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Medicine has always been personalized. For years, physicians have incorporated environmental, behavioural, and genetic factors that affect
disease and drug response into patient management decisions. However, until recently, the ‘genetic’ data took the form of family history and
self-reported race/ethnicity. As genome sequencing declines in cost, the availability of specific genomic information will no longer be limiting.
Rather, our ability to parse these data and our decision whether to use it will become primary. As our understanding of genetic association
with drug responses and diseases continues to improve, clinically useful genetic tests may emerge to improve upon our previous methods of
assessing genetic risks. Indeed, genetic tests for monogenic disorders have already proven useful. Such changes may usher in a new era of
personalized medicine. In this review, we will discuss the utility and limitations of personal genomic data in three domains: pharmacogen-
omics, assessment of genetic predispositions for common diseases, and identification of rare disease-causing genetic variants.
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Introduction
Medicine has always been personalized. For years, physicians have
incorporated environmental, behavioural, and genetic factors that
affect disease and drug response into patient management deci-
sions. However, until recently, the ‘genetic’ data took the form
of family history and self-reported race/ethnicity. As genome
sequencing declines in cost, the availability of specific genomic
information will no longer be limiting. Rather, our ability to parse
these data and our decision whether to use it will become primary.
As our understanding of genetic association with drug responses
and diseases continues to improve, clinically useful genetic tests
may emerge to improve upon our previous methods of assessing
genetic risks. Indeed, genetic tests for monogenic disorders have
already proven useful. Such changes may usher in a new era of
personalized medicine.

In considering where personal genomic information has begun
to, or has the potential to, impact clinical medicine, three
domains emerge (Figure 1): pharmacogenomics, assessment of
genetic predispositions for common diseases, and identification
of rare disease-causing genetic variants. In this review, we will
discuss the utility and limitations of personal genomic data in
each of these domains.1

Pharmacogenomics
Pharmacogenomics, the study of how genes modulate drug
responses among individuals, is likely to be one of the first direct
applications of personal genomics to clinical medicine, with
several notable examples already emerging. Genes that underlie
differences in drug response can harbour genetic variants involved
in the pharmacokinetics of a drug (i.e. how the drug is the
absorbed, distributed, metabolized, and excreted) or the pharma-
codynamics of a drug (i.e. how the drug interacts with its target and
its mechanism of action). Such variation can influence, and hence
potentially predict, both efficacy and toxicity. The number of phar-
macogenetic associations has steadily increased over the years.
Today, evidence for over 2000 genes involved in drug response
have been annotated by curators at the Pharmacogenomics
Knowledge Base (PharmGKB; http://www.pharmgkb.org).

Early successes in pharmacogenetics have arisen in oncology,
where somatic genetic changes in a patient’s tumour (which
often have more substantial effects than variation in an individual’s
germline DNA) can markedly elevate or repress gene expression
(compared with normal tissues) and provide a wide therapeutic
window (Figure 2A). In this context, the genetic analysis of a
patient’s tumour can help predict therapeutic benefit—or lack
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Figure 1 Domains of personalized medicine.

Figure 2 Clinical use of pharmacogenomic information. (A) Patients who test positive for genetic alterations that are disease-specific (e.g.
BCR-ABL gene fusion in chronic myelogenous leukemia) or disease-enriched (e.g. Her2/neu receptor amplification in breast cancer) can
select biologic drugs targeted specifically to their disease. (B) Patients with genetic variants affecting the pharmacokinetics or pharmacodynam-
ics of a drug can benefit from improved prediction of drug efficacy and required dosing. (C) Patients with genetic variants associated with drug
side effects can benefit by predicting and avoiding such side effects.
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thereof—of targeted biologics, such as trastuzumab for
ERBB2(HER2)-amplified breast cancers, erlotinib for epidermal
growth factor receptor (EGFR) overexpressing lung cancers, or
imatinib for Philadelphia chromosome-positive chronic myelogen-
ous leukaemias. Somatic mutations in tumours can also help
predict resistance, as in the case of colorectal cancers where acti-
vating mutations in KRAS have been established as a predictive
marker for resistance to EGFR-specific antibodies cetuximab and
panitumumab.2– 4 Finally, somatic tumour mutations can give rise
to ‘synthetic lethal’ interactions with drugs, best exemplified by
the profound sensitivity of tumours with BRCA1 or BRCA2
dysfunction to the inhibition of poly(ADP-ribose) polymerase
(PARP).5,6 PARP functions in the repair of DNA single-strand
breaks, and in tumours with defective BRCA1/BRCA2-mediated
repair, PARP inhibition seemingly leads to the persistence of
DNA lesions, resulting in chromosomal instability, cell cycle
arrest, and subsequent apoptosis.6 A recent clinical trial supports
the efficacy of PARP inhibition among patients with BRCA-mutated
tumours,7 and trials evaluating PARP inhibitors in the context of
sporadic basal-like tumours (which often resemble BRCA-mutant
tumours) are ongoing.

In cardiovascular medicine, the anti-coagulant drug warfarin
represents an informative case study of how germline genetic in-
formation might help personalize a patient’s treatment regimen.
The appropriate dose of warfarin varies by over 10-fold among
patients, and establishing the correct dose for a given patient is
critically important because the therapeutic window is narrow. In
addition to diet, clinical factors, and demographic variables,
genetic variants in three genes—cytochrome P450, family 2, sub-
family C, polypeptide 9 (CYP2C9), vitamin K epoxide reductase
complex, subunit 1 (VKORC1), and cytochrome P450, family 4,
subfamily F, polypeptide 2 (CYP4F2)—contribute significantly to
patient variability in response to warfarin8 –11 (Figure 2B). Recently,
the International Warfarin Pharmacogenetics Consortium (IWPC)
developed a pharmacogenetic algorithm to help estimate warfarin
dosing and showed that it produced recommendations significantly
closer to the required stable therapeutic dose than those derived
from an algorithm based on only clinical variables or a fixed-dose
strategy.12 Specifically, the pharmacogenetic algorithm correctly
predicted low doses for 54% of all patients (when compared
with the clinical algorithm which predicted low doses for 33%),
while the pharmacogenetic algorithm accurately predicted high
doses for 26% of patients who required high doses (vs. 9% for
the clinical algorithm). Thus, the pharmacogenetic algorithm signifi-
cantly improved the dose prediction for those at the tails of the
dosage distribution, a group accounting for 46% of the entire
cohort. A recent study reported that using patient genotype data
for warfarin dosing reduced the risk of hospitalization in outpati-
ents initiating warfarin by nearly one-third.13 While further
outcome studies of pharmacogenetic-based dosing of warfarin
are warranted, and while newer agents metabolized by alternative
pathways may supersede these strategies, the IWPC study exem-
plifies an approach that can likely be generalized to other
commonly prescribed drugs where individual variability and/or a
narrow therapeutic index are factors.

In addition to estimating efficacy and appropriate drug doses,
pharmacogenetic information has the potential to be of a clinical

value when deciding between multiple treatment options to maxi-
mize treatment benefit and limit the risk of side effects (Figure 2C).
For example, the cholesterol-lowering drug simvastatin can, in rare
cases, cause a myopathy when administered at higher doses or in
combination with certain other medications. A recent genome-
wide association study (GWAS) identified a greater than 16-fold
increased risk of statin-induced myopathy in homozygotes of a
common variant within SLCO1B1, a gene known to regulate the
hepatic uptake of statins.14 Another recent study identified that
in statin-treated men with coronary artery disease (CAD), those
with intrinsically low levels of cholesteryl ester transfer protein
(carriers of the TaqIB-B2 allele) have increased 10-year mortality,
suggesting an adverse pharmacogenetic interaction.15 Finally,
several pharmacogenetic variants have been associated with treat-
ment benefit of the angiotensin-converting enzyme-inhibitor peri-
ndopril in patients with stable CAD.16 Not all pharmacogenetic
associations, however, are appropriate for population-based
screening. In the case of severe statin-induced myopathy, the
rarity of the reaction lowers the positive predictive value of this
particular variant; nonetheless, the large effect size suggests that
genetic testing to avoid serious drug toxicity may have clinical
utility for some drugs, thereby helping achieve their benefits in
patients more safely and effectively.

Clopidogrel, a thienopyridine that inhibits platelet aggregation,
represents another illustrative example for cardiovascular pharma-
cogenomics. Delivered as an inactive prodrug, it is activated in vivo
by several cytochrome P450 enzymes in the liver including
CYP2C19 (Figure 2B). Variants in CYP2C19 can cause the loss of en-
zymatic function and thus lower the conversion rate to the active
drug, thereby reducing efficacy.17,18 The clinical relevance of this
was initially described in two contemporaneous studies: the Trial
to Assess Improvement in Therapeutic Outcomes by Optimizing
Platelet Inhibition with Prasugrel-Thrombolysis in Myocardial In-
farction (TRITON-TIMI) 38 and a French registry study of acute
MI patients.19,20 In the TRITON-TIMI 38 trial, among persons
treated with clopidogrel, carriers of a reduced-function CYP2C19
allele had significantly lower levels of the active metabolite of clo-
pidogrel, diminished platelet inhibition, and a higher rate of major
adverse cardiovascular events, including stent thrombosis, than did
non-carriers. In the French study, patients undergoing percutan-
eous coronary intervention for acute myocardial infarction who
had two loss of function alleles had .3 times higher risk of
death, myocardial infarction or stroke. The genetics substudy of
the Platelet Inhibition and Patient Outcomes (PLATO) trial subse-
quently confirmed a higher event rate in the patient group with any
CYP2C19 loss of function variant.21 In response to these findings,
the U.S. Food and Drug Administration (FDA) added a black box
warning to clopidogrel describing this patient group as one at
higher risk. However, debate has continued. Effects were not
seen in the analysis of patients from two more recent studies:
the Clopidogrel in Unstable Angina to Prevent Recurrent Events
(CURE) trial and the Atrial Fibrillation Clopidogrel Trial with Irbe-
sartan for Prevention of Vascular Events (ACTIVE) trial.22 Both
studies compared clopidogrel with placebo in combination with
aspirin for reducing cardiovascular events and found no difference
in the loss of function allele carriers. Interestingly, the gain of func-
tion carriers in the CURE group did appear to obtain more benefit.
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Adding further to the debate, in the TRITON-TIMI 38 trial, in
almost 3000 patients, ABCB1 and CYP2C19 variants were signifi-
cantly independent predictors of CV death, MI and stroke.23 In
sum, most investigators conclude that there is an effect of
CYP2C19 genotype on the platelet response to clopidogrel in the
setting of percutaneous coronary intervention but there has not
emerged sufficient consensus to recommend routine genetic
testing in clinical practice. Indeed, most have used the debate sur-
rounding genotyping as a reason to endorse newer alternatives
such as ticagrelor that are not metabolized via this route.

Recognizing the value of pharmacogenetic information, the FDA
has already approved, or relabelled, several drugs reflecting the
variation in response due to genetic factors. In 2005, the FDA
approved the combination drug isosorbide dinitrate/hydralazine
(BiDil) for congestive heart failure specifically in African-American
patients, emphasizing the principle of targeted therapy, albeit
ethnicity-based rather than genetically derived. More recently,
the FDA has added pharmacogenetic information to the product
labels of warfarin, clopidogrel, and carbamazepine, though they
have not included specific guidance for incorporating this informa-
tion into drug choice or dosing. The FDA has also approved the
design of a clinical trial for bucindolol, a b-blocker and mild vaso-
dilator, in a genotype-defined heart failure population.24 This pro-
spective trial highlights the value of pharmacogenetic information
from the perspective of pharmaceutical companies, whose drugs
may not achieve clinical endpoints needed for FDA approval in
the general population, but may be successful in genotype-defined
subpopulations.

Despite the large number of well-established and putative
pharmacogenetic associations, significant challenges remain in in-
corporating this information into clinical practice. First, it will
be important that only robustly replicated associations are
exploited. For example, genotype at the KIF6 locus has been pro-
posed, and fully commercialized, as a test of responsiveness to
statin therapy on the basis of a number of smaller studies,25–27

yet the underlying association did not replicate at all in a far
larger analysis.28 Even where the genetic association is robust,
the clinical utility of each pharmacogenetic test needs to be eval-
uated, taking into consideration the sensitivity, specificity, and
positive and negative predictive values. For example, if a specific
side effect from a drug is exceedingly rare, even a genetic variant
that predicts the side effect with high sensitivity and specificity
may have a sufficiently low positive predictive value to make
testing for the variant cost ineffective on a population level.
After appropriate cost-effectiveness analysis, there may remain
only few examples of agents where germline genetic effects are
large enough, therapeutic index low enough, and costs high
enough that genetic testing pre-prescription will be warranted.
On the other hand, if, as may increasingly be the case in the
future, a patient had their genotype or whole-genome data
available, several notable pharmacogenetic findings may be
of interest to their physicians. In a recent study evaluating
one patient’s whole-genome sequence, 63 clinically relevant
pharmacogenomic variants were noted as well as six novel,
non-conservative, amino acid-changing single-nucleotide poly-
morphisms (SNPs) in genes that are important for drug re-
sponse.1 As more pharmacogenetic associations are discovered,

validated, and evaluated for clinical utility, we expect pharmaco-
genomics to continue to be a fertile ground for clinical translation
and the practice of personalized medicine (for a detailed review
of pharmacogenetic associations that impact cardiovascular medi-
cine, see Verschuren et al.29).

Common disease risk assessment
Over the past two decades, candidate gene association studies and,
more recently, GWASs have provided researchers with a large
catalogue of genetic variant associations with hundreds of
common human diseases and traits.30 While these studies were
carried out in large part to identify new biological genes, pathways,
and potential drug targets relevant to the studied phenotypes,
there has been some interest in extending these findings to the
estimation of individual risk and, in some cases, such estimations
have been offered as direct to the consumer/patient genetic
tests. Here, we discuss four aspects of genetic variants for
disease risk estimation: the risk metric, selection of risk variants,
integration of multiple risk variants as well as other risk factors
of disease, and the clinical utility of the risk predictors.

Risk metric
Most GWASs employ a case–control study design and relate the
risk of developing a disease due to a specific genetic variant via
an odds ratio (OR). However, the assumption that the OR approx-
imates the true risk only holds for rare diseases (i.e. typically dis-
eases with an incidence ,10%). For GWASs evaluating common
diseases like cardiovascular disease or type 2 diabetes, the OR
will always overestimate the true risk, and the magnitude of the
inflation increases as the disease prevalence increases.

A more recently proposed alternative to OR-based risk assess-
ment is the use of likelihood ratios (LRs). In the context of genetic
data, an LR is the ratio of the probability of observing a specific
genotype in diseased individuals (cases) to that in healthy indivi-
duals (controls).31 Likelihood ratios from multiple unlinked
genetic variants can be multiplied together and used to transform
a pre-test to a post-test probability of disease, metrics that are
familiar in the framework of evidence-based medicine.

Variant selection
Selecting the genetic variants that might be informative in esti-
mating individual disease risk is a challenge but critically import-
ant. Attributes of GWASs that should be considered when
selecting disease-associated variants are the population or ethni-
city of the study subjects in which the genetic association was
discovered, the sample size of the study, the set of variants
scanned in the study, and whether the association has been repli-
cated. Most GWASs have evaluated one form of genetic vari-
ation—SNPs—and have focused specifically on those SNPs
with a minor allele frequency of at least 5% in populations of
European descent. This focus is grounded in the ‘common
disease–common variant hypothesis’, which posits that
common genetic variants in the population underlie the risk
for common genetic diseases. The hypothesis further suggests
that such diseases are likely caused by a large number of
common variants, each contributing only a small risk and
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thereby evading negative evolutionary selection. The vast major-
ity of SNP associations confidently identified to date do indeed
carry modest effect sizes (i.e. ORs of 1.0–1.5), but collectively
they only explain a small proportion of the heritability of most
common diseases.32 Thus, even if all the genetic variants discov-
ered to date are selected appropriately for their inclusion in an
individual’s estimate of disease risk, the predictive power may
remain low since much of the genetic variation underlying risk
for many diseases remains undiscovered.

Furthermore, most genetic associations have been identified in
populations of European descent. Thus, due to differences in the
pattern of linkage disequilibrium between different populations,
genetic associations identified in these studies may not be applic-
able across populations. For example, a genetic variant identified
to confer the risk of cardiovascular disease among Europeans
may be inappropriate to include in the risk estimate for an individ-
ual of African descent. Additional studies in diverse populations are
thus warranted to identify shared and novel genetic associations in
non-European populations.

Caution should also be exercised in selecting genetic variants
whose associations with disease have not been replicated.
Because of the well-known publication bias of reporting positive
results and larger effect sizes (also known as ‘winner’s curse’),33

genetic variants are commonly unable to be reproducibly asso-
ciated with a given disease, and initial reports typically overestimate
the effect size of the risk variant.

To find additional determinants of heritability, efforts are being
focused towards larger studies of common variation as well as
studies of rare variants, other forms of genetic variation aside
from SNPs, and interactions between genes or between genes
and the environment.34 For example, height is a trait where 80%
of phenotypic variation is heritable or attributable to genetic
factors; however, the SNPs identified by individual GWASs (each
analysing typically 1000–5000 individuals) collectively have only
accounted for less than 5% of the variation in height. The largest
genetic study to date, a meta-analysis of 46 GWASs (.130 000
individuals), recently identified 180 loci significantly associated
with height that extends the proportion of variance explained to
10%.35 Similarly, a recent meta-analysis of 14 GWASs of coronary
artery disease (CAD) comprising 22 233 individuals with CAD and
64 762 controls followed by genotyping of top association signals
in 56 682 additional individuals identified 13 new susceptibility
loci and confirmed 10 of 12 previously reported CAD loci, to-
gether explaining �10% of the genetic variance of CAD.36 As
genotyping technologies continue to become cheaper, such
larger studies and meta-analyses (i.e. .100 000 subjects) will
surely help identify more common variants associated with
common diseases.35,37

However, these studies will still fall grossly short of accounting
for the total heritability of height or common human diseases,
because many of the common SNPs with modest effect sizes are
difficult to identify under the stringent statistical thresholds for sig-
nificance imposed by correction for multiple hypothesis testing.
There are some indications that the accepted standards, historical-
ly adopted to minimize false positives, may be contributing to false-
negative findings. For instance, when Yang et al.38 used all common
SNPs (not just those reaching the standard 5 × 1028 level of

significance) simultaneously to explain variation in height, 45% of
the phenotypic variation could be accounted for, indicating that
much of the heritability of common traits is not ‘missing’ but
rather has not previously been detected because the individual
effects of most SNPs are too small to pass stringent significance
tests. The model employed by the study authors estimated the
total amount of phenotypic variance accounted for by all
common SNPs, but the accuracy of prediction from this model is
low because the effects of individual SNPs are estimated with
much error. Nonetheless, this study demonstrates that with
better estimates of individual SNP effects from ever larger
studies, risk prediction using common SNPs could become more
robust in the future, with potentially important implications for
personalized medicine.

To identify rare variants associated with disease, one promising
approach is to sequence across GWAS-associated loci. For
example, Johansen et al.39 recently sequenced previously reported
GWAS loci in individuals with extreme blood lipid profiles and
identified rare variants with large effect sizes. While this finding
is so far limited to an intermediate trait (i.e. lipid levels), it may
prove generalizable to disease phenotypes. In addition to sequen-
cing, genotyping platforms continue to include more SNPs with
lower minor allele frequencies, which should help identify addition-
al loci as well as clarify whether some association signals in GWASs
attributed to common SNPs are actually the result of synthetic as-
sociation or incomplete linkage disequilibrium between common
SNPs and rarer causal variants;38,40 preliminary evidence,
however, suggests that synthetic associations are unlikely to
account for many GWA signals.41,42

Also warranting further investigation are additional forms of
genetic variation. Copy number variants (CNVs) and other forms
of structural variation affect a substantial portion of the genome
and likely contribute to disease phenotypes. Early studies have
noted that common CNVs account for only a limited proportion
of heritability,43,44 yet some notable examples exist.45 Future
efforts should examine a broader range of structural variation in-
cluding those that are individually rare yet in aggregate implicate
specific genes.46

Risk integration
To compute an overall risk of disease conferred by multiple genetic
variants, results from several GWASs are often integrated. A
common standard is to multiply the ORs corresponding to each
risk variant to arrive at a composite OR. This method of integra-
tion assumes statistical independence between each of the risk var-
iants, a scenario unlikely to remain true as the number of variants
being considered increases, potentially leading to further overesti-
mation of disease risk. One accepted approach has been to simply
sum up the number of well-replicated risk alleles for a specific
disease that any given individual carries. With this ‘allelic dose’
scoring approach, several investigators have evaluated the clinical
utility of multilocus genotype scores in predicting disease out-
comes (discussed below).47– 52 Summing the number of risk
alleles weighted by their estimated effect sizes has also been pro-
posed as a method for computing multilocus genotype risk
scores.51,53
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Integrating risk conferred by multiple variants and non-genetic
factors remains a challenge for personalized medicine. Due to
the complex genetic architecture of many common diseases, it is
difficult to identify the interactions and dependencies between dis-
tinct genetic and non-genetic risk factors. Similarly, given the large
role of environmental factors in the development of these diseases,
integrating the contribution of such factors to disease risk is im-
portant. Formulating the risk contributions of environmental
factors as LRs might serve as one method to compatibly integrate
genetic and non-genetic risk factors.

Clinical utility
Finally, the clinical utility of the genetic variants used to estimate
disease risk should be evaluated. In order for individual disease
risk estimates based on personal genetic data to be clinically
useful, they must demonstrate robust performance similar to
established biomarkers. Performance of prediction models is com-
monly evaluated using the sensitivity, specificity, positive predictive
value, and negative predictive value, often summarized by a re-
ceiver operating characteristic (ROC) curve. This approach has
been utilized in most of the initial studies examining the clinical
utility of common genetic variation in predicting risk for
common diseases. Generally, these studies have shown that the in-
clusion of common SNPs identified in GWASs only modestly
improves disease prediction beyond the standard clinical
factors.47– 52 We believe that these results in part reflect the fact
that most of the genetic variation underlying the diseases studied
remains undiscovered; for diseases with a substantial component
of heritability, the inclusion of a more complete set of predictive
genetic variants can be expected to improve the overall risk pre-
diction, albeit with the caveat that the definition of individual
small effect variants will require progressively larger studies.
However, these studies also draw attention to the need for alter-
native methods for assessing the contribution of new biomarkers

(SNPs or otherwise) to risk prediction. Disease risk prediction is
not by nature a binary classification problem, and thus the ROC
curve is not as appropriate for evaluating clinical utility of risk pre-
dictors as it is for diagnostic tests.54,55 For example, a risk factor
with an OR of 3 might have limited impact on the ROC curve,
but may result in a substantial shift in absolute risk. Indeed, most
established clinical risk factors have ORs ,3 and fall in this cat-
egory. The large change in absolute risk may lead to different
patient management decisions. This is exemplified by a recent
study of the performance of breast cancer risk predictors using
clinical and genetic data, where clinical parameters generated a
predictor with an area under the ROC curve (AUC) of only
0.58 (only modestly better than an AUC of 0.5 expected by
chance).52 The addition of 10 common genetic variants increased
the AUC to 0.618, but more importantly shifted over 50% of
patients to a different quintile of disease risk. Therefore, additional
studies of clinical utility of SNPs identified in GWA studies are war-
ranted using more relevant statistical metrics for model perform-
ance, such as calibration and clinical risk reclassification.56 Along
with the continuing development of a more complete catalogue
of genetic associations, we anticipate that these efforts are likely
to show the clinical utility of genetic variants can be at least com-
parable with established risk factors, as was shown for breast
cancer risk models, and may substantially improve some disease
risk predictors.

Rare genetic variant discovery
The identification and characterization of rare genetic variants is a
promising approach to elucidating the molecular underpinnings of
rare and common genetic diseases. The highest level of ‘causality’
has been ascribed to single variants in single genes detected by
family based linkage studies. This reflects the substantial portion
of disease risk explained by those variants, albeit with expressivity

Figure 3 Cost of genome sequencing. The cost of whole-genome sequencing is plotted as a function of time, from the sequencing of the first
human genome to present. Notably, since 2007 genome sequencing costs have declined faster than predicted by Moore’s law.
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modulated by modifying genomes and environment. Indeed, as
many publications have already demonstrated,57–62 the unparal-
leled power of sequencing to identify segregating variants even in
very small families is likely to bring genetic solutions to many fam-
ilies’ rare syndromes. As the cost to perform full exome (the col-
lection of all exons or protein-coding sequences in the genome) or
whole-genome sequencing precipitously falls63 (Figure 3), this may
be the most immediate impact of the wide availability of high-
throughput sequencing. While individually rare by definition, rare
genetic diseases are collectively quite common, affecting more
than 25 million people worldwide.64 Further, if individuals who
are carriers for such diseases could be identified early in life, the
risk of passing on variants to future generations could be mitigated
by pre-conception planning or pre-implantation genetic diagnosis.
Indeed, direct-to-consumer genetic testing companies have
already begun developing and marketing personal genetic tests
for couples planning to conceive.

As discussed above, efforts to identify rare variants are increasing-
ly applied to help uncover determinants of heritability of common
diseases. In this approach, the focus is on identifying many rare var-
iants that each contribute to risk of the same disease (i.e. genetic het-
erogeneity). A primary advantage of using the sequencing-based,
rather than chip-based, technology is that the former has the capabil-
ity to discover novel genetic variants that have never been observed
before or have been observed so infrequently as to not warrant in-
clusion on a genotyping chip. Once thought to be relatively unim-
portant, these rare or novel genetic variants are now increasingly
recognized as a source of genetic variation that underlies several
common diseases. Most recently, the first confident estimates of
germ line variation have emerged from the 1000 Genomes Project
and an earlier study focusing on a family quartet.65 At an estimated
1028 new mutations naturally arising per base pair per generation,
this leads to �70–100 novel variants per new human genome. In
addition to these newly arising variants, each individual genome
sequenced has been found to carry a far larger number (up to
10 000) of very rare, often previously unrecorded, DNA variants,
perhaps as many as 100 of which are predicted to result in loss of
function of a gene.66 –68 However, estimating pathogenicity from
these data presents many challenges. Specifically, distinguishing
causative variants from the large number of non-causative variants
discovered by exome or whole-genome sequencing requires priori-
tizing candidate variants by evidence of their functional impact and
validating candidates to establish causality.

There are several approaches investigators have used to prioritize
candidate genetic variants. One common and intuitive approach is to
search for variants in coding sequences that are predicted to be dele-
terious. This would include variants that introduce new start or stop
codons, frameshift variants, or variants disrupting splicing. However,
for many genes, one functional copy is sufficient such that loss of the
other copy can be silent, as witnessed by the surprisingly large
number of ‘loss of function’ variants found in each individual
genome.66–68 To understand more subtle changes in protein struc-
ture and function (which may in some cases be more deleterious),
biophysical factors may be relevant. A variety of computational
tools have been developed to help investigators prioritize candidate
genetic variants by predicting their functional impact, such as the
Sorting Intolerant from Tolerant (SIFT) algorithm,69 Polymorphism

Phenotyping (PolyPhen),70 the Universal Protein Resource
(UniProt) database,71 and PolyDoms.72 Manual curation of SNPs
associated with a known or suspected disease gene can also be
done using annotations in the Online Mendelian Inheritance in
Man (OMIM) database and Human Gene Mutation Database.73

Despite the availability of tools and databases for the analysis of
rare or novel genetic variants, characterizing these variants
remains quite challenging due to the fragmented nature of the
curated databases, thus making it difficult to annotate novel/rare var-
iants from whole-genome sequence data.

The reference human genome creates another challenge in the
confident interpretation of high-throughput sequencing data. As a
composite of a small number of individuals’ DNA (all likely of Euro-
pean descent), the reference genome sequence by definition con-
tains risk alleles.74 In time, with greater computational power or
longer reads, de novo assembly of genomes will be more easily
achievable. This will facilitate the return of a sequence rather
than the more computationally convenient method of mapping
to a known reference. Further, a less biased view can be obtained
by comparing risk alleles in an individual genome to a composite
major allele reference genome sequence.75

Conclusions
Over the next decade, we will gain an unprecedented appreciation
of the genetic variation present within human genomes. This col-
lective undertaking will yield tremendous benefits of new target
and pathway discovery related to a multitude of human diseases.
Directed to the individual patient, these efforts will provide a
basis for refining personal predictors of disease and drug response.
Aside from the technological and informatics challenges, the pros-
pect that physicians will, in the next few years, be expected to
include individual exome, or whole-genome, data in patient man-
agement raises obvious educational,76 ethical, and social implica-
tions.77 In addition, much genetic testing will be marketed direct
to consumer. At present, this extends largely to common variants
assessed by genotyping SNP arrays; variants identified this way will
typically have a modest impact on a common disease and in turn
may not be too problematic. However, it will soon become
more cost effective to obtain a patient’s exome or whole-genome
sequence; the expectation that uncommon, highly predictive var-
iants will also be uncovered in a significant minority illustrates
the need for a well thought-through and regulated framework.

How the systematic exploration of human genetic variation will
transform diagnostic and clinical practices remains to be seen, but
tempered by the challenges discussed here, the analyses of human
diseases powered by the genomic revolution bolsters hope for sus-
tained and meaningful improvements in the diagnosis, prognosis,
and treatment of individual patients.
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