are combined with an adversarial classifier,
which are trained to predict which participant is used for this
specific task. However, during this part, the gradients between
the adversarial classifier and adversarial weights are negated.
This means that as the adversarial classifier becomes better at
classifying the person, the adversarial weights lose the ability
to classify the person (ie, they become person agnostic). The
task specialization and adversarial weights are finally merged
back into the primary set of weights, and the process repeats
with a different task. This process results in a set of primary
weights that are agnostic to the participants in the training set
yet are well suited to fine-tuning to unseen participants (Figure
2). For evaluation on an unseen participant, the primary set of
weights are fine-tuned using a small amount of data from the
unseen participant, and the adversarial component is not required
because we want the evaluation network to be personalized to
the evaluation participant.

Figure 2. Visualization of our data pipeline used to train and fine-tune a neural network, which is then used to provide personalized energy expenditure
estimations from video.
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Results

Overview
In this section, we outline our experiments and their results.
Our aim is to find a network fine-tuning procedure that requires
the minimum amount of data. In practice, this means less
participant, clinician, and calorimeter time is required to
personalize an energy expenditure model.

Experimental Setup
A leave-one-out cross validation is used. In other words, 9
participants are used to train the model, and the 10th is used for
evaluation. This process is repeated for each participant. To
provide context to our results, we compare them against the
following baselines: (1) MET value, which is calculated using
expert labelled action start and end times; (2) no fine-tuning,
which is a general model baseline as it can only make
estimations with information learned from participants not being
evaluated on; (3) fine-tune on one whole sequence of the
participant the model is being personalized to—here, much
more data are available to fine-tune than for the rest of our
experiments, so this represents an upper bound for performance.
The average length of a sequence is 30 minutes; (4) comparison
with the work that introduces the meta-learning method in this
paper [30], but only fine-tuned on the start of a sequence that
contains frames without action labels; and (5) fine-tune using
data from all 11 actions (32 seconds per action). This shows
that standard training or fine-tuning fails with small amounts
of data, even if fine-tuned with examples from all actions.

Mean square error (MSE) of the neural network estimation
against the ground truth calorimeter reading is used as the
evaluation metric. Note that an error is calculated for every
video frame (but the model will have seen the previous 30
seconds of video to make this prediction).

There are 2 long (20-30 minutes) sequences per participant. For
all experiments, the network is fine-tuned using data from
sequence 1 and evaluated on sequence 2 and vice versa. This
ensures that no data for evaluation have been seen during
training or fine-tuning.

Single-Action Personalization
To fine-tune to the participant being used for evaluation, 60
video clips are used. As we are assessing how well the model
personalizes using a single action, these 60 clips are taken from
a 32-second block of video where the fine-tuning action first
appears. Each clip contains 30 uniformly sampled frames from
30 seconds of video (ie, sampling 1 frame every second). Given
32 seconds of video at 30 frames per second, there are
32*30=960 frames. The first video clip uses fames 1, 31, …,
901. The second video clip uses frames 2, 32,…, 902, and so
on.

The first row of Table 1 shows the results of fine-tuning on each
action compared against the baselines listed above. We can see
that 32 seconds of wipe is best for learning a personalized
calorific profile. However, it is still short of the upper bound
on performance. The model fine-tuned on a whole video
sequence has an MSE of 1.06 compared to 1.40 for wipe.
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Table 1. Mean square error averaged across all participants.

ReadCleanStretchExerciseLieSweepVacuumWipeWalkSitStandActions

2.473.2717.856.772.432.151.941.40a2.802.202.32Single action

Action pairs

——————————b2.55Stand

—————————2.092.65Sit

————————2.722.572.87Walk

———————1.551.721.501.52Wipe

——————2.011.341.741.771.40Vacuum

—————2.551.601.361.591.09c1.61Sweep

————2.342.602.121.382.391.241.56Lie

———5.723.502.622.893.182.821.872.42Exercise

——12.657.6311.794.834.886.344.473.0117.70Stretch

—3.428.065.282.082.032.461.521.711.591.45Clean

2.352.423.023.432.442.242.161.402.474.981.98Read

Baselines

——————————2.87METd

——————————2.17Before train only

——————————1.06eAll actions (whole se-
quence)

——————————3.30All actions (32s/action)

——————————1.74Sequence start [30]

aBest single action.
bNot applicable.
cBest paired action.
dMET: metabolic equivalent task.
eBest baseline.

Multiple Action Personalization
With the hypothesis that a broader range of actions provides a
better calorific profiling of a person, we deploy multiple actions
to fine-tune. This is motivated by the example in Figure 3 and
the associated single-action personalization results, where
fine-tuning on a whole sequence outperforms models fine-tuned
on any single action. For the following experiments, we compare
every pair of actions. For each action, the same amount of
footage is available to fine-tune as there was in the previous
experiments (ie, 32 seconds). Table 1 also shows the results of
all 2-action combinations averaged per participant. To verify
that any improvement is not just due to an increase in fine-tuning
data (ie, 64 seconds from 2 actions compared to 32 seconds

from 1), we include single-action results with the larger 64
seconds of fine-tuning data.

The best performing pair (sweep and sit) has an MSE of 1.09,
which outperforms the best single-action pair (wipe, MSE 1.40).
It is also very close to the whole sequence baseline, despite
using much less data (64 seconds compared to 30 minutes).

An example of multiple-action fine-tuning is given in Figure 4,
for which the whole sequence model performs the worst. The
best single (wipe) and pair (sweep and sit) fine-tuned models
are shown alongside models fine-tuned on the whole sequence
and with all actions (32 seconds per action).

Finally, Table 2 details the baselines, single-action results, and
selected double-action results for each person individually.
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Figure 3. Example energy expenditure estimations from silhouettes (recorded at 30 frames per second) using single action fine-tuning. The top example
shows a success case where a model fine-tuned using only 32 seconds of wipe outperforms the whole sequence baseline, and that stretch is not a good
action to use. The bottom example shows a failure case, where the models fine-tuned on a single action do not adapt to the period of high energy
expenditure toward the end of a sequence. Seq: sequence.

Figure 4. An example sequence of silhouettes and energy expenditure estimations. Here, the best pair of actions for calibration across all participants
is compared against the best single action, a whole video sequence to calibrate, and shorter footage from every action. Seq: sequence.
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Table 2. Mean square error of baselines and single- and selected double-action fine-tuned models. The results are shown for each participant (“Pn”)
individually along with the average over all participants. A blank entry indicates the action was not in video sequence used for fine-tuning.

AverageParticipantsActions

P10P9P8P7P6P5P4P3P2P1

Baselines

2.873.141.841.728.813.962.520.221.762.562.19METa

2.173.341.430.717.413.551.460.690.870.821.38Before train only

1.06b2.020.550.281.751.541.540.140.620.540.60All (whole sequence)

3.303.100.630.7922.792.531.110.090.740.410.85All (32s/action)

1.744.730.653.503.242.301.250.290.540.580.29Sequence start [30]

Single action

2.327.660.592.204.265.041.100.500.600.670.53Stand

2.208.960.423.123.353.021.130.210.420.920.49Sit

2.808.970.472.284.327.782.070.290.470.530.80Walk

1.40c2.170.481.802.953.370.730.360.451.360.29Wipe

1.944.290.851.895.182.951.670.600.540.630.79Vacuum

2.152.310.393.299.242.850.620.470.810.571.01Sweep

2.432.221.351.5310.593.040.921.291.140.701.52Lie

6.7733.410.807.477.595.740.592.96—d0.761.56Exercise

17.8518.0530.8113.8630.6421.195.165.820.4846.525.93Stretch

3.275.354.652.178.945.931.040.320.942.151.17Clean

2.474.902.221.927.502.530.810.560.841.352.05Read

Action pairs

1.09e2.750.470.991.022.510.900.130.470.670.96Sweep/sit

1.242.240.601.073.002.690.820.450.430.530.61Lie/sit

1.404.040.610.781.733.391.530.140.380.570.87Vacuum/stand

1.343.150.601.631.593.251.210.190.640.640.48Vacuum/wipe

1.362.350.541.024.162.521.010.160.670.590.60Sweep/wipe

1.552.420.561.983.433.881.070.110.480.950.57Wipe/wipe

7.6322.700.938.9314.638.743.584.18—2.192.83Stretch/exercise

8.066.8017.127.2621.5711.902.792.200.575.395.01Clean/stretch

11.798.239.643.4677.202.983.701.190.619.141.78Stretch/lie

17.705.013.495.08146.708.081.961.720.562.631.72Stretch/stand

aMET: metabolic equivalent task.
bBest baseline.
cBest single action.
dBlank entries indicate the action was not in the video sequence used for fine-tuning.
eBest action pair.

Discussion

Single or Pair Difference
The results presented above raise several points for discussion.
Perhaps the most important is why the best single action to
fine-tune with (wipe) is not part of the best pair to fine-tune
with (sweep and sit). Given a distribution of calorimeter or

silhouette sequences (which contain a wide variety of actions
and calorific profiles), we would expect fine-tuning with 1 action
to cover the middle of this distribution. If 2 actions are available,
then each can be representative of more extreme parts of the
energy expenditure or silhouette distribution while still
adequately covering the middle of the distribution; 2 actions
outperforming 1 corresponds to this intuition
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Action Variation
Another interesting observation is that there is a large amount
of variation when fine-tuning using different actions. For
example, fine-tuning using stretch is much worse than any other
single action (17.85 MSE compared to the baseline 1.06 and
second worst 6.77). One possible reason is that a participant
stretching produces very different silhouettes compared to any
of the other actions they perform. If a model is fine-tuned using
these silhouettes, it has been conditioned to very different data
compared to the other actions and thus gives bad estimations.
A similar effect can be seen with exercise, which has less
extreme but different silhouettes (6.77 MSE). This reasoning
also applies to specific actions outperforming models fine-tuned
on the sequence start. The sequence start may not provide
enough information about a participant’s calorific profile for
the fine-tuned model to work well across a wide variety of
actions.

Participant Variation
There is also a difference in how all methods perform on specific
participants. In particular, all models struggle on P10, with even
the model fine-tuned on a whole sequence giving an MSE of
2.02. This is unlikely to be caused by visual differences (in the
way that models fine-tuned on stretch are) as all actions perform
poorly. Rather, it is most likely due to P10 having a calorific
profile, which is very dissimilar to those found in all the other
participants and could possibly be remedied by collecting data

from more participants to use during the training of the
initialization.

Conclusion
In this paper, we showed that a personalized calorie expenditure
model that is more accurate than other existing techniques (bar
intrusive calorimetry devices) is possible using a vision-based
deep learning technique. The method can be personalized and
can perform indefinitely in clinical and home environments
after just 64 seconds of calorimeter calibration.

Our method uses a state-of-the art deep learning technique,
which learns an initialization from a data set containing
calorimeter readings of footage from multiple participants. The
initialization can then be adapted quickly to a participant unseen
in the training set with footage and calorimeter readings of them
sweeping for 32 seconds and sitting for 32 seconds. This
personalized model outperforms the general models that have
been used in the past.

The method outlined in this paper provides some benefits. It is
suitable for long-term continuous monitoring of energy
expenditure in daily-living scenarios and environments as it is
noninvasive and does not require any change to participant
behavior. It requires very little expensive clinician and
calorimeter time to personalize, and it only needs a relatively
cheap RGB-D sensor. Further, it does not require any human
annotation of actions or activities after recording has finished.
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