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ABSTRACT Internet of Things (IoT) have widely penetrated in different aspects of modern life and many

intelligent IoT services and applications are emerging. Recently, federated learning is proposed to train

a globally shared model by exploiting a massive amount of user-generated data samples on IoT devices

while preventing data leakage. However, the device, statistical and model heterogeneities inherent in the

complex IoT environments pose great challenges to traditional federated learning, making it unsuitable to be

directly deployed. In this paper, we advocate a personalized federated learning framework in a cloud-edge

architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments,

we investigate emerging personalized federated learning methods which are able to mitigate the negative

effects caused by heterogeneities in different aspects. With the power of edge computing, the requirements

for fast-processing capacity and low latency in intelligent IoT applications can also be achieved. We finally

provide a case study of IoT based human activity recognition to demonstrate the effectiveness of personalized

federated learning for intelligent IoT applications.

INDEX TERMS Edge computing, federated learning, internet of things, personalization.

I. INTRODUCTION

The proliferation of smart devices, mobile networks and com-

puting technology have sparked a new era of Internet of

Things (IoT), which is poised to make substantial advances

in all aspects of our modern life, including smart healthcare

system, intelligent transportation infrastructure, etc [1]. With

huge amounts of smart devices connected together in IoT, we

are able to get access to massive user data to yield insights,

train task-specified machine learning models and utimately

provide high-quality smart services and products. To reap the

benefits of IoT data, the predominant approach is to collect

scattered user data to a central cloud for modeling and then

transfer the trained model to user devices for task inferences.

This kind of approach can be ineffective as data transmission

and model transfer will result in high communication cost and

latency [2]. Moreover, as the user-sensitive data are required

to upload to the remote cloud, it may impose great privacy

leakage risk. Under the increasing stringent data privacy pro-

tection legislation such as General Data Protection Regulation

(GDPR) [3], the data movement would face unprecedented

difficulties. An alternative is to train and update the model

at each IoT device with its local data, in isolation from other

devices. However, one key impediment of this approach lies in

the high resource demand for deploying and training models

on IoT devices with limited computational, energy and mem-

ory resources. Besides, insufficient data samples and local

data shifts will lead to an even worse model.

A sophisticated solution to deal with distributed data train-

ing is federated learning which enables to collaboratively train

a high-quality shared model by aggregating and averaging

locally-computed updates uploaded by IoT devices [4]. The

primary advantage of this approach is the decoupling of model

training from the need for direct access to the training data,

and thus federated learning is able to learn a satisfactory
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global model without compromising user data privacy. Never-

theless, there are three major challenges in the key aspects of

federated learning process in the complex IoT environments,

making it unsuitable to directly deploy federated learning in

IoT applications.

These three challenges faced by federated learning can be

summarized as (1) device heterogeneity, such as varying stor-

age, computational and communication capacities; (2) statisti-

cal heterogeneity like the non-IID (a.k.a. non independent and

identically distributed) nature of data generated from different

devices; and (3) model heterogeneity, the situation where dif-

ferent devices want to customize their models adaptive to their

application environments. Specifically, resource-constrained

IoT devices will be only allowed to train lightweight mod-

els under certain network conditions and may further result

in high communication cost, stragglers, and fault tolerance

issues which can not be well handled by traditional federated

learning. As federated learning focuses on achieving a high-

quality global model by extracting common knowledge of all

participating devices, it fails to capture the personal informa-

tion for each device, resulting in a degraded performance for

inference or classification. Furthermore, traditional federated

learning requires all participating devices to agree on a com-

mon model for collaborative training, which is impractical in

realistic complex IoT applications.

To tackle these heterogeneity challenges, one effective way

is to perform personalization in device, data and model levels

to mitigate heterogeneities and attain high-quality personal-

ized model for each device. Due to its broad application sce-

narios (e.g., IoT based personalized smart healthcare, smart

home services and applications, fine-grained location-aware

recommendation services, and on-premise intelligent video

analytics), personalized learning has recently attracted great

attention [5], [6]. We investigate the emerging personalized

federated learning approaches which can be the viable alterna-

tive to traditional federated learning and summarize them into

four categories: federated transfer learning, federated meta

learning, federated multi-task learning and federated distilla-

tion. These approaches are able to alleviate different kinds of

heterogeneity issues in the complex IoT environments and can

be promising enabling techniques for many emerging intelli-

gent IoT applications.

In this paper, we propose a synergistic cloud-edge frame-

work named PerFit for personalized federated learning which

mitigates the device heterogeneity, statistical heterogeneity,

and model heterogeneity inherent in IoT applications in a

holistic manner. To tackle the high communication and com-

putation cost issues in device heterogeneity, we resort to edge

computing which brings the necessary on-demand comput-

ing power in the proximity of IoT devices [2]. Therefore,

each IoT device can choose to offload its computationally-

intensive learning task to the edge which fulfills the require-

ment for fast-processing capacity and low latency. Besides,

edge computing can mitigate privacy concerns by storing the

data locally in proximity (e.g., in the smart edge gateway at

home for smart home applications) without uploading the data

to the remote cloud [7]. Furthermore, privacy and security

protection techniques such as differential privacy and homo-

morphic encryption can be adopted to enhance the privacy

protection level. For statistical and model heterogeneities, this

framework also enables that end devices and edge servers

jointly train a global model under the coordination of a central

cloud server in a cloud-edge paradigm. After the global model

is trained by federated learning, at the device side, differ-

ent kinds of personalized federated learning approaches can

be then adopted to enable personalized model deployments

for different devices tailored to their application demands.

We further illustrate a representative case study based on a

specific application scenario—IoT based activity recognition,

which demonstrates the superior performance of PerFit for

high accuracy and low communication overhead.

The remainder of this paper is organized as follows. The

following section discusses the main challenges of federated

learning in IoT environments. To cope with these challenges,

we advocate a personalized federated learning framework

based on cloud-edge architecture and investigate some emerg-

ing solutions to personalization. Then, we evaluate the per-

formance of personalized federated learning methods with a

motivating study case of human activity recognition. Finally,

we conclude the paper.

II. MAIN CHALLENGES OF FEDERATED LEARNING IN IOT

ENVIRONMENTS

In this section, we first elaborate the main challenges and

the potential negative effects when using traditional federated

learning in IoT environments.

A. DEVICE HETEROGENEITY

There are typically a large number of IoT devices that differ

in hardware (CPU, memory), network conditions (3G, 4G,

WiFi) and power (battery level) in IoT applications, resulting

in diverse computing, storage and communication capacities.

Thus, device heterogeneity challenges arise in federated learn-

ing, such as high communication cost, stragglers, and fault

tolerance [8]. In federated setting, communication costs are

the principal constraints considering the fact that IoT devices

are frequently offline or on slow or expensive connections [9].

In the federated learning process performing a synchronous

update, the devices with limited computing capacity could be-

come stragglers as they take much longer to report their model

updates than other devices in the same round. Moreover, par-

ticipating devices may drop out the learning process due to

poor connectivity and energy constraints, causing a negative

effect on federated learning. As the stragglers and faults issues

are very prevalent due to the device heterogeneity in complex

IoT environments, it is of great significance to address the

practical issues of heterogeneous device communication and

computation resources in federated learning setting.

B. STATISTICAL HETEROGENEITY

Consider a supervised task with features x and labels y,

the local data distribution of user i can be represented as
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Pi(x, y). Due to users’ different usage environments and pat-

terns, the personally-generated data (x, y) from different de-

vices may naturally exhibit the kind of non-IID distributions.

As Pi(x, y) = Pi(y|x)Pi(x) = Pi(x|y)Pi(y), user data can be

non-IID in many forms, such as feature distribution skew,

label distribution skew and concept shift [10]. For example,

in healthcare applications, the distributions of users’ activity

data differ greatly according to users’ diverse physical char-

acteristics and behavioral habits (feature distribution skew).

Moreover, the number of data samples across devices may

vary significantly [11]. This kind of statistical heterogeneity

is pervasive in complex IoT environments. To address this

heterogeneity challenge, the canonical federated learning ap-

proach, FederatedAveraging (FedAvg), is demonstrated to be

able to work with certain non-IID data. However, FedAvg may

lead to a severely degraded performance when facing highly

skewed data distributions. Specifically, on the one hand, non-

IID data will result in weight divergence between federated

learning process and the traditional centralized training pro-

cess, which indicates that Fedvg will finally obtain a worse

model than centralized methods and thus result in poor per-

formance [12]. On the other hand, FedAvg only learns the

coarse features from IoT devices, while fails in learning the

fine-grained information on a particular device.

C. MODEL HETEROGENEITY

In the original federated learning framework, participating de-

vices have to agree on a particular architecture of the training

model so that the global model can be effectively obtained by

aggregating the model weights gathered from local models.

However, in practical IoT applications, different devices want

to craft their own models adaptive to their application envi-

ronments and resource constraints (i.e., computing capacity).

And, they may be not willing to share the model details due to

privacy concerns. As a consequence, the model architectures

from different local models exhibit various shapes, making it

impossible to perform naive aggregation by traditional fed-

erated learning [13]. In this case, the problem of model het-

erogeneity turns to become how to enable a deep network to

understand the knowledge of others without sharing data or

model details. Model heterogeneity inherent in IoT environ-

ments has attracted considerable research attention due to its

practical significance for intelligent IoT applications.

III. CLOUD-EDGE FRAMEWORK FOR PERSONALIZED

FEDERATED LEARNING

As elaborated in Section II, there exist device heterogeneity,

statistical heterogeneity and model heterogeneity in IoT appli-

cations, which poses great challenges to traditional federated

learning. An effective solution for addressing those hetero-

geneity issues can boil down to personalization. By devising

and leveraging more advanced federated learning methods, we

aim to enable the great flexibility such that individual devices

can craft their own personalized models to meet their resource

and application requirements and meanwhile enjoy the benefit

from federated learning for collective knowledge sharing.

In this paper, we advocate a personalized federated learn-

ing framework for intelligent IoT applications to tackle the

heterogeneity challenges in a holistic manner. As depicted in

Fig. 1, our proposed PerFit framework adopts a cloud-edge

architecture, which brings necessary on-demand edge com-

puting power in the proximity of IoT devices. Therefore, each

IoT device can choose to offload its intensive computing tasks

to the edge (i.e., edge gateway at home, edge server at office,

or 5G MEC server outdoors) via the wireless connections,

thus the requirements for high processing efficiency and low

latency of IoT applications can be fulfilled.

To support collaborative learning for intelligent IoT appli-

cations, federated learning (FL) is then adopted between end

devices, edge servers and the remote cloud, which enables

to jointly train a shared global model by aggregating locally-

computed models from the IoT users at the edge while keep-

ing all the sensitive data on device. To tackle the heterogeneity

issues, we will further carry out personalization and adopt

some personalized federated learning methods to fine tune the

learning model for each individual device.

Specifically, the collaborative learning process in PerFit

mainly consists of the following three stages as depicted in

Fig. 1:
� Offloading stage: When the edge is trustworthy (e.g.,

edge gateway at home), the IoT device user can offload

its whole learning model and data samples to the edge

for fast computation. Otherwise, the device user will

carry out model partitioning by keeping the input layers

and its data samples locally on its device and offloading

the remaining model layers to the edge for device-edge

collaborative computing [14].
� Learning stage: The device and the edge collaboratively

compute the local model based on personal data samples

and then transmit the local model information to the

cloud server. The cloud server aggregates local model

information submitted by participating edges and aver-

ages them into a global model to send back to edges.

Such model information exchanging process repeats un-

til it converges after a certain number of iterations. Thus,

a high-quality global model can be achieved and then

transmitted to the edges for further personalization.
� Personalization stage: To capture the specific personal

characteristics and requirements, each device will train

a personalized model based on global model informa-

tion and its own personal information (i.e., local data).

The specific learning operations at this stage depend on

the adopted personalized federated learning mechanism

which will be elaborated in next section.

The proposed PerFit framework leverages edge computing

to augment the computing capability of individual devices

via computation offloading to mitigate the straggle effect.

If we further conduct local model aggregation at the edge

server, it also helps to reduce the communication overhead

by avoiding massive devices to directly communicate with

the cloud server over the expensive backbone network band-

width [15]. Moreover, by performing personalization, we can
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FIGURE 1. The personalized federated learning framework for intelligent IoT applications, which supports flexible selection of personalized federated
learning approaches.

deploy lightweight personalized models at some resource-

limited devices (e.g., by model pruning or transfer learning).

These would help to mitigate the device heterogeneity in com-

munication and computation resources. Also, the statistical

heterogeneity and model heterogeneity can be well supported,

since we can leverage personalized models and mechanisms

for different individual devices tailored to their local data

characteristics, application requirements and deployment en-

vironments.

Note that the adopted personalized federated learning

mechanism will be the core of the collaborative learning in

PerFit, which also determines the exchanging model informa-

tion between the cloud server and the edges. For example, it is

also allowed to transmit only part of the model parameters

due to the specific setting of federated transfer learning as

we will discuss in the coming section. If facing the situation

where different models are trained on different IoT devices,

the output class probabilities of local models can be encap-

sulated as its local information to send to the cloud server

via federated distillation approaches. PerFit is flexible to inte-

grate with many kinds of personalized federated methods by

exchanging different kinds of model information between the

edges and cloud accordingly. By addressing the heterogeneity

issues inherent in the complex IoT environments and ensuring

user privacy by default, PerFit can be ideal for large-scale

practical deployment.

IV. PERSONALIZED FEDERATED LEARNING MECHANISMS

In this section, we review and elaborate several key person-

alized federated learning mechanisms that can be integrated

with PerFit framework for intelligent IoT applications. These

personalized federated learning schemes can be categorized

by federated transfer learning, federated meta learning, feder-

ated multi-task learning, and federated distillation, which will

be elaborated as follows.

A. FEDERATED TRANSFER LEARNING

Transfer learning [16] aims at transferring knowledge (i.e., the

trained model parameters) from a source domain to a target

domain. In the setting of federated learning, the domains are

often different but related, which makes knowledge transfer

possible. The basic idea of federated transfer learning is to

transfer the globally-shared model to distributed IoT devices

for further personalization in order to mitigate the statistical

heterogeneity (non-IID data distributions) inherent in feder-

ated learning. Considering the architecture of deep neural

networks and communication overload, there are two main

approaches to perform personalization via federated transfer

learning.

Chen et al. [17] first train a global model through traditional

federated learning and then transfer the global trained model

back to each device. Accordingly, each device is able to build

personalized model by refining the global model with its local

data. To reduce the training overhead, only model parameters

of specified layers will be fine-tuned instead of retraining

whole model. As presented in Fig. 2(a), model parameters in

lower layers of global model can be transferred and reused

directly for local model as lower layers of deep networks focus

on learning common and low-level features. While the model

parameters in higher layers should be fine-tuned with local

data as they learn more specific features tailored to current

device. Besides, Feng et al. [18] design two personal adaptors

(personal bias, personal filter) for higher layers in user’s local

model which can be fine-tuned with personal information.

38 VOLUME 1, 2020



FIGURE 2. Federated transfer learning.

Arivazhagan et al. [19] propose FedPer which takes a dif-

ferent way to perform personalization through federated trans-

fer learning. FedPer advocates viewing deep learning models

as base + personalization layers as illustrated in Fig. 2(b).

Base layers act as the shared layers which are trained in

a collaborative manner using the existing federated learning

approach (i.e., FedAvg method). While the personalization

layers are trained locally thereby enabling to capture personal

information of IoT devices. In this way, after the federated

training process, the globally-shared base layers can be trans-

ferred to participating IoT devices for constituting their own

personalized deep learning models with their unique personal-

ization layers. Thus, FedPer is able to capture the fine-grained

information on a particular device for superior personalized

inference or classification, and address the statistical hetero-

geneity to some extent. Besides, by uploading and aggregating

only part of the models, FedPer requires less computation and

communication overhead, which is essential in IoT environ-

ments.

Note that subject to the computing resource constraint of

the device, model pruning and compression techniques can

be further leveraged to achieve the lightweight model deploy-

ment after the personalized model is obtained.

B. FEDERATED META LEARNING

Federated learning in IoT environments generally faces statis-

tical heterogeneity such as non-IID and unbalanced data dis-

tributions, which makes it challenging to ensure a high-quality

performance for each participating IoT devices. To tackle this

problem, some researchers concentrate on improving FedAvg

algorithm by leveraging the personalization power of meta

learning. In meta learning, the model is trained by a meta-

learner which is able to learn on a large number of similar

tasks and the goal of the trained model is to quickly adapt to a

new similar task from a small amount of new data [20]. By re-

garding the similar tasks in meta learning as the personalized

models for the devices, it is a natural choice to integrate fed-

erated learning with meta learning to achieve personalization

through collaborative learning.

Jiang et al. [21] propose a novel modification of FedAvg

algorithm named Personalized FedAvg by introducing a fine-

tuning stage using model agnostic meta learning (MAML), a

representative gradient-based meta learning algorithm. Thus,

the global model trained by federated learning can be person-

alized to capture the fine-grained information for individual

devices, which results in an enhanced performance for each

IoT device. MAML is flexible to combine with any model

representation that is amenable to gradient-based training.

Besides, it can learn and adapt quickly from only a few data

samples.

Since the federated meta learning approach often utilizes

complicated training algorithms, it has higher implementa-

tion complexity than the federated transfer learning approach.

Nevertheless, the learned model by federated meta learning is

more robust and can be very useful for those devices with very

few data samples.

C. FEDERATED MULTI-TASK LEARNING

In general, federated transfer learning and federated meta

learning aim to learn a shared model of the same or similar

tasks across the IoT devices with fine-tuned personalization.

Along a different line, federated multi-task learning aims at

learning distinct tasks for different devices simultaneously

and tries to capture the model relationships amongst them

without privacy risk [22]. Through model relationships, the

model of each device may be able to reap other device’s

information. Moreover, the model learned for each device is

always personalized. As shown in Fig. 3, in the training pro-

cess of federated multi-task learning, the cloud server learns

the model relationships amongst multiple learning tasks based

on the uploaded model parameters by IoT devices. And, then

each device can update its own model parameters with its local

data and current model relationships. Through the alternating
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FIGURE 3. Federated multi-task learning.

optimization of model relationships in the cloud server and

model parameters for each task, federated multi-task learning

enables participating IoT deivices to collaboratively train their

local models so as to mitigate statistical heterogeneity and

obtain high-quality personalized models.

Smith et al. [8] develop a distributed optimization method

MOCHA through a federated multi-task learning framework.

For high communication cost, MOCHA allows the flexibility

of computation which yields direct benefits for communica-

tion as performing additional local computation will result in

fewer communication rounds in federated settings. To miti-

gate stragglers, the authors propose to approximately com-

pute the local updates for devices with limited computing

resources. Besides, asynchronous updating scheme is also

an alternative approach for straggler avoidance. Furthermore,

by allowing participating devices periodically dropping out,

MOCHA is robust to fault tolerance. As device heterogeneity

inherent in complex IoT environments is critical to the per-

formance of federated learning, federated multi-task learning

is of great significance for intelligent IoT applications. Never-

theless, as federated multi-task learning produces one model

per task, it requires that all clients (e.g., IoT devices) partici-

pate in every iteration which is impractical in IoT applications.

To tackle this issue, we believe that cluster-based federated

multi-task learning is a promising direction in research.

D. FEDERATED DISTILLATION

In original federated learning framework, all clients (e.g.,

participating edges and devices) have to agree on a particular

architecture of the model trained on both the global server and

local clients. However, in some realistic business setting, like

healthcare and finance, each participant would have capacity

and desire to design its own unique model, and may not be

willing to share the model details due to privacy and intel-

lectual property concerns. This kind of model heterogeneity

poses new challenge to traditional federated learning.

To tackle this challenge, Li et al. [23] propose FedMD, a

new federated learning framework that enables participants

FIGURE 4. Federated distillation.

to independently design their own models by leveraging the

power of knowledge distillation. In FedMD, each client needs

to translate its learned knowledge to a standard format which

can be understood by others without sharing data and model

architecture. And, then a central server collects these knowl-

edges to compute a consensus which will be further dis-

tributed to the participating clients. The knowledge translation

step can be implemented by knowledge distillation, for ex-

ample, using the class probabilities produced by client model

as the standard format as shown in Fig. 4. In this way, the

cloud server aggregates and averages the class probabilities

for each data sample and then distributes to clients to guide

their updates. Jeong et al. [24] propose federated distillation

where each client treats itself as a student and sees the mean

model output of all the other clients as its teacher’s output.

The teacher-student output difference provides the learning

direction for the student. Here, it is worthnoting that, to op-

erate knowledge distillation in federated learning, a public

dataset is required because the teacher and student outputs

should be evaluated using an identical training data sample.

Moreover, federated distillation can significantly reduce the

communication cost as it exchanges not the model parameters

but the model outputs [25].

E. DATA AUGMENTATION

As user’s personally-generated data naturally exhibits the kind

of highly-skewed and non-IID distribution which may greatly

degrade the model performance, there are emerging works

focusing on data augmentation to facilitate personalized feder-

ated learning. Zhao et al. [12] propose a data-sharing strategy

by distributing a small amount of global data containing a

uniform distribution over classes from the cloud to the edge

clients. In this way, the highly-unbalanced distribution of

client data can be alleviated to some extent and then the model

performance of personalization can be improved. However,

directly distributing the global data to edge clients will impose

great privacy leakage risk, this approach is required to make

a trade-off between data privacy protection and performance

improvement. Moreover, the distribution difference between
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global shared data and user’s local data can also bring perfor-

mance degradation.

To rectify the unbalanced and non-IID local dataset with-

out compromising user privacy, some over-sampling tech-

niques and deep learning approaches with generative ability

are adopted. For example, Jeong et al. [24] propose federated

augmentation (FAug), where each client collectively trains a

generative model, and thereby augments its local data towards

yielding an IID dataset. Specifically, each edge client recog-

nizes the labels being lacking in its data samples, referred to

as target labels, and then uploads few seed data samples of

these target labels to the server. The server oversamples the

uploaded seed data samples and then trains a generative ad-

versarial network (GAN). Finally, each device can download

the trained GAN’s generator to replenish its target labels until

reaching a balanced dataset. With data augmentation, each

client can train a more personalized and accurate model for

classification or inference based on the generated balanced

dataset. It is worthnoting that the server in FAug should be

trustworthy so that users are willing to upload their personal

data.

V. CASE STUDY

In this section, we first describe the experiment settings and

then evaluate different personalized federated learning ap-

proaches with different kinds of heterogeneities in terms of

accuracy and comminication size.

A. DATASET DESCRIPTION AND IMPLEMENTATION DETAILS

In the experiments, we focus on human activity recogni-

tion task based on a publicly accessible dataset called Mo-

biAct [26]. Each volunteer participating in the generation of

MobiAct dataset wears a Samsung Galaxy S3 smartphone

with accelerometer and gyroscope sensors. The tri-axial linear

accelerometer and angular velocity signals are recorded by

embedded sensors while volunteers perform predefined activi-

ties. We use an 1-second sliding window for feature extraction

since one second is enough to perform an activity. There are

ten kinds of activities recorded in MobiAct, such as walking,

stairs up/down, falls, jumping, jogging, step in a car, etc. To

practically mimic the environment of federated learning, we

randomly select 30 volunteers and regard them as different

clients. For each client, we take a random number of samples

for each activity and finally, each client has 480 samples for

model training. In this way, the personal data of different

clients may exhibit the kind of non-IID distributions (statis-

tical heterogeneity). The test data for each client is composed

of 160 samples under a balanced distribution.

In order to meet the needs of different clients for customiz-

ing their own models (model heterogeneity) in IoT appli-

cations, we design two kinds of models for training on the

clients: 1) a Multi-Layer Perceptron network composed of

three fully-connected layers with 400, 100 and 10 neural units

(521,510 total parameters), which we refer to as the 3NN,

2) a convolutional neural network (CNN) with three 3 × 3

convolutional layers (the first with 32 channels, the second

with 16, the last with 8, each of the first two layers followed by

a 2 × 2 max-pooling layer), a fully-connected layer with 128

units and ReLu activation, and a final Sof tmax output layer

(33,698 total parameters). Cross-entropy loss and Stochastic

Gradient Descent (SGD) optimizer with a learning rate of 0.01

are used for the training of both 3NN and CNN.

B. EXPERIMENTAL RESULTS

1) COMPARING METHODS

We compare the performance of personalized federated learn-

ing with both centralized scheme and traditional federated

learning. For centralized methods, we adopt the widely-used

machine learning approaches in human activity recognition

task such as support vector machine (SVM) [27], k-nearest

neighbor (kNN) [28], and random forest (RF) [29]. Besides,

centralized 3NN (c3NN) and centralized CNN (cCNN) are

also used for comparison. As centralized approaches require

a large amount of data, we collect all the training data of 30

users for model learning. In traditional federated settings, each

client trains a local model (e.g., 3NN or CNN in our experi-

ment) with its personal-generated data. FedAvg method [9],

which aggregates local model updates on each client and then

sends them to a cloud server that performs model averag-

ing in an iterative way, is applied to train the global model.

Then, the well-trained global model in the cloud is directly

distributed to clients for human activity recognition. As for

personalized FL, we study the performance of the two widely-

adopted approaches: federated transfer learning (FTL) and

federated distillation (FD). For FTL, each client will fine tune

the model downloaded from the cloud server with its personal

data. While in FD, each client can customize its own model

according to its own requirements. Note that each client is

able to offload its learning task from its device to the edge in

proximity (e.g., edge gateway at home) for fast computation

in our cloud-edge paradigm.

2) PERFORMANCE EVALUATION

As elaborated in Section II-A, due to the device heterogeneity

(communication and computing resources constraints of IoT

devices), there are only a few clients participating in the global

model learning in each communication round. Thus, we first

experiment with the number of participating clients K in each

round. We set K equal to 3, 5, 10, and 30, which means that
1

10
, 1

6
, 1

3
and 100% of users participating in the federated

learning process in each communication round. As depicted in

Fig. 5(a), for all values of K , the test accuracy improves with

the number of communication rounds increases and the test

accuracies are similar when the training process converges.

However, when K is small, the learning curve exists erratic

fluctuation to some extent. As K increases, the learning curve

becomes smoother and smoother. Although the test accura-

cies are similar, the training time for each value of K varies

dramatically as demonstrated in Fig. 5(b). For example, the

training time for K = 30 is 3.26 times longer than that in the

K = 3 case. We make a trade-off between the stability and
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FIGURE 5. The test accuracy and time cost under different number of participating clients in each communication round. We choose K = 5 by making a
trade off between the stability and the efficiency of the learning algorithm.

FIGURE 6. The accuracy of different learning methods in human activity recognition.

the efficiency for the training process and fix K = 5 for the

following experiments. For each method, we compute the av-

erage of test accuracy by repeating the training and prediction

processes five times.

Fig. 6 illustrates the test accuracy of 30 clients under dif-

ferent learning approaches. For centralized methods, deep

learning based methods (c3NN, cCNN) can all achieve a high

accuracy than traditional machine learning based methods

(SVM, kNN, and RF). Under the coordination of a central

cloud server, the edge clients in traditional federated learning

(FL-CNN) are able to collectively reap the benefits of each

other’s information without compromising data privacy and

achieve a competitive average accuracy of 85.22% similar

to cCNN. The slight performance degradation in FL-3NN

and FL-CNN compared with the centralized fashion results

from the statistical heterogeneity inherent in federated learn-

ing settings. With personalized federated learning, both FTL

and FD can capture user’s fine-grained personal information

and obtain a personalized model for each participant, leading

to a higher test accuracy. For example, FTL-3NN can reach

95.37% accuracy, which is 11.12% higher than that of FL-

3NN.

Furthermore, we take a more detailed observation to eval-

uate the performance of personalized federated learning. As

shown in Fig. 7, we adopt boxplot to graphically depict the

six-number summary of the accuracies of 30 paticipating

users, which consists of the smallest observation, lower quar-

tile, median, upper quartile, largest observation, and the mean

represented by green triangle. We can see that although the

average performance of FL-CNN is similar with cCNN, the

global model trained by FL may perform poorly on some

clients. For example, the accuracy of some clients may be

lower than 70% while some clients can reach a high accuracy

of more than 95%. With personalization performed by each

client with its own data, the accuracies of 30 clients vary

in a very small scale which indicates that personalization
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FIGURE 7. The accuracy distribution of different clients predicted by CNN
under different learning schemes.

FIGURE 8. The accuracy and communication size of different implemen-
tations for federated transfer learning and federated distillation.

can significantly reduce the performance degradation caused

by non-IID distribution. FD-CNN approach has an accuracy

improvement of 5.69% compared with FL-CNN and the per-

formance differences between different clients have also been

narrowed. This observatiion indicates that PFL can benefit

most of the participating clients and thus will encourage user

engagement.

The critical nature of communication constraints in cloud-

edge scenarios also needs to be considered in federated set-

ting because of limited bandwidth, slow and expensive con-

nections. We compare both the accuracy and communication

data size of different training models for FTL and FD. In

FTL-3NN and FTL-CNN, we utilize 3NN and CNN as the

model trained on both the cloud and the edge clients, re-

spectively. For federated distillation, we consider two cases

of model heterogeneity: (1) FD-1: 10 clients choose 3NN

as their local models while the remaining 20 clients choose

CNN; (2) FD-2: the local models of 20 clients are 3NN and

the models for remaining 10 clients are CNN. As depicted in

Fig. 8, all the four personalized federated learning methods

can achieve a high accuracy of more than 90%. However, the

communication sizes vary dramatically. As all these methods

can converge within hundreds of communication rounds, we

only compare the communication size in each communication

round. The commnication payload size for FTL depends on

the model parameter number which are 521,510 and 33,698

for FTL-3NN and FTL-CNN, respectively. While the com-

munication size for FD is proportional to the output dimen-

sion which is 10 in our human activity recognition task. In

each communication round, we randomly select 500 samples

from the globally-shared data and transmit the outputted class

scores predicted by each participating device to the cloud

server, thus the communication size for both FD-1 and FD-2

is 5000. Fig. 8 states that we are able to achieve superior

prediction performance with lightweight models and small

communication overhead, which is of great significance for

supporting large-scale intelligent IoT applications.

VI. CONCLUSION

In this paper, we propose PerFit, a personalized federated

learning framework in a cloud-edge architecture for intelligent

IoT applications with data privacy protection. PerFit enables

to learn a globally-shared model by aggregating local updates

from distributed IoT devices and leveraging the merits of edge

computing. To tackle the device, statistical, and model hetero-

geneities in IoT environments, PerFit can naturally integrate a

variety of personalized federated learning methods and thus

achieve personalization and enhanced performance for de-

vices in IoT applications. We demonstrate the effectiveness of

PerFit through a case study of human activity recognition task,

which corroborates that PerFit can be a promising approach

for enabling many intelligent IoT applications.
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