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Personalized Radiotherapy Planning

Based on a Computational Tumor Growth Model

Matthieu Lê1, Hervé Delingette1, Jayashree Kalpathy-Cramer2, Elizabeth R. Gerstner3,

Tracy Batchelor3, Jan Unkelbach4, Nicholas Ayache1

Abstract—In this article, we propose a proof of concept
for the automatic planning of personalized radiotherapy for
brain tumors. A computational model of glioblastoma growth
is combined with an exponential cell survival model to describe
the effect of radiotherapy. The model is personalized to the
magnetic resonance images (MRIs) of a given patient. It takes
into account the uncertainty in the model parameters, together
with the uncertainty in the MRI segmentations. The computed
probability distribution over tumor cell densities, together with
the cell survival model, is used to define the prescription
dose distribution, which is the basis for subsequent Intensity
Modulated Radiation Therapy (IMRT) planning. Depending on
the clinical data available, we compare three different scenarios to
personalize the model. First, we consider a single MRI acquisition
before therapy, as it would usually be the case in clinical routine.
Second, we use two MRI acquisitions at two distinct time points in
order to personalize the model and plan radiotherapy. Third, we
include the uncertainty in the segmentation process. We present
the application of our approach on two patients diagnosed with
high grade glioma. We introduce two methods to derive the
radiotherapy prescription dose distribution, which are based on
minimizing integral tumor cell survival using the maximum a
posteriori or the expected tumor cell density. We show how our
method allows the user to compute a patient specific radiotherapy
planning conformal to the tumor infiltration. We further present
extensions of the method in order to spare adjacent organs at
risk by re-distributing the dose. The presented approach and its
proof of concept may help in the future to better target the tumor
and spare organs at risk.

Index Terms—Radiotherapy planning, computational tu-
mor growth model, personalization, uncertainty, segmentation,
glioblastoma

I. INTRODUCTION

H IGH grade glioma is one of the most common and

aggressive types of primary brain tumors. The treatment

of high grade glioma usually involves resection when possible,

followed by concurrent chemotherapy and radiotherapy.

Previous works on computational growth models for

gliomas have focused on reaction-diffusion equations to model

cell proliferation and infiltration into surrounding brain tis-

sue [1]. The model has been extended to model response

to chemotherapy, surgical resection, and radiotherapy. For

instance, a sink term can be added to the reaction-diffusion
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Figure 1. The clinical segmentation of the T1Gd abnormality (Top, orange
line) is used to define the clinical target volume (CTV, white dashed line) as a
2 cm expansion of the segmentation. In clinical settings, 60 Gy is prescribed
to the CTV. We propose to personalize the prescription dose (Bottom) to
account for tumor infiltration and segmentation uncertainty.

equation in order to model the impact of chemo or radio-

therapy [2], [3]. The resection of a brain tumor can also be

modeled by deleting the tumor cells in the resected region

[4], [5]. More advanced therapy schedules using for instance

anti-angiogenic drugs can also be studied with more complex

models [6], [7], [8].

In this article, we provide proof of concept of a method

for the automatic planning of personalized radiotherapy for

glioblastoma (Figure 1). The beneficial impact of radiotherapy

for glioblastoma patients has been clearly demonstrated [9],

[10]. However, its planning is made difficult by the infiltrative

nature of the disease, and the uncertainty in delineating the

abnormality in Magnetic Resonance Images (MRI). To account

for the tumor infiltration, a margin of 1 to 3 cm is added to the

abnormality visible on MRI to define the clinical target volume

(CTV) [11] (Figure 1). The exact extent of this margin is left

at the discretion of the clinician.
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Figure 2. Summary of the method: the segmentation of the tumor on the different MRIs is used to personalize the tumor growth model. This is combined
with a dose response model to define the prescription dose. Finally, the delivered dose is optimized using 9 equally spaced coplanar photon beams. The color
code indicates which data is used for the different scenarios: one or two MRI acquisition at two different time points, the clinical segmentations or plausible
samples to take into account the segmentation uncertainty.

Figure 3. First time point on the left, second time point on the right. (Top)
The proliferative rim is outlined in orange on the T1Gd MRI. (Middle Top)
The edema is outlined in red on the T2-FLAIR MRI. The edema encloses
the proliferative rim. (Middle Bottom) Tumor cell density computed with the
reaction-diffusion model. The black (resp. white) line is the threshold values
τ1 (resp. τ2 ) corresponding to the T1Gd (resp. T2-FLAIR) abnormality.
(Bottom) Comparison between the clinician segmentation and the contours
from the model.

In order to account for the infiltrative nature of the tumor,

several studies recently proposed to personalize radiotherapy

planning based on a computational growth model. Corwin et

al. [12], [13] personalized spherically symmetric doses based

on a 1D reaction-diffusion tumor growth model using the

T1Gd and T2-FLAIR abnormalities radius as observations

[14], [15]. In this framework, they showed that personalizing

the delivered dose could improve therapy in terms of days

gained by the patients. However, this spherically symmetric

assumption prevents taking into account boundaries of the

tumor progression such as the ventricles. Unkelbach et al.

[16], [17] studied the optimization of the radiotherapy planning

based on a tumor growth model in order to automatically

define realistic 3D prescription dose distributions, taking into

account the natural boundaries and privileged pathways of the

tumor progression. The proposed planning was personalized

to the patients geometry, but without personalizing the tumor

growth model parameters.

In this article, we extend previous works by personalizing

a 3D tumor growth model in order to define radiotherapy

prescription doses. This allows one to automatically compute

realistic 3D prescription doses conformal to the tumor infiltra-

tion (see Figure 1). Moreover, we study the impact of taking

into account the uncertainty in the different inputs of the model

(segmentations and model parameters). We use a tumor growth

model based on a reaction diffusion equation, which models

the infiltrative spread of tumor cells in the surrounding white

and gray matter. A Bayesian approach is taken to estimate

the posterior distribution over the model parameters based

on the MRIs of the patient. A recently proposed method to

sample plausible image segmentations is used to incorporate

uncertainty in the segmentation of the tumor in the MR

images [18]. The tumor growth model is then combined

with an exponential cell survival model to describe the effect

of radiotherapy. The probability distribution over tumor cell

densities, together with the cell survival model, is used to

define the prescription dose distribution, which is the basis

for subsequent Intensity Modulated Radiation Therapy (IMRT)

planning. The scope of this paper is the personalization of

radiotherapy planning. As such, we focus on patients which

were not treated with surgical resection. The proposed model

could however be extended in order to included the impact of

such therapy following the developments done in [4], [5].
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In this article, we consider three different scenarios. In

the first one, we only consider a single MRI acquisition of

the T1Gd and T2-FLAIR MRI before therapy planning. This

scenario is the closest to the clinical setting where radiotherapy

planning is usually based on a single MRI acquisition. In the

second, we consider two MRI acquisition at two time points

for a total of four MRIs: the T1Gd and T2-FLAIR at the first

and second time point (see Figure 3). In the third scenario, we

include the uncertainty in the segmentation of the abnormality

visible on the different MRIs to the personalization strategy.

The second and third scenarios are proofs of concept of a

method to include additional information to the personalized

therapy pipeline. We acknowledge that patients are usually

subject to therapy between the two time points, and as such,

the growth model personalization is biased by the impact of

therapy. Note however that if the therapy does not result in a

decrease of the tumor volume, its impact is implicitly taken

into account in the personalization of the growth parameter.

Based on those different scenarios, we propose three prin-

cipled approaches to compute the prescription dose. First, we

minimize the surviving fraction of tumor cells after irradiation

for the most probable tumor cell density. Second, we minimize

the expected survival fraction tumor cells after irradiation.

Third, we present an approach to correct the prescription dose

to take into account the presence of adjacent organs at risk.

The generation of different plausible segmentations based

on the clinical ones is presented in Section II. The forward

model of tumor growth is presented in Section III. The

personalization method for the three different scenarios is

presented in Section IV. The three principled approach for

the personalization of the dose response model to define the

prescription dose and the IMRT is detailed in Section V. A

summary of the method is illustrated in Figure 2. To our

knowledge, this is the first work that uses a personalized model

of brain tumor growth taking into account the uncertainty in

tumor growth parameters and the clinician’s segmentations in

order to optimize radiotherapy planning.

II. SEGMENTATION SAMPLES

The T1Gd abnormality, which is the active part of the tumor,

and the larger T2-FLAIR abnormality, which is usually called

the edema, were segmented by a clinician. In order to take

into account the uncertainty in the segmentation, we propose

to randomly modify the original clinician segmentations. The

method is based on [18], where samples of such segmentations

are generated from a high dimensional Gaussian process,

as the zero crossing of a level function. The samples are

efficiently produced on the regular grid using the separability

and stationary properties of the squared exponential covariance

function (see [18] for details). The samples take into account

the image intensity information using the signed geodesic

distance as the mean of the Gaussian process.

Segmentation samples for the T1Gd and T2-FLAIR abnor-

malities at the first and second time points are generated. Let

S0
i denote the clinical segmentations for the T1Gd and T2-

FLAIR abnormalities at the first and second time points, where

the index i = 1, ..., 4 refers to the 4 available images (see

Figure 3). Let Si =
{
Sk
i

}

k=1,...,K
denote sets of K plausible

segmentations per modality and time point, where each Sk
i is

a plausible sample from S0
i , the i-th clinician segmentation.

Figure 4 shows examples of such samples for K = 5. The

samples automatically respect the boundaries of the tumor

progression such as the ventricles, because of the presence

of large intensity gradients. The five presented samples per

abnormality correspond to an average DICE of 87%, which is

comparable to the inter-expert DICE measured in the BraTS

Challenge for brain tumors delineation [19]. Comparing the

output of the forward tumor growth model with these plausible

noisy segmentations allows to include the uncertainty of the

original clinician segmentations.

Note that other approaches could allow the handling of

segmentation uncertainty. For instance, one could compare the

output of the tumor growth model with probabilistic segmen-

tation approaches which have been proposed for glioblastoma

[20].

III. TUMOR GROWTH MODEL

The tumor growth model is based on the reaction-diffusion

equation,

∂u

∂t
= ∇(D.∇u)
︸ ︷︷ ︸

Diffusion

+ ρu(1− u)
︸ ︷︷ ︸

Logistic Proliferation

(1)

D∇u.−→n ∂Ω = 0 (2)

Equation (1) describes the spatio-temporal evolution of the

tumor cell density u, which infiltrates neighboring tissues with

a diffusion tensor D, and proliferates with a net proliferation

rate ρ. Equation (2) enforces Neumann boundary conditions

on the brain domain Ω. Following [21], we define the diffusion

tensor as D = dw I in the white matter, and D = dw/10 I in

the gray matter, where I is the 3x3 identity matrix. Below, we

identify the scalar parameter dw with D.

The solution of the reaction-diffusion equation (1) is a

tumor cell density u computed over the whole brain domain.

However, parts of the brain that glioblastomas usually do not

invade were excluded from the tumor simulation such as the

CSF or the cerebellum. In order to relate the tumor cell density

u to the MRIs, the frontier of the visible abnormalities is

assumed to correspond to a threshold value of the tumor cell

density u. We note τ1 the value of the tumor cell density u
corresponding to the frontier of the T1Gd abnormality, and

τ2 the value corresponding to the frontier of the T2-FLAIR

abnormality (see Figure 3).

The initialization of the tumor cell density u(t = t1, x) at

the time of the first acquisition is of particular importance, as it

impacts the rest of the simulation. In this work, the tumor tail

extrapolation algorithm described in [22] is used. The method

is based on the assumption that the solution of equation

(1) at the first time point has converged to its asymptotic,

traveling wave type solution. Thereby, the tumor cell density

is propagated outward (and inward), starting from the T1Gd

segmentation, and drops approximately exponentially with

distance. The steepness of the falloff, i.e. the distance at which

the cell density drops by a factor 1/e is given by the invisibility
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index λ =
√

D/ρ . By construction of the initialization, the

T1Gd abnormality falls exactly on the threshold τ1 of the

tumor cell density at the first time point.

The reaction-diffusion equation is solved using the Lattice

Boltzmann Method [21], [23], [24] which allows for easy

parallelization and fast computations. On a 1mm×1mm×1mm

resampled MRI, simulating 30 days of growth takes approxi-

mately 50 seconds on a 2.3Ghz 50 core machine.

Note that this model is an approximation of the complex

growth of the disease. For instance, it could be extended

in order to include mass effect [25], or a more detailed

description of the disease [6]. In other works, this model

has been extended to model different types of therapy such

as resection [26], [5], chemotherapy [2], or anti-angiogenic

therapy [7]. The common approach taken in these works is

to add a death term to the reaction-diffusion equation, which

allows to model the shrinkage of the tumor due to the therapy.

It was also shown in [27] that the personalized parameters

of a reaction-diffusion model were good predictors of certain

mutations status of the patient.

IV. PERSONALIZATION

The personalization of the tumor growth model is combined

with a dose response model in order to define the radiotherapy

planning. We compare three different scenarios. First we only

use a single time point (the second acquisition) to personalize

the model such that the radiotherapy plan will be defined using

a single acquisition, similarly to what is being done in clinic.

Second we use two time points in order to personalize the

model. The radiotherapy plan will then be defined on the latest

acquisition. Third, we use two time points and include the

uncertainty in the segmentation.

A. Scenario 1: One time point only

In this section, we are interested in the posterior probability

of the model parameter θ = (D, ρ), knowing the clinical

segmentations S0
3 on the T1Gd and S0

4 on the T2-FLAIR at

the second time point. To cast the problem in a probabilis-

tic framework, we follow the Bayes rule: P (θ|S0
3 , S

0
4) ∝

P (S0
3 , S

0
4 |θ) P (θ). The likelihood is modeled as

P (S0
3 , S

0
4 |θ) ∝ exp

(

−
H(D, ρ, S0

3 , S
0
4)

2

σ2

)

(3)

where H(D, ρ, S0
3 , S

0
4) is the 95th percentile of the symmet-

ric Hausdorff distance between the border of the segmentation

S0
4 , and the isoline at τ2 of the simulated tumor cell density

u using (D, ρ), and initialized with the segmentation S0
3 .

We further model the prior as log-uniform and independent

between the parameters,

P (θ) = P (D)P (ρ) (4)

We sample from the posterior distribution using a

Metropolis-Hasting algorithm. Note that this section only

uses the initialization algorithm (see Section III) which only

depends on the invisibility index λ =
√

D/ρ. Note that this

section can be related to the method described in [16], where a

single time point is used to propose a dose planning. However,

Unkelbach et al. [16] use a nominal value of the invisibility

index whereas it is personalized in this scenario. Moreover,

the Bayesian methodology allows to take into account the

uncertainty in the personalization.

B. Scenario 2: Two time points

In this section, we are interested in the posterior probability

of the model parameter θ = (D, ρ), knowing the clinical

segmentations S0
i for i = 1, 2, 3, 4 on the T1Gd and T2-FLAIR

at the first and second time point respectively. In this case, the

likelihood is model as

P ({S0
i }i=1,2,3,4|θ) ∝ exp

(

−
1

σ2

(∑4

i=2 Hi(D, ρ, S0
1 , S

0
i )

3

)2)

(5)

where Hi(D, ρ, S0
1 , S

0
i ) is the 95th percentile of the sym-

metric Hausdorff distance between the border of the segmen-

tation S0
i for i = 2, 3, 4, and the isoline of the simulated

tumor cell density u using (D, ρ), and initialized with the

segmentation S0
1 . We model the prior as described in Section

IV-A.

We sample from the posterior distribution using the Gaus-

sian Process Hamiltonian Monte Carlo (GPHMC) algorithm

first described by [28], and used for tumor growth personal-

ization in [21].

C. Scenario 3: Two time points and segmentation uncertainty

In this section, we want to include the uncertainty in the

segmentation to the personalization process. We denote the set

of plausible segmentations by S = {Si}i=1,2,3,4 (see Section

II). We introduce the random variables Zi = (Zi1, ...,ZiK)
for i = 1, 2, 3, 4, which are one-hot binary vectors where

P (Zij = 1|S) ∝ P (Sj
i ), and Zil = 0 for l 6= j when Zij = 1.

The random variable Zi is a measure of the plausibility

of the samples: P (Zi) =
∏K

i=1 P (Zij = 1)Zij . We are

interested in the posterior probability of the model parameter

θ = (D, ρ,Z1,Z2,Z3,Z4), knowing the observations S. We

model the likelihood as

P (S|θ) ∝ exp

(

−
1

σ2

(∑4

i=2 Hi(D, ρ,Z1,Zi)

3

)2)

(6)

where Hi(D, ρ,Z1,Zi) is the 95th percentile of the sym-

metric Hausdorff distance between the border of the segmen-

tation indexed by Zi, and the isolines of the simulated tumor

cell density u using (D, ρ), and initialized with the contour

selected with Z1. We model the prior independent between

the parameters, log-uniform for D and ρ, and uniform for Zi

(i.e. P (Zij = 1) = 1/K),

P (θ) = P (D)P (ρ)

4∏

i=1

P (Zi) (7)
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We sample from the posterior distribution using the

GPHMC like in Section IV-B. The only difference is that at

each iteration, we randomly sample segmentations from the

prior P (Zi).

V. RADIOTHERAPY PLANNING

In this section, we detail how we use the personalization

of the tumor growth model in order to define the best radio-

therapy plan at the time of the second acquisition. We start by

coupling the growth model with a cell survival model (Section

V-A). We then detail how to compute the prescription doses

in Section V-B, and how to compute the delivered dose in

Section V-C.

A. Cell survival

Cell survival after irradiation is often modeled using the

linear-quadratic model. In this article, we follow the deriva-

tions of [16], and consider the linear approximation of the

linear-quadratic model. In this framework, the density of

surviving tumor cells s after irradiation with a cumulative dose

d in Gray (Gy = Joules / kg) is given by

s = u exp(−ᾱd) (8)

where u is the tumor cell density before irradiation, and ᾱ
is the radiosensitivity parameter, corrected for the fact that we

consider a linear approximation of the linear-quadratic model.

B. Prescription Dose Optimization

A prescription dose can be defined as the dose minimizing

the surviving fraction of tumor cells. This is formally defined

as the dose solving the following optimization problem [16],

minimize
d

f(d, u) =
∑

j∈I

uj exp(−αdj) (9)

subject to
∑

j∈I

dj ≤ dint (10)

dj ≥ 0 (11)

where I is the set of voxels in the image. Equation (9) aims

at minimizing the number of surviving tumor cells. Equation

(10) constrains the integral dose to be lower or equal to a

user defined value dint, in order to avoid the trivial solution of

delivering an infinite dose. The parameter dint can be defined

based on clinical considerations related to the total dose a brain

can tolerate. Equation (11) constrains the dose to be positive.

The optimal prescription dose can be found by setting the

derivative of the corresponding Lagrangian to zero, resulting

in

di = max

[

0,
1

ᾱ
ln

(
uiᾱ

µ

)]

(12)

where µ is the Lagrange multiplier for the constraint (10).

This solution leads to a surviving tumor cell density s = µ/ᾱ
where the dose is strictly positive, and s < µ/ᾱ elsewhere.

Figure 4. From top to bottom: segmentation samples for the T1Gd at the first
and second time points, and for the T2-FLAIR at the first and second time
points. The sample are generated independently for the different time points
and modalities. The different colors correspond to the different samples. The
original clinical segmentation S0

i for i = 1, 2, 3, 4 is in red on the different
modalities.

A local maximum dose constraint of 60 Gy following clinical

recommendation can also be included.

The personalization of the tumor growth model provides

samples {θl} from the posterior distribution P (θ|S). We

propose three principled methods to compute prescription

doses based on the computed samples.

1) MAP Dose: The MAP (Maximum A Posterior) dose

is defined as the dose minimizing the surviving fraction of

the most probable tumor cell density denoted as u(θMAP) .

This dose does not take into account the uncertainty in the

personalization.

2) Probabilistic Dose: The probabilistic dose is defined

as the dose minimizing the expectation of the surviving

fraction of tumor cells. This expectation can be estimated using

samples from the posterior distribution as follows,

Eθ [f(d, u(θ))] = Eθ

[
∑

i∈I

ui(θ) exp(−αdi)

]

(13)

≃
∑

i∈I

1

N

∑

θ

ui(θ) exp(−αdi) (14)

≃
∑

i∈I

ûi exp(−αdi) (15)

≃ f(d, û) (16)

where û = 1
N

∑

θ u(θ) is the empirical mean of the

tumor cell density. Computing the probabilistic dose is then
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Figure 5. MAP (Top), mean (Middle) and standard deviation (Bottom) of
the tumor cell density at the second time point computed with 100 random
samples of the posterior, when taking into account two time points and the
uncertainty in the segmentations. From left to right: axial, coronal, and sagittal
views. The brainstem is outlined in white, and the confined target volume T
is outlined with a dashed white line. The arrows indicate regions of varying
uncertainty above the brainstem (see Figure 14).

equivalent to minimizing the fraction of surviving tumor cells

using the empirical mean tumor cell density û.

3) Corrected Dose: The corrected dose is defined as the

prescription dose corrected for the presence of neighboring

organs at risk (OARs). We minimize the surviving fraction of

tumor cell density minus the surviving fraction of the OARs

cell density (i.e. we penalize the death of OAR cells) as

follows,

minimize
d

f(d, û)− δf(d, βc) (17)

where β is the standard deviation map of the tumor cell

density (Figure 5), c is the cell density of the OARs, and δ
is a factor which weighs the impact of the correction. The

term βc translates the fact that we only consider the impact of

the OARs in the regions of high uncertainty in the tumor cell

density. Note that f(d, û)− δf(d, βc) = f(d, û− δβc). Hence

taking into account the OARs is equivalent to minimizing the

original problem using the corrected tumor cell density û −
δβc.

C. IMRT Planning

We optimize an Intensity Modulated Radiation Therapy

(IMRT) plan using 9 equally spaced coplanar 6MV photon

beams and a piece-wise quadratic objective function, as de-

tailed in [16], [17]. Dose-calculation is performed using the

software CERR [29].

VI. RESULTS

We first present the results for one high grade glioma

patient. This patient was not subject to surgical resection,

but was under a complex treatment of concurrent chemo- and

Figure 6. Normalized histogram of the distribution of the invisibility index

λ =
√

D/ρ. The distribution using a single time point t2 is more peaked
(in black) than using two time points (in red), or two time points and the
segmentation uncertainty (in blue).

radiotherapy. We picked two time points separated by 28 days

which revealed a visible growth large enough to conduct our

experiments.

The threshold for the T1Gd and T2-FLAIR abnormalities

is set to τ1 = 80% and τ2 = 16% respectively [26]. The log-

uniform prior is bounded such that D ∈ [10−4, 10] mm2/days,
and ρ ∈ [10−5, 10] days−1, and we use a noise level of

σ = 5mm for the likelihood.

For the scenario 1, 4000 thousand samples are drawn from

the posterior with a normal distribution with standard deviation

0.3 for the proposal function, leading to an acceptance rate of

30%. For scenarios 2 and 3, 2000 samples are drawn from the

posterior distribution, leading to an acceptance rate of 60%.

Figure 6 shows the histograms of the invisibility index λ =
√

D/ρ. Including the second time point, and the uncertainty in

the segmentation, increases the uncertainty in the invisibility

index. Indeed, the histogram is more peaked when using a

single time point than when including the second time point.

It also results in a larger invisibility index. Figure 7 shows

the samples from the posterior density of the parameters D
and ρ knowing the considered segmentations when using two

time points (Left) and when including the uncertainty in the

segmentation (Middle). We can see that the presence of two

close modes in the region of high probability disappears when

the uncertainty in the segmentation is considered. The samples

reveal an asymmetric posterior distribution where the mode

and mean are different, suggesting that the probabilistic and

MAP dose distributions will be different as well. Moreover,

the histograms of the random variable Zi for i = 1, 2, 3, 4
(Figure 7 Right) show that all the segmentation samples are

equally probable.

Figure 3 (Right) shows the most probable tumor cell density

taking into account the uncertainty in the segmentation, along

with the extracted contours for the T1Gd and T2-FLAIR
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abnormalities. Note that the tumor infiltration is approximated

in the regions of tumor necrosis. Indeed, clinician sometimes

excluded the necrotic core from the segmentation of the

T1Gd abnormality. This is usually not the case (inconsistency

between clinicians), and we chose in this paper to use the raw

clinical segmentation as input. However, this has actually very

little impact on the delivered dose because the necrotic core

is surrounded by regions targeted with an important dose. In

the sequel, we use 100 random samples from the posterior to

compute the empirical mean and the standard deviation of the

tumor cell density for the three scenarios.

Figure 8 shows the personalized tumor cell density profile

extracted along two different lines at the second time point

in the case of scenario 3, along with the boundaries of the

segmentation samples. This allows to visualize the uncertainty

in the computed tumor cell density. Figure 5 shows the axial,

coronal, and sagittal views of the 3D empirical mean and

standard deviation of the tumor cell density at the second

time point for scenario 3. Those two figures highlights the

two sources of uncertainty for scenario 3: the segmentation,

and the tumor infiltration.

The integral dose constraint is set equal to the total dose

a patient would receive during a treatment following standard

guidelines [11]. For that, we simulate a clinical target vol-

ume (CTV) by expanding the T1Gd abnormality visible on

the second time point with a 2 cm margin. To respect the

boundaries of the tumor progression - much like a clinician

would do - we define the CTV as the isoline of the average

tumor cell density using only the second time point which is

totally included in a 2 cm expansion of the T1Gd abnormality.

The clinical radiotherapy planning prescribes 60 Gy to the

CTV, and 0 elsewhere (see Figure 9 Top). The corresponding

dose distribution resulting from IMRT planning is shown

in Figure 10 (Top). We then set dint = 4.4e + 07Gy.mm3

which corresponds to the IMRT dose delivered to the brain

tissues (i.e. excluding the skull and cerebrospinal fluid). The

radiosensitivity parameter ᾱ is set to 0.35 1/Gy.

Figure 9 shows the prescription MAP doses in the three

scenarios: i) using only the second time point, ii) using

the two time points, iii) using the two time points and the

segmentation uncertainty. In accordance with the histograms

of invisibility index (Figure 6), we can see that the MAP dose

using a single time point is more shallow compared to the

doses using two time points (see the arrows on the different

views of Figure 9). Furthermore, there is almost no difference

between scenario 2 and 3, i.e. whether or not segmentation

uncertainty is incorporated. Figure 10 shows the corresponding

IMRT optimization of the MAP doses. It is apparent that

the differences between the doses is largely mitigated by the

smoothing effect of IMRT planning. This is confirmed by

Figure 13 (Left) which shows the DICE coefficient of the 50

Gy isolines of the different dose distributions before and after

the IMRT optimization: the DICE coefficient is greater (on

average 95%) after IMRT than before (on average 91%).

Figure 11 shows the probabilistic prescription doses in the

three scenarios. In this case, the difference between the sce-

narios is small (see the DICE coefficients on Figure 13 right).

However, we can note that the infiltration of the prescription

dose is greater for the scenarios taking into account the two

time points, contrary to what is the case for the MAP doses

(see the arrows on the axial view of Figure 11). This is

because the larger uncertainty in the invisibility index leads

to a smoother falloff of the dose. Moreover, the effect of

taking into account the uncertainty in the segmentations can

be seen on the coronal view (see the arrows in Figure 11). A

part of the tumor near the cerebellum receives higher doses in

the third scenario. This is because this tumor is located near

boundaries of tumor progression and therefore, the delineation

of the segmentation has a big impact. Figure 12 shows that this

effect is still present after IMRT optimization (see the arrows

on the coronal view of Figure 12).

Figure 14 shows a sagittal view of the corrected dose

(Top) for different values of δ, and the corresponding IMRT

dose (Bottom). The total amount of dose is the same for the

three presented doses since they respect the dose constraint.

However, because of the correction factor, the dose prescribed

inside the brainstem (outlined in white) is being redistributed

to other regions of the brain where the brainstem cell density

and the uncertainty in the tumor cell density is lower. The

white arrows on Figure 14 and 5 (sagittal view) show how the

part of the dose where the tumor cell density is lower and the

uncertainty higher (arrow on the right) is reduced whereas the

dose where the tumor cell density is higher and the uncertainty

lower (arrow on the left) is not redistributed. This translates

in reduced delivered dose after the IMRT optimization. This

can be more clearly observed by looking at the dose volume

histograms on Figure 15. One can see that, with increasing

values of δ, the dose delivered to the brainstem is reduced.

The method was applied to a second patient for which the

two MRI acquisitions are 31 days apart. Figure 16 shows

the histograms of the invisibility index for the three differ-

ent scenarios. Including the second time point results in a

larger uncertainty and lower invisibility index. Including the

segmentation uncertainty does not have a noticeable impact

on the invisibility index. This results in a prescription MAP

dose which is more concentrated to the target volume for the

scenarios 2 and 3 compared to scenario 1 (see Figure 17).

However - and similarly to the first patient - the prescription

probabilistic dose is slightly more spread out for the scenarios

2 and 3 compared to scenario 1 (see Figure 18). This is due

to the increase in uncertainty when taking into account the

second time point. The figures for the second patient can be

found in the supplementary material.

VII. DISCUSSION

Extensions of the model could be considered in order

to include the noise level σ, the thresholds τ1, and τ2, as

free parameters of the model. We detail subsequently the

motivations behind our choices, and the difficulty which could

arise in considering such extensions. The value of σ is related

to the level of noise in the mean Hausdorff distance. We chose

a value of 5mm which is in agreement with the Hausdorff

distances corresponding to the Maximum A Posteriori which

ranges from 4.8 to 12.4 mm for the presented patients. This

level of noise allows to explore the parameter space, and to
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Figure 7. Posterior density of the joint probability P (D, ρ|S) using only the clinical segmentations (Left) and taking into account the uncertainty in the
segmentations (Middle). The colorbar indicates the negative log likelihood of the samples (yellow unlikely, blue very likely). The most probable sample is
indicated with the crossing solid red lines, the mean is indicated with the dashed red lines. The histograms of the random variable Zi are on the right: the
bar plot corresponds to the number of time the sample j of the segmentation i has been selected (i.e. Zij = 1).

Figure 8. Visualization of the 3D tumor cell density profile extracted along 2
lines (in orange on Figure 4, identified by an orange number). The empirical
mean of the tumor cell density is the solid black line, and the shaded area
encloses the 10th to 90th percentiles. The colored crosses corresponds to the
boundaries of the different segmentations visible on Figure 4 with the same
color code.

Figure 9. Prescription MAP doses in Gray for the clinical plan and the three
different personalized plans. From top to bottom: clinical plan, using only the
second time point, using the two time points, using the two time points and
the segmentation uncertainty. From left to right: axial, coronal, and sagittal
views.

Figure 10. IMRT MAP doses in Gray for the clinical plan and the three
different personalized plans. From top to bottom: clinical plan, using only the
second time point, using the two time points, using the two time points and
the segmentation uncertainty. From left to right: axial, coronal, and sagittal
views. The arrows emphasize the difference of falloff between the different
scenarios.

focus on a region of interest which is in accordance with

the lowest distances found. It was set manually after a few

experiments. The noise level σ could be considered as a

parameter to be tuned during the personalization. However,

it raises the question of computing the normalization factor of

the likelihood which depends on sigma in order to properly

compute the Metropolis-Hastings acceptance ratio. We fol-

lowed [30] to set the value of τ1 and τ2. The threshold values

could be included as a parameters of the model. However, we

did not include it in this study for several reasons. First, there

is a biological interpretation behind those values (detectable
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Figure 11. Prescription probabilistic doses in Gray for the clinical plan and the
three different personalized plans. From top to bottom: clinical plan, using
only the second time point, using the two time points, using the two time
points and the segmentation uncertainty. From left to right: axial, coronal,
and sagittal views. The arrows emphasize the difference of falloff between
the different scenarios.

Figure 12. IMRT probabilistic doses in Gray for the clinical plan and the
three different personalized plans. From top to bottom: clinical plan, using
only the second time point, using the two time points, using the two time
points and the segmentation uncertainty. From left to right: axial, coronal,
and sagittal views. The arrows emphasize the difference of falloff between
the different scenarios.

Figure 13. DICE coefficient of the dose binarized with a 50 Gy threshold
for the different scenarios: using only one time point (OTP), using two time
points (TTP), using two time points and the segmentation uncertainty (TTPS).
The DICE coefficient is presented for the MAP doses (Left) and probabilistic
doses (Right), and for the prescription doses (light blue) and the IMRT doses
(light pink). One can note that the TTP and TTPS scenarios are the closest,
and that the IMRT optimization reduces the differences between the doses.

Figure 14. Prescription (Top) and IMRT (Bottom) doses in Gray for increasing
values of δ (from left to right). We can see that with increasing δ, the dose
around the brainstem is re-distributed (see the arrows).

threshold of tumor cell density), and we think the different

possible values cannot be distinguished by the model since,

for two sets of thresholds (τ1, τ2) and (τ ,1, τ
,
2) , several values

of D and ρ will result in similar segmentations. This was

investigated in [21] where the models with different values

of (τ1, τ2) were personalized. It was noted that changing

the thresholds only resulted in adjusted parameters. It was

quantified by showing that the statistical evidence of the

different models was not noticeably different. Second, this

adds complexity and increases the computational cost of the

method.

Figure 15. Dose volume histogram of the corrected dose for the brainstem
(solid line) and the target volume T (dashed line) for different values of δ.
The x axis is the dose and the y axis if the percentage of volume targeted with
this dose. Increasing the value of δ reduces the dose delivered to the brainstem
while keeping the dose delivered to the target volume T approximately
constant.
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Figure 16. Normalized histogram of the distribution of the invisibility index

λ =
√

D/ρ for the second patient. The distribution using a single time point
t2 is more peaked (in black) than using two time points (in red), or two time
points and the segmentation uncertainty (in blue).

Figure 17. Prescription MAP doses in Gray for the three different personalized
plans for the second patient. From top to bottom: clinical plan, using only the
second time point, using the two time points, using the two time points and
the segmentation uncertainty. From left to right: axial, coronal, and sagittal
views.

VIII. CONCLUSION

We presented the proof of concept for a method combining

a computational model of tumor growth with a dose response

model in order to optimize radiotherapy planning, which takes

into account the uncertainty in the model parameters and

the clinical segmentations. We presented and compared three

different scenarios. In the first one, we only consider one

MRI acquisition before therapy, as it would usually be the

case in clinical practice. In the second one, we use two time

points in order to personalize the model and plan radiotherapy.

In the third one, we include uncertainty in the segmentation

process. Based on these scenarios, we proposed three princi-

pled approaches to define patient specific dose prescriptions,

and discussed the difference between them. The MAP dose

minimizes surviving tumor cells after irradiation of the most

probable situation, while the probabilistic dose allows one to

take into account the uncertainty by minimizing the expected

surviving tumor cells. We showed that including a second

Figure 18. Prescription probabilistic doses in Gray for the three different
personalized plans for the second patient. From top to bottom: clinical plan,
using only the second time point, using the two time points, using the two
time points and the segmentation uncertainty. From left to right: axial, coronal,
and sagittal views.

time point increased the uncertainty in the invisibility index

and resulted in more shallow probabilistic doses. However, the

difference between the prescription doses are partly smoothed

out by IMRT optimization. We also showed that including

the uncertainty in the segmentation did not change the re-

sults substantially. Considering the large number of potential

sources of uncertainty for radiotherapy planning, we think the

most conservative approach is to use the probabilistic dose

personalized with time points and segmentation uncertainty.

We also proposed an approach to redistribute dose in order

to take into account the uncertainty in the tumor cell density,

and the presence of neighboring OARs such as the brainstem.

We believe that this method could be beneficial in situations

when an organ at risk is located in an area that may or may

not be infiltrated by tumor cells.

In the future, the inclusion of the fractionation scheme

of the delivered dose could be optimized. In this case, the

personalization on two different time points before therapy

would be crucial in order to estimate the speed of growth of

the tumor, and simulate its progression during radiotherapy.

The impact of the presented planning should also be further

investigated on a larger cohort of patients. To that end, the

model should be extended in order to take into account the

complex therapy the patient is undergoing. As such, the model

could be applied to any presented patient given the therapy

schedule. Finally, it should be investigated if more conformal

dose delivery techniques such as proton therapy lead to IMRT

planning more conformal to the prescribed dose.
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