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Abstract

Question Routing (QR) on Community-based Question An-
swering (CQA) websites aims at recommending answerers
that have high probabilities of providing the “accepted an-
swers” to new questions. The existing question routing al-
gorithms simply predict the ranking of users based on query
content. As a consequence, the question raiser information is
ignored. On the other hand, they lack learnable scoring func-
tions to explicitly compute ranking scores.

To tackle these challenges, we propose NeRank that (1)
jointly learns representations of question content, question
raiser, and question answerers by a heterogeneous informa-
tion network embedding algorithm and a long short-term
memory (LSTM) model. The embeddings of the three types
of entities are unified in the same latent space, and (2) con-
ducts question routing for personalized queries, i.e., queries
with two entities (question content, question

raiser), by a convolutional scoring function taking the
learned embeddings of all three types of entities as input. Us-
ing the scores, NeRank routes new questions to high-ranking
answerers that are skillfulness in the question domain and
have similar backgrounds to the question raiser.

Experimental results show that NeRank significantly outper-
forms competitive baseline question routing models that ig-
nore the raiser information in three ranking metrics. In addi-
tion, NeRank is convergeable in several thousand iterations
and insensitive to parameter changes, which prove its effec-
tiveness, scalability, and robustness.

Introduction

Community-based question answering (CQA) such as Stack
Overflow1 is rapidly gaining popularity and becoming an
important type of social media for sharing and spreading
knowledge. Through CQA websites, users with questions
are able to quickly locate answers provided by experts. A
user can also create a new post if relevant and satisfactory
QA records do not exist, and then wait for answers from the
community. After several responses are gathered, the ques-
tion raiser reviews the answers and selects one that he/she is
the most satisfied with as the “accepted answer”.

The answer collection can be unacceptably time-
consuming due to the lack of an efficient way to find the
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“domain experts”. As a result, a large number of questions
remain poorly addressed.

One of the solutions to promote answer collection is to
automatically identify users that tend to contribute high-
quality answers and then send answer invitations to them.
The answer collection is consequently accelerated since
these users are able to immediately spot the questions of
their expertise. Such task is also known as question routing
and is previously addressed by feature engineering-based
approaches (Zhou, Lyu, and King 2012; Ji and Wang 2013;
Chang and Pal 2013). Features exploited include the statis-
tics of users, the language modeling features of question
content, and the relationships between users and questions.
All of them focus on estimating users’ authority level and
identifying the skillful users for recommendation.

However, the feature engineering-based strategies have at
least three limitations as follows. First, they are not personal-
ized, i.e., they cannot customize recommendations for ques-
tions raised by users with diverse characteristics due to ig-
noring the background and preference of the question rais-
ers. Second, they lack explicit definitions of scoring func-
tions for queries with multiple entities and, therefore, have
trouble computing scores for new question routing queries.
Third, they model question content by language model or
topic model features which are unable to capture the com-
plex semantics of question content. Also, their representa-
tion power is undermined when handling questions with new
topics that are unobserved or underrepresented in the train-
ing set.

In order to overcome the above limitations, we propose
NeRank, which stands for Network embedding-augmented
Ranking for question routing. NeRank assesses the “per-
sonalized authority”, i.e., the authority of an answerer with
respect to not only the question content but also the back-
ground of the question raiser, for question routing. In addi-
tion, the recommended answerers are also expected to have
similarities with the question raiser in domains of interest
to fulfill the “personalization” requirement so that their re-
sponses conform to the raiser’s anticipation.

In particular, NeRank models CQA websites as heteroge-
neous information networks (HIN), namely CQA networks,
and applies a metapath-based heterogeneous network em-
bedding algorithm to CQA networks to learn representations
for question raisers and question answerers. A long short-
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term memory (LSTM) component is specifically utilized to
learn question content representation. Using network em-
bedding, the proximity information between the entities in
a CQA network is preserved.

NeRank models the question routing task as a rank-
ing problem and utilizes a convolutional neural network
(CNN) to compute the ranking score of an answerer given a
query (question raiser, question content).
Such ranking score measures the probability of the answerer
providing the “accepted answer” to this question. Com-
pared with previous frameworks (Zhou, Lyu, and King 2012;
Zhao et al. 2015; Ji and Wang 2013), our ranking function
explicitly computes the ranking scores taking advantage of
rich non-linear information of the three entities.

We summarize our contributions as follows:

• We propose NeRank for personalized question routing on
CQA websites. Compared with existing models, NeRank
considers question raiser’s profile in addition to question
content. To the best of our knowledge, this is the first work
on personalized Question Routing on CQA websites.

• We learn representations of entities by an HIN embedding
method and compute ranking scores for answerers by an
explicitly defined CNN scoring function given the learned
representations as input. It is a novel attempt to apply an
embedding-based method to question routing.

• We conduct extensive experiments on two real CQA
datasets and evaluate the routing performance of NeR-
ank via three ranking metrics. Our model outperforms the
baselines in these metrics. Results also show that the HIN
embedding algorithm and CNN scoring function improve
the ranking performance.

Related Work

In this section, we introduce existing works on question rout-
ing, recommender systems, and network embedding.
Question Routing. Question routing is defined as predicting
whether a user in CQA will share knowledge and answer a
given question (Zhou, Lyu, and King 2012). The majority of
previous works fall into two categories: feature engineering-
based methods and matrix factorization-based methods.

Feature engineering algorithms (Zhou, Lyu, and King
2012; Ji and Wang 2013; Chang and Pal 2013) feed fea-
tures extracted from users, questions, and their relations to
models such as SVM (Hearst et al. 1998) and Linear Re-
gression (Chang and Pal 2013) to rank the user authority
to make recommendations. However, they require carefully
crafted features and the performance relies heavily on fea-
ture selection.

Matrix factorization models decompose feature matrices
based on the “low-rank” assumption to discover users’ ex-
pertise on particular words and compute ranking scores
by the inner product of the user and question feature vec-
tors (Zhao et al. 2015). It suffers from the limitation of bag-
of-word model which is unable to preserve sequential text
semantics.
Recommender Systems. Recommender systems aim at rec-
ommending items to a given user. The development of deep
learning models offers more possibilities to recommender

system architectures. Gong and Zhang recommended hash-
tags for online microblogs using CNN. Okura et al. recom-
mended news of interest using embeddings of text and users
learned by autoencoder and recurrent neural networks such
as long short-term memory (LSTM) and gated recurrent unit
(GRU). The aforementioned methods cannot deal with new
items, i.e. new questions in our problem, and thus are unable
to be applied to question routing.

Network Embedding. Network embedding models learn
low-dimensional representations for nodes in a network that
preserve the structural context of nodes (Perozzi, Al-Rfou,
and Skiena 2014; Grover and Leskovec 2016; Tang et al.
2015; Shi et al. 2018; Dong, Chawla, and Swami 2017;
Chen and Sun 2017). For HIN, the diversified node and
edge types bring forth additional semantic information of
networks which motivates the metapath-based network em-
bedding algorithms (Sun et al. 2011). Chen and Sun pro-
posed a task-specific and path-augmented model that jointly
optimized the network-general and task-specific objectives.
Metapaths were specifically selected for the task. metap-
ath2vec and metapath2vec++ (Dong, Chawla, and Swami
2017) combined metapaths with word2vec model for het-
erogeneous embedding learning.

Preliminaries and Problem Statement

A CQA network is built upon a static archive of a CQA
website conserving all question-answer sessions accumu-
lated over time. We create question Raiser set R =
{r1, r2, . . . , rm} and Answerer set A = {a1, a2, . . . , ak}
where m is the number of users who have asked questions,
i.e. question raisers, and k is the number of users who have
answered questions, i.e. question answerers, in this CQA
website. Note that we only model users that have asking
or answering records in the dataset. Hence, each user of
the CQA website may have one or two embeddings asso-
ciated with the role(s) they played. We create Question set

Q = {q1, q2, . . . , ql} where l denotes the number of ques-
tions. There exist two relations among these entities, namely
“raises a question” between entities in R and Q and “an-
swers a question” between entities in A and Q.

A CQA network is defined as a heterogeneous information
network G = (V,E, T, φ), where V = R∪Q∪A denotes the
node set; E denotes the edge set; T denotes the set of three
entity types involved (Zhao et al. 2017); φ : V → T is a la-
beling function that maps an entity into its type t ∈ T . Each
edge in a CQA network symbolizes an asking or answer-
ing record. Note that entities of R and A do not directly
interact with each other and hence there is no connection
between them. Figure 1 shows a toy example of a CQA net-
work. Node r2 is linked to q2 and q3, meaning that r2 poses
q2 and q3. q3 is linked to a3 and a4 since a3 and a4 answer
q3. a1 and a2 have strong similarity since they both answer
q1 and q2.

Using above notations, we define the personalized Ques-
tion Routing as the following: Given a CQA network
G = (V,E, T, φ) and a query (question raiser,

question content) denoted by γ = (r, q) where r ∈
R is a question raiser and q ∈ Q is a new question, com-

193



r1 r2 r3

q1 q2 q3 q4 q5

a2 a3 a4 a5 a6 a7a1

Question raisers

“Raises a question” 

relationship

Questions

“Answers a question” 

relationship

Answerers

Figure 1: A Heterogeneous Network View of a CQA Web-
site.

pute the ranking scores for answerers a ∈ A and select
the answerer with the highest ranking score as the predicted
provider of the “accepted answer”.

NeRank Framework

In this section, we demonstrate the technical details of NeR-
ank. The list of notations is provided in Table 1 in advance
for the convenience of later discussion.

Table 1: Frequently used notations.

Notation(s) Definition

G The CQA network.
E, V, T The edge set, node set, and type set of G.

d The dimension of entity embeddings.
ve, ue The d-dimensional embedding of entity e.
n, c The center and context entity (Mikolov et al. 2013b).
P A metapath.
wP A walk generated according to P .
τj The entity type of the j-th element of P .

e
(i)
t The i-th entity of wP with type τt.

φ(e) The entity type of the entity e.
D The corpus of all (n, c) pairs, positive samples.
Θ The parameter set of NeRank.

Overview

We formalize the personalized question routing problem
as a ranking task in NeRank which ranks the probabilities
of potential answerers contributing the “accepted answers”
using the embeddings of entites. Specifically, it has two
steps: modeling entity-wise similarity and computing the
ranking scores of answerers given (question raiser,

question content) queries. The trained representa-
tions for the three types of entities are expected to preserve
both the entity-wise proximity information and the question-
raiser-specific expertise information.

In the following subsections, we explain how the NeR-
ank pipeline (shown in Figure 2) acquires the embeddings
with proximity and enterprise information and computes the
rankings scores.

LSTM-equiped Metapath-based Embedding with
Negative Sampling

To capture proximity information, we learn embeddings of
heterogeneous entities using an LSTM-equipped metapath-
based heterogeneous network embedding model. We first

explain the metapath-based Skip-gram on HIN and then
show the jointly optimized LSTM model for question con-
tent representation learning.

Metapaths for HIN Embedding. HIN owns various node
types, which differs from homogeneous networks. Simply
applying the original random walk-based Skip-gram to HINs
results in biases towards certain types of nodes (Sun et al.
2011). To create a bias-free walk corpus for Skip-gram
on HINs, Dong, Chawla, and Swami generate walks ac-
cording to the patterns specified by metapaths. It has been
proved that HIN embedding models benefit from metapaths
in reducing biases (Dong et al. 2015; Sun and Han 2012;
Sun et al. 2013).

A metapath P is a sequence of objects linked by relations

in form of τ1
π1−→ τ2

π2−→ . . . τt
πt−→ τt+1 . . .

πl−1

−−−→ τl.
π = π1 ◦ π2 ◦ · · · ◦ πl−1 denotes the composite relations
between node types τ1 and τl, τi ∈ T . For example, meta-

path “A
answers
−−−−→ Q

raises−1

−−−−→ R
raises
−−−→ Q

answers−1

−−−−−−→ A”
means that two answerers each solves a question raised by
the same person. τ−1 denotes the inverse relationship of τ ,
e.g. raises−1 represents “is raised by”. Apparently, the meta-
path preserves semantic and structural correlations of enti-
ties in HIN which will be encoded in the representations by
the Skip-gram model. We will omit the relations in metap-
ath notations (e.g., “AQRQA”) in the following discussion
since the relation type between each given pair of entities is
unique.

Metapath P guides the walk generation as follows. Ran-
domly select an entity e1 of type τ1 as the initial entity,
and then cycle from nodes of type τ2 to τl until wP grows
to the desired length L. An example walk in Figure 1 is
a5q4r3q5a7q2r2q3a4 given P =“AQRQA” and L = 9. The

transition from τt-type entity e
(i)
t to entity e(i+1) is governed

by the transition probability p(e(i+1)|e
(i)
t ,P):

p(e(i+1)|e
(i)
t
,P) =

{

1
N

(e(i+1), e
(i)
t
) ∈ E, φ(e(i+1)) = τt+1

0 otherwise.
,

where N denotes the count of τt+1-type neighbors of e
(i)
t .

Skip-gram with Negative Sampling on HINs. Negative
sampling is an approximation strategy to relieve the expen-
sive computational cost of softmax function (Mikolov et al.
2013a). Skip-gram with negative sampling maximizes the
likelihood of D, the positive sample set generated from the
metapath walk corpus by the sampling method in (Mikolov
et al. 2013a), and minimizes the likelihood of the negative
samples D′ = {(n, c)|n, c ∈ V ∧ (n, c) /∈ D}. The overall
likelihood L(D,D′|Θ) to maximize is:

L(D,D
′|Θ) =

∑

D

log(σ(vn ·uc))+
∑

D′

log(−σ(vn ·uc)). (1)

In Equation (1), vn and uc are representations of center en-
tity n and context entity c. They are parts of the model pa-
rameter Θ. σ(·) is the sigmoid function. Equation (1) is con-
sistent with word2vec that each entity has two versions of
embeddings. We select the “center entity” version embed-
ding as the input of the CNN recommemder model.
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Figure 2: The pipeline of NeRank. There are two steps in the training procedure. Step 1 learns the entity embeddings using
an LSTM-equipped metapath-based network embedding algorithm. Step 2 computes the ranking scores using a convolutional
scoring function and finally outputs a ranked list of answerers.

Here we emphasize the necessity of the HIN embedding
component without which the pure CNN scoring function
has limited capability of analyzing user-user correlations
and similarity.

LSTM for Question Representation. Different from the
question raisers and answerers whose embeddings are parts
of the parameter Θ, the embeddings of question content, vq ,
are not in Θ but directly obtained from question text through
an LSTM model. vq is then sent to Equation (1) together
with the corresponding vr and va for training and ranking
score calculations.

LSTM is powerful in learning sequential features such as
the semantics of text and has been applied to a variety of
tasks such as text classification (Zhou et al. 2015) and ma-
chine translation (Bahdanau, Cho, and Bengio 2014). We
skip the mathematical details of LSTM since they have been
frequently discussed in previous literature.

The generation of vq of question q with Lq words is as
follows. The input is the word embedding matrix of ques-
tion x ∈ R

Lq×k composed of k-dimensional word vectors.
The LSTM cell at the t-th time step receives the t-th word
embedding vector xt ∈ R

k in x as well as the hidden state
ht−1 from the previous time step. The output at time t is
the hidden state ht ∈ R

d which contains the accumulated
semantic information from x0 to xt. Therefore, we use the
hidden state output of the last time unit, hLq

, as the text se-
mantic representation vq for the textual content of q.

It is worth mentioning that given the trained Θ and the
word sequence of a new question qnew, the representation
learning of qnew is independent of the training data and the
CQA network structure. Therefore, the LSTM component
tackles the challenge of cold start issues for new questions.

Convolutional Recommender System

In this section, we present a convolutional neural network
ranking model F that comprehensively analyzes the corre-
lations between the three entities and computes the ranking
score. Considering the properties of a ranking score, we ra-
tionally assume the following two partial order constraints

based on our intuition and observation made on the dataset:
(1) The best answerer has the highest score among all an-
swerers to the query γ = (r, q); (2) Answerers who an-
swered q have higher scores than those who did not.

Using entity representation vr, vq , and va, we translate
the above constraints and formalize the scoring function
F (vr, vq, va) as follows:

∀a∗, a ∈ Aγ , ∀an ∈ A and an /∈ Aγ ,

F (vr, vq, va∗) ≥ F (vr, vq, va),

F (vr, vq, va) ≥ F (vr, vq, van
),

(2)

where Aγ is the set of answerers of γ = (r, q), a∗ ∈ Aγ

is the accepted answerer, and an is an answerer that is not
involved in γ.

The reason of building a CNN-based scoring function is
as follows: CNN has a strong capability of extracting hidden
correlations of entities represented by static feature maps
such as images (He et al. 2016) and text (Kim 2014). Com-
pared with some straightforward scoring functions such as
the dot-product, CNN is more powerful in preserving so-
phisticated correlations in the embedding matrices. There-
fore, we design F as a CNN since the ranking score pro-
duced by F (vr, vq, va) can be considered as a hidden feature
of the combination of r, q, and a.

The computation of ranking scores is depicted in Figure 3.
Given a query γ = (r, q) and an answerer a to compute rank-
ing score for, we stack their embeddings to construct the fea-
ture map M as M = [vr, vq, va], M ∈ R

d×3. Three con-

volutional kernels k1 ∈ R
d×1, k2 ∈ R

d×2, and k3 ∈ R
d×3

are applied to the input matrices. The intermediate hidden
features go through two fully-connected layers and ReLU
layers before deriving the ranking score. k1 extracts the hid-
den features within the vector of each entity. k2 captures the
correlation between (1) vr and vq and (2) vq and va since
they have direct interactions. k3 extracts the overall correla-
tions across the three entities. Therefore, the aggregation of
k1, k2, and k3 is able to comprehensively utilize the hidden
features in M and measure the score of a given γ.

The inequalities in Equation (2) holds for all (1) the “ac-
cepted” triplets versus the corresponding “answered but un-
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Figure 3: The CNN that learns the ranking scores and computes the ranking loss. From the left side, two matrices M ∈ R
d×3

(above) and M
∗ ∈ R

d×3 (below) are sent to a CNN followed by two fully connected layers and ReLU layers. The matrix M

generates a lower ranking score and M
∗ generates a higher score. The difference between the scores is the ranking loss.

accepted” triplets and (2) the “answered” triplets versus
the random “unanswered” triplets. Therefore, we model the
ranking as the maximization of SRank(D,D′|Θ) which is de-
fined as the summation of all differences between the two
sides of the inequalities in Equation (3):

SRank(D,D′|Θ)

=
∑

(a∗,q),(a,q)∈D

(F (vr, vq, va∗)− F (vr, vq, va))

+
∑

(a,q)∈D,(an,q)∈D′

(F (vr, vq, va)− F (vr, vq, van
)) ,

(3)
We only select (a, q) pairs from D and D′ since (a, q) pairs
provide sufficient coverage over all question instances for
training in the CQA datasets.

Optimization

Cost Functions. We need to optimize the parameter Θ that
contains four parts: all embeddings of question raisers, all
embeddings of question answerers, the parameters of the
LSTM, and the parameters of the CNN-based scoring com-
ponent. Since the optimal Θ should maximize both Equa-
tion (1) and Equation (3), we alternatively maximize the two
objective functions by gradient-based algorithms and back-
propagation.

When NeRank converges, the embeddings and deep mod-
els in the optimum state have the following properties: (1)
The entity embeddings contain proximity and expertise in-
formation to achieve personalized question routing; (2) The
LSTM question encoder maps the content of new questions
to a latent space where two additional aspects of informa-
tion (expertise and proximity) are assessable in addition to
text semantics. (3) The CNN recommender generates rank-
ing scores using all three entity embeddings to measure the
scores of answerers providing the “accepted answer”.

Complexity. Suppose that single LSTM and CNN computa-
tions have T1 and T2 atomic operations respectively, a train-
ing batch has b instances, and the embedding dimension is
d. The forward time complexity is O(b(T1 + T2 + bd)) per
iteration.

Avoid Overfitting. We have the following mechanisms to
prevent overfitting from happening on LSTM and CNN. (1)
The LSTM is simplified to single-directional and single-
layer to prevent over-parameterization; (2) Early stopping
is utilized so the training terminates when the losses reach
plateaux, which is shown in Figure 5; (3) The two objective
terms are alternatively optimized towards different direc-
tions. They function as each other’s regularizer that avoids
overfitting.

Evaluation

In this section, we introduce the experiment settings, show
experimental results, and demonstrate effectiveness and ef-
ficiency of NeRank.

Data and Experiment Settings

Two datasets of two real-world CQA websites with specific
topics are employed to evaluate NeRank: Biologyand En-
glish. Each dataset2 contains all questions raised before De-
cember, 2017 and all users’ historical asking and answering
records. The datasets differ in sizes (see Table 2) and are mu-
tually exclusive in topics so that NeRank can be comprehen-
sively tested. Other CQA datasets, such as Yahoo! Answers,
are not selected for evaluation since they do not provide “ac-
cepted answers” that are needed to serve as the ground truth.

Table 2: Statistics of the datasets. r, q, and a represent ques-
tion raiser, question, and question answerer.

Dataset # of users # of r # of q # of a
Biology 5,071 3,696 2,224 21,613
English 35,713 19,743 22,753 209,543

CQA networks are built from 90% of questions and the
corresponding users to generate training walks. The rest
10% of questions and the corresponding raisers and answer-
ers for testing. Users in the test set should have at least 5
asking or answering records to avoid cold starts. In each test
query γ = (r, q), we create a candidate answerer set of 20

2Available at: https://archive.org/details/stackexchange
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answerers that includes all answerers of q in the dataset and
some other users randomly selected from the top 10% most
responsive users. We choose the answerer with the highest
predicted ranking score as the recommendation. The owners
of the “accepted answers” are the ground truth.

The walks are generated from metapath “AQRQA” with
the default length of 13 (three cycles) and the default node
coverage of 20 (each node is covered at least 20 times in
walk generation). The window size of Skip-gram model is
set as 4; we use 3 negative samples per positive sample;
and the dimension of learned embeddings is set as 256. We
use a 64-channel CNN for ranking and the 300-dimensional
GoogleNews pretrained word2vec model3 to build the em-
bedding matrix x for questions. NeRank is prototyped by
Python 3.6.4 and PyTorch 0.4.04. All experiments are con-
ducted on a single 16GB-memory Tesla V100 GPU in an
512GB memory Nvidia DGX-1.

Results

This section reports the experimental results and analyses of
the effectiveness and efficiency of NeRank. Note that three
metrics, including Mean Reciprocal Rank (MRR), Hit at K
(Hit@K), and Precision at 1 (Prec@1), are applied to evalu-
ate the ranking performance.

Effectiveness of NeRank We compare NeRank with three
baseline models shown as below.

• Score: A trivial method that recommends the answerer
that has the largest number of “accepted answer”.

• NMF: Non-negative Matrix Factorization (Gemulla et al.
2011) uses matrix decomposition to solve the ranking
problem.

• L2R: SVM-based and RankingSVM-based learning to
rank algorithms (Ji and Wang 2013) that extract features
from user-question relations to predict the ranking.

The performances of NeRank and the baselines are shown
in Table 3. NeRank significantly outperforms all baseline al-
gorithms on both datasets in terms of all metrics. On the
Biology dataset, NeRank achieves a Prec@1 of 0.387 and a
Hit@K of 0.806, meaning that around 38.7% of the predic-
tions are correct and the ground truth can be found in the top-
5 ranked answerers in around 80.6% of the predictions. On
the English dataset, NeRank achieves similar performances
that the Prec@1 is 0.372 and Hit@k is 0.833. MRR in both
dataset are around 0.56 indicating a huge improvement over
the baselines in terms of overall ranking performance. All
improvements of NeRank over the best baseline, NMF, are
significant at 99% confidence in a paired t-test.

Some entries in Table 3 show that Biology has better
results than English. Although, generally speaking, larger
training sets may lead to better performance, the properties
of the datasets may also play a role. In Biology, there ex-
ist a small group of proficient users with particular exper-
tise. However, the English community has a larger propor-
tion of skilled users since language is a common knowledge.

3Available at: https://code.google.com/archive/p/word2vec/
4Available at: https://github.com/zyli93/NeRank

Therefore, the performance may show small variance across
datasets.

In summary, NeRank has a strong ability in discovering
experts that provide the “acceped answer”. The advantages
of NeRank lie in the following facts: (1) NeRank considers
question raiser information in addition to question content
and question answerer, which can better conduct Question
Routing. (2) NeRank utilizes deep neural network models
that preserve the complex information of text semantic fea-
tures and entity correlation features.

Table 3: The comparisons of MRR, Hit@K, and Prec@1 be-
tween NeRank and three baseline models.

Dataset Biology English

Metric MRR Hit@K Prec@1 MRR Hit@K Prec@1

Score 0.27 0.412 0.105 0.203 0.379 0.065
NMF 0.375 0.643 0.177 0.458 0.737 0.225
L2R 0.169 0.158 0.050 0.101 0.058 0.024

NeRank 0.563 0.806 0.387 0.567 0.833 0.372

Effectiveness of Metapath-based Embeddings We com-
pare NeRank with two of its variants that employs, instead of
metapath-based HIN embedding model, Deepwalk (Perozzi,
Al-Rfou, and Skiena 2014) (denoted by “NeRank-DW”)
and LINE (Tang et al. 2015) (denoted by “NeRank-LINE”)
for embedding learning. Other configurations remain un-
changed. We show that metapath benefits represention learn-
ing on HINs and improve the performance of NeRank.

Figure 4 shows the experimental results. We observe
that NeRank achieves better results than NeRank-DW and
NeRank-LINE on both datasets on all metrics. The reason
is that Deepwalk and LINE are designed for homogeneous
networks whereas CQA networks are heterogeneous that
contain rich semantic information in diverse node and edge
types. Metapath-based models take advantage of the seman-
tic information and thus helps enhance the performance.

Although not particularly designed for HIN, Deepwalk
and LINE are also capable of discovering the proximity rela-
tions between entities since both the metapath-based model
and homogeneous network embedding models assume that
connected entities have similarity. This accounts for the in-
significance of the performance drop.

Effectiveness of Scoring Function We compare NeRank
with another variant that replaces the CNN scoring function

by va ·
vr+vq

2 , another combination of query (question

raiser, question content). The dot product of va
and the numeric average of vr and vq is considered as the
ranking score. Other settings are the same. We illustrate that
our scoring function can effectively extract the latent exper-
tise information and accurately generate ranking scores. The
results are demonstrated in Figure 4 in which we denote the
variant as “NeRank-AVG”.

We observe that NeRank significantly outperforms
NeRank-AVG by at least two folds. The performance dif-
ference is maximized in Prec@1 where NeRank-AVG can
only correctly predict for 6.05% of the queries on Biology
dataset and 0.04% on English dataset.
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Figure 4: Performance comparison between NeRank and
three variants.

The huge performance gap indicates the strong ability of
the CNN scoring function to capture the expertise informa-
tion from the correlations of entity representations and make
accurate predictions.

(a) Losses on Biology (b) Metrics on Biology

(c) Losses on English (d) Metrics on English

Figure 5: 5a and 5c show the decrease of two losses (nega-
tive objectives) with regard to iterations. 5b and 5d show the
trends of three metrics with regard to iterations.

Convergence rate of NeRank We plot the trends of
losses, i.e., negative objectives (Skip-gram objective in
Equation (1) and Ranking objective in Equation (3)), and
metrics as a function of the training iterations in Figure 5.
These trends give us insight to the convergence rate of NeR-
ank. These experiments are run in the default configurations.

It is observed that the NeRank converges at around 5,000
iterations (batch count) on the Biology dataset and at around
10,000 iterations on the English dataset. The convergences

of the metrics happen before 5,000 iterations on Biology
and before 10,000 iterations on English. Such converge rate
is fast given the complex CNN and LSTM hybrid archi-
tecture of NeRank and a single GPU core, which demon-
strates the model’s learning efficiency and scalability. Con-
vergences happen earlier on smaller dataset (Biology) and
later on larger dataset (English). The reason is that, with the
same batch size, a larger proportion of entities in smaller
networks participates in training due to negative sampling.

Parameter Sensitivity We also evaluate the sensitivity of
NeRank to node coverage and walk length. Node coverage
refers to the number of times a certain node is covered by
the training walks.We report the trends of MRR in Figure 6.

(a) MRR, Cov (Biology) (b) MRR, Len (Biology)

(c) MRR, Cov (English) (d) MRR, Len (English)

Figure 6: MRR trends over iterations on different node cov-
erage (Cov) and walk length (Len).

It is observed that the curves almost coincide in the four
subfigures, meaning that NeRank converges to very similar
states at a similar speed although given different node cov-
erages and walk lengths. Therefore, NeRank is robust to the
changes of these hyperparameters.

Conclusion

In this paper, we propose NeRank, a framework for person-
alized question routing based on the question content and
question raisers. NeRank learns representations of entities
by heterogeneous network embedding and LSTM. Using the
embeddings, the convolutional scoring model computes the
ranking scores to predict the answerer that most probably
contribute the “accepted answer”. We test NeRank on two
real-world CQA datasets. NeRank achieves a high perfor-
mance and outperforms the state-of-the-art models.

Here we list the directions for future work (1) NeRank is
unable to properly embed new onboarding users that have
few asking or answering records. A possible solution is to
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learn mapping from his/her profile to an initial representa-
tion and optimize afterwards; (2) We may consider integrat-
ing historical answers that are also good information source
for the answerer representation learning procedure.
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