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Personalized Robot Assistant

for Support in Dressing
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Praminda Caleb-Solly, Sanja Dogramadzi, and Carme Torras, Senior Member, IEEE

Abstract—Robot-assisted dressing is performed in close
physical interaction with users who may have a wide range of
physical characteristics and abilities. Design of user adaptive and
personalized robots in this context is still indicating limited, or no
consideration, of specific user-related issues. This paper describes
the development of a multimodal robotic system for a specific
dressing scenario—putting on a shoe, where users’ personalized
inputs contribute to a much improved task success rate. We have
developed: 1) user tracking, gesture recognition, and posture
recognition algorithms relying on images provided by a depth
camera; 2) a shoe recognition algorithm from RGB and depth
images; and 3) speech recognition and text-to-speech algorithms
implemented to allow verbal interaction between the robot and
user. The interaction is further enhanced by calibrated recog-
nition of the users’ pointing gestures and adjusted robot’s shoe
delivery position. A series of shoe fitting experiments have been
performed on two groups of users, with and without previous
robot personalization, to assess how it affects the interaction
performance. Our results show that the shoe fitting task with the
personalized robot is completed in shorter time, with a smaller
number of user commands, and reduced workload.

Index Terms—Assistive robots, multimodal human–robot
interaction (HRI), robot personalization.

I. INTRODUCTION

B
Y 2050, the world population is expected to increase by 2

to 4 billion people [1]. This growth will have a profound

demographic consequence: while in 2000, 10% of the world’s

population was over 60 years old, by 2050 this proportion

will be more than doubled. Some studies report that more

than half of the people 75 years or older who suffer from

age-related physical and cognitive impairment need assistance
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Fig. 1. Assisted-dressing scenario with a WAM robot: use case of putting
on a shoe.

with activities of daily living (ADL) [2]. Assistive technologies

can improve the life quality for both older adults and their

caregivers [3]. Assistive robots, in particular, can help patients

with recovery and allow prolonged independent living, while

compensating for increased costs of care and lack of nursing

staff [4].

The main goal of this paper is development of an

autonomous robot that provides personalized assistance to a

user in performing a dressing task. In this context, the con-

sidered dressing task consists in comfortably putting on a

shoe which has been selected by the user. The experiments

were designed to evaluate robot performance and user work-

load under different conditions. The user is assumed to have

reduced mobility, partial control over legs, and is in a seated

position as shown in Fig. 1. The user should be able to interact

with the robot through a number of modalities. This will allow

the robot to be adaptable to situations where a single modal-

ity is insufficient, e.g., asking the robot to pick up “the black

shoes” where there are several choices. Ambiguity may be

reduced with the addition of the gesture modality, in this case

pointing. The interpretation of the pointing gesture may be

difficult due to the context of the situation. Pointing to an

object relatively nearby compared to one further away may

result in a different arm pose (e.g., elbow bent or straight,
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TABLE I
SUMMARY OF THE MOST RELEVANT STUDIES IN ASSISTED DRESSING

hand rotated) and for this reason specific calibration, i.e., robot

personalization, is required.

Natural human–robot interaction (HRI) requires successful

recognition of the user’s and robot’s intentions [5]. In the shoe

fitting task, the successful interaction is based on continuous

tracking of the shoe and the user. The contribution of this paper

is twofold. First, a multimodal robotic system for support

in dressing was developed. Several vision- and speech-based

modalities have been developed to deal with the user’s and

robot’s intentions in real time. Second, we proposed a robot

personalization method to evaluate the ability of the developed

multimodal robot to adapt to an individual user. The person-

alization focused on reducing user workload and frustration,

especially important for users with reduced mobility.

A. Relevant Work

Assisted dressing is receiving increased attention in the

robotics community. Earlier studies evaluated assisted dress-

ing on a mannequin with a dual-arm robot [6], [7]. The robot

was able to pull a T-shirt over the mannequin’s head while

tracking the position of the collar and sleeves. In [8], the

work of the same authors was extended to include learning

of the mannequin-cloth relationship. Successful manipulation

of some types of garments depends on accurate estimation

of their state [9]. To get a better insight into the interaction

between the robot and nonrigid garments, some authors

proposed to perform a dressing task on a dual-arm robot, by

putting the robot arms into the corresponding sleeves of a

T-shirt [10].

An important aspect of HRI is safety, where the adaptation

to users can be studied from the aspect of user’s limitations

in avoiding events that can lead to discomfort or injuries [11].

Still, most of the studies on safety in robot-assisted dress-

ing have not included tests with users and were limited to

experiments on a mannequin. Some proposed solutions employ

learning techniques to teach a compliant robot arm to wrap

a scarf around a mannequin’s neck [12] or detect failures in

jacket dressing [13]. The proposed scenarios with a mannequin

have a limited utility for real-world applications because the

mannequin’s position is always fixed. The obtained results are

difficult to generalize when applied to human motion.

Adaptation to users is of great importance for acceptance

of the robots, not least for persons with reduced mobility.

Gao et al. [14] proposed building of a unique model that

defines user’s mobility space. A different approach of per-

sonalized assistance was proposed in [15], where the robot

and user take turns when moving to compensate for the user’s

mobility limitations. Although some level of adaptation was

achieved in these studies, no perception of the garment state

was considered. Recent work by Yamazaki et al. [16] included

both garment state estimation and personalized assistance for

users, allowing a humanoid robot to assist users with putting

on a pair of trousers. The personalized assistance was incor-

porated into the robot’s motion planning, taking into account

visual feedback of the trousers and the size of the user’s legs.

Pignat and Calinon [17] applied learning by demonstration

to provide personalized assistance with dressing. The authors

used hidden semi-Markov models to encode sensory and motor

information necessary to perform both time-dependent and

independent dressing task segments.

Most of the early work on robot-assisted dressing relied on

vision as the primary interaction modality, as summarized in

Table I. Recent studies included additional modalities, such

as haptics to improve the interaction with the user [18]–[22].

The evaluation of such systems focused on robot performance

without considering the direct user input for robot person-

alization, hence limiting the scalability of such systems in

applications with people. In the work presented in this paper, a

robotic system was developed that exploits speech-based and

vision-based interaction modalities to successfully assist a user

with a dressing task, and can be customized to the particular

set of user abilities and needs through direct input from the

user. The results provide a proof-of-concept for the I-DRESS

project,1 which aims to develop a multimodal robotic system

equipped with a wide range of sensors and safety features to

provide proactive assistance with dressing to users with limited

mobility.

II. METHODOLOGY

In the context of an assisted-dressing task in which a

robot assists the user in putting on a shoe, every person

would have a particular way of interacting. The multimodal

approach developed in this research enables the system to learn

and respond to individual anthropometrics, speech, and ges-

tures commands resulting in personalized interaction with a

user. The development of the robot assistant for support in

1The I-DRESS project: https://i-dress-project.eu/.
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Fig. 2. Dressing scenario.

dressing required integration of several hardware and soft-

ware components. The robot features several vision-based and

speech-based modalities for interaction with the user.

A. Task Description

The application scenario consists of a user’s daily activity

of putting on a shoe in a seated position. The target users are

persons with reduced mobility, with partial control of their

legs, i.e., having a certain level of difficulty in lifting their

legs and moving their feet. The user may choose from a set of

shoes using speech or a combination of speech with pointing

gestures to form so-called deictic expressions. The robot’s task

is to grasp the requested shoe and position and hold it in

an appropriate position in front of the user so that they can

comfortably place their foot inside.

In the first instance, experiments were performed to compare

task efficiency using single or combined interaction modali-

ties. Each participant performed two experiments. In the first

experiment, only speech could be used to request a shoe; in

the second, the participants were asked to combine the speech

with the pointing gesture into deictic commands. The exper-

iments were performed in the laboratory environment, and a

graphical model of the scenario is shown in Fig. 2.

B. Hardware

The central part of the system is a Barrett’s 7-DOF WAM

robotic arm equipped with an in-house developed gripper

shown in Fig. 1. The gripper has four fingers, which are con-

trolled by a servo motor [see Fig. 3(a)]. A set of crocs-type of

shoes commonly used by patients in hospitals was also used in

this scenario. Each shoe has a ribbon attached that is grasped

by the four fingers before the shoe can be moved to the user

[see Fig. 3(b)]. The ribbons are marked with four different

color markers for easier recognition [see Fig. 3(c)].

Visual input is provided by two Microsoft Kinect cameras,

an XBOX 360 and a Kinect One, which will be referred to

as Kinect 1 and Kinect 2, respectively. The depth and RGB

images from the Kinect 1 are used to recognize the colors and

(a) (b) (c)

Fig. 3. Gripper and crocs shoes used in the experiments. (a) Gripper, (b) rib-
bon attached for easier grasping, and (c) color markers used for recognition
of both the shoes and their grasping points.

locations of the shoes markers. User tracking, posture, and ges-

ture recognition rely on depth images provided by the Kinect 2,

while the audio input from its integrated 4-microphone array

operating at 48 kHz is used for speech recognition and sound

localization. The cameras were connected to different personal

computers (PCs) and showed no noticeable interference during

operation, which can sometimes occur when using two cam-

eras. One of the reasons for no noticeable interference may be

different orientation of the two cameras: the Kinect 1 was fac-

ing downward, while the Kinect 2 was facing the user. Also,

some studies suggest that use of different technologies to com-

pute depth may reduce interference in a dual-camera setup:

while Kinect 1 computes alterations in the IR light pattern it

projects, Kinect 2 computes the IR rays time of flight.

The integration of hardware and algorithms was performed

in robot operating system (ROS). Three PCs run the entire

system. A PC running Ubuntu 12.04 LTS 64-bit, powered by

an Intel quad-core Q9550 CPU @2.83 GHz×4 with 8 GB

of RAM was used to run most of the implemented algo-

rithms and to connect the Kinect 1 camera. The second PC

running Ubuntu 12.04 LTS 64-bit powered by an Intel Core

i5-2400 CPU @3.10 GHz×4 and 4 GB of RAM was used to

control the WAM robot and the gripper, having all the neces-

sary drivers installed. The third PC running Windows 8.1 Pro

64-bit, powered by an Intel Core i7 X990 @3.47 GHz and

2.80 GHz and 16 GB of RAM, processed the speech recog-

nition and user tracking data obtained using the Kinect for

Windows SDK 2.0 library. The three PCs communicated via

laboratory Ethernet.

C. Algorithms

Vision and speech were used as inputs for development of

several modalities for HRI, but also for the interaction of the

robot with the environment (e.g., recognition of the shoes).

Some authors associate modalities with the type of perception,

e.g., vision, sound, etc., however, we use a more detailed def-

inition of modality as a channel for a certain type of message

between the user and the robot, such as posture, gesture, etc.,

which can be developed from the same sensory input, such as

vision. Verbal interaction between the user and the robot was

implemented through speech recognition and speech synthe-

sis algorithms. Visual interaction consisted of user tracking,

pointing recognition, and posture recognition. An additional

modality was deictic expression recognition that combined
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TABLE II
SPOKEN UTTERANCES WITH ASSOCIATED

SEMANTIC TAGS AND ACTIONS

speech and pointing recognition. Finally, adaptation to users,

or personalization, consists of calibrating each person’s point-

ing gesture and adjusting the robot’s position to suit the user

ergonomically. User personalization method is described in

Section III.

1) Speech Recognition: Speech was used for bidirectional

communication between the user and the robot. Through

speech recognition the robot was able to understand user’s

voice commands to start or finish the task, correct its behavior

or learn user preferences. The implementation of the speech-

recognition algorithm was made through the Microsoft Speech

Platform SDK 11 engine, which transcribes spoken utterances

to text. A grammar model was created in XML-format to

define the utterances specific to assisted-dressing scenario.

Each utterance was associated with a semantic tag, which was

retrieved when the utterance was recognized. A set of the utter-

ances and associated semantic tags used in the experiments is

given in Table II.

2) Speech Synthesis: Robot feedback is an important aspect

of HRI as it allows the user to understand the robot’s cur-

rent state and actions. It is used to inform the user about the

progress of the dressing task and necessary actions; for exam-

ple, after a shoe is picked up, the dressing assistance will

not continue until the user extends the foot toward the robot.

Robot verbal feedback is also used to confirm whether a user

command was correctly recognized, which contributes to user

safety but also allows a timely intervention by the user in order

to correct the robot’s behavior. A text-to-speech algorithm

was implemented in Python, and relies on the gTTS package

using the Google’s Text-to-Speech API. The algorithm takes

a text string as input and converts it into a speech transcrip-

tion in mp3 format reproduced by the speakers. Similarly to

speech recognition, a vocabulary of utterances was defined

specific to the assisted-dressing scenario. Examples of the

utterances are: “ready to help,” “taking the {color} shoe,”

“please, approach,” etc.

3) User Tracking: The ability to track and follow user’s

body parts, such as a foot or a hand, is necessary to perform

the proposed assisted-dressing task. Microsoft Kinect SDK

provides tracking of 25 body joints, with their position and

orientation, at a 10 Hz frame rate [24]. Specifically, tracking

of the position of the foot and the orientation of the knee–ankle

axis were implemented for a proper positioning of the shoe

(see Fig. 8), but also to ensure collision avoidance and to keep

the interaction safe.

4) Pointing Recognition: The use of pointing gestures for

robot control proved to be an accepted way of interaction

for inexperienced users [25]. Various pointing recognition

methods have been proposed in literature, which were tai-

lored according to system’s sensing abilities, e.g., finger

tracking [26], or task requirements, e.g., distance of the

pointing target [27]. Our previous studies showed that the

pointing recognition using the position of the elbow and

wrist joints can successfully be applied to robot control in

close HRI [28], [29]. The user-tracking algorithm described in

Section II-C3 provides the position of the arm joints in real-

time, hence it was possible to implement the same method in

the current study.

The estimation of the user pointing target was applied in

combination with speech to form deictic expressions, which

allowed more diverse and intuitive interaction with the user.

For example, the user could point to a desired shoe while

saying “take this shoe!” and the shoe closest to the pointing

target would be selected, as shown in Fig. 7(a). Even though

the reference to the color using speech seems to be easier and

simpler when distinguishing the shoes, the pointing gesture is

likely to provide a more reliable alternative solution in real life

situations when the colors might not be descriptive enough to

discriminate different objects; for example, there may be more

than one pair of shoes of the same color, or the user may not

remember the exact name of the color, etc.

The computation of the pointing target was performed in the

robot frame of reference. Let pe = (xe, ye, ze) be the position

of the user’s elbow and pw = (xw, yw, zw) the position of

the user’s wrist, both obtained from the Kinect 2 applying

the user skeleton-tracking algorithm. The pointing direction is

computed as a straight line

s = pe + λ(pw − pe) (1)

where λ ∈ ℜ. In the proposed dressing scenario, the shoes

are placed on a platform that is parallel to the ground floor

at the constant height, z = h. After substituting this value

in (1), the pointing target, pt = (xt, yt, zt), which is found

at the intersection of the pointing line with the shoe plane is

given by

xt = xe +
h − ze

zw − ze

(xw − xe)

yt = ye +
h − ze

zw − ze

(yw − ye)

zt = h. (2)

Finally, let S = {blue, red, green, yellow} be a set of the

available shoes on the platform, and ps, s ∈ S, their respective

locations that are obtained with the shoe-recognition algorithm

described later in this section. The target shoe st ∈ S is selected

as the closest one from the pointing target

st = arg min
s∈S

(|pt − ps|). (3)

A graphical representation of shoe selection is shown in

Fig. 7(a), where for demonstration purposes the blue shoe was

selected by the user.
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Fig. 4. Dressing posture recognition using relative ankle and knee positions.

5) Posture Recognition: Posture recognition was developed

to detect the user’s readiness to be dressed after the shoe selec-

tion phase. The algorithm is able to recognize when the user’s

right leg is extended toward the robot by analyzing the posi-

tion of the knee and the ankle joints. The leg is considered

to be extended when the ankle joint passes the perpendicular

axis of the femur bone by more than 0.05 m respect to the

knee joint, which is shown in Fig. 4.

Posture recognition evaluates the user’s intention to be

dressed but it also contributes to user safety. The algorithm

was running at 10 Hz, and a threshold was used to detect the

change in posture. If the user withdraws the foot, the robot

returns to the home position and waits for the next instruc-

tion. The posture recognition algorithm is executed after the

shoe selection phase, only when the user verbally confirms

intention to be dressed by saying “dress me.”

6) Shoe Recognition: For the proposed assisted-dressing

scenario, shoe manipulation was simplified by attaching a rib-

bon to the top of a shoe so that the gripper can grasp the shoe

from above [see Fig. 3(b)]. The ribbons were of size 3 cm ×

17 cm, with rectangular 3 cm × 6 cm color markers placed in

the central segment of the ribbon. The recognition of the mark-

ers was implemented using the OpenCV image-processing

library that takes both RGB and depth images provided by

the Kinect 1 to compute the color and position of different

segments in the image. The Kinect 1 was mounted above the

shoe platform providing a top view of the shoes. The exper-

imental set consisted of four shoes marked with blue, green,

red, and yellow markers shown in Fig. 5.

The RGB images obtained with the Kinect 1 were first con-

verted to HSV format. The colors in the image were clustered

according to their HSV values and their centroids were com-

puted. The HSV values of the markers used in the experiments

were obtained from the test sample images and their ranges are

given in Table III. Depth images obtained with the Kinect 1

were used to compute the coordinates of the markers’ centroids

in the camera reference system. The positions of the markers

were transformed to the robot reference system and set as the

corresponding shoe’s gripping points. It is important to note

that the algorithm was executed each time the user requested a

(a) (b)

Fig. 5. Shoe recognition. (a) Simulated experimental setup and (b) real-world
view from the Kinect camera.

TABLE III
HSV VALUES RANGE FOR SHOE MARKER RECOGNITION

shoe from the robot. The marker positions were used to define

the shoes gripping points, but also to inform the user if the

requested shoe had already been picked up and is no longer

available on the platform. The described implementation made

the system more robust to unexpected user behavior.

7) Robot Motion Planning: Shoe grasping and position-

ing to enable comfortable insertion of the foot by the user

required accurate robot movement. To reach a desired point in

robot’s workspace, the end-effector directional points provided

in Cartesian space were transformed into robot joints positions

that satisfy the constraints implemented through an inverse

kinematics algorithm [30]. The robot operated in a compliant

mode to ensure user safety. Predefined positions of the robot’s

end-effector were associated with different robot states. In the

home position shown in Fig. 5, the robot waited for the user

to initiate the task. After receiving a requests to pick up a

shoe, it computed the position of the shoe marker and veri-

fied that the selected shoe was reachable. To ensure successful

grasping and avoid collision with other shoes, the robot grip-

per was guided through a set of predefined directional points

above the selected shoe’s marker. After the user’s request to

be dressed, the robot delivered the shoe to the delivery posi-

tion (see Fig. 8), at a safe distance from the user’s right foot.

This distance was empirically obtained from the test trials. It

was computed with respect to the position of the user’s ankle

in the knee frame of reference, at dxy = 0.4 m in the xy plane

taking into account the orientation of the right leg along the

knee-ankle axis, and dz = 0.5 m in the z-axis. The adjustment

of the delivery position was a part of robot personalization

method described in Section III-B.

The robot was capable of adjusting the delivery position

by following the user’s foot, which consisted in maintain-

ing the distance and adjusting the orientation of the gripper.

The preliminary tests showed that the recognition of the foot

orientation was unreliable. For this reason, the axis passing

through the ankle and knee joints was used as a reference. Let
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Fig. 6. Decision-making module diagram.

pa = (xa, ya, za) and pk = (xk, yk, zk) be the positions of the

user’s ankle and knee, respectively. The position of the ankle

with respect to the knee p
(k)
a = (x

(k)
a , y

(k)
a , z

(k)
a ) is computed as

p(k)
a = pa − pk. (4)

The angle between the knee and ankle with respect to the

robot’s x-axis is then given by

β = tan−1
(y

(k)
a

x
(k)
a

)

+

⎧

⎪

⎨

⎪

⎩

π, if (x
(k)
a < 0) and (y

(k)
a > 0)

−π, if (x
(k)
a < 0) and (y

(k)
a < 0)

0, otherwise.

(5)

And for the case of x
(k)
a = 0

β =

⎧

⎪

⎨

⎪

⎩

π/2, if (y
(k)
a > 0)

−π/2, if (y
(k)
a < 0)

0, otherwise.

(6)

By knowing the angle and distances in the xy plane and

z-axis, the robot end-effector position pr = (xr, yr, zr) can

now be computed

xr = xa + dxy cos β

yr = ya + dxy sin β

zr = za + dz. (7)

The position is continuously updated allowing the robot to

follow the user’s foot, while keeping a predefined distance for

safety.

8) Decision-Making Module: The decision-making mod-

ule is implemented as a finite-state machine, as shown in

the diagram in Fig. 6. It integrates all the above-described

algorithms, and defines the robot behavior with eight possible

states: 1) abort; 2) stop; 3) pick; 4) wait posture; 5) follow;

6) wait finish; 7) finish; and 8) pointing. Transitions between

the states are evoked by the interaction events detected by any

of the interaction modalities, and these events are also shown

in the diagram. In case of inconsistent user input, the robot

remains in the current state and via spoken feedback informs

the user about the issue and requests a new input.

(a) (b)

Fig. 7. Computation of the pointing target for the blue shoe: the user angle,
θu, is computed as the angle of the elbow-wrist axis in the robot frame of
reference. The corrected angle, θc, is computed using a linear fitting func-
tion whose parameters A and B are obtained during the pointing calibration
procedure.

Fig. 8. Robot shoe delivery requires tracking and following of the user’s
ankle in real-time. During personalization, the user can use voice commands
to adjust the position of the robot.

III. ROBOT PERSONALIZATION

To develop a personalized robot dressing assistant, a method

consisting of user pointing calibration and robot position

adjustment was proposed. Pointing calibration improves the

accuracy of the pointing recognition during shoe selection,

while the robot position adjustment allows the users to mod-

ify the shoe delivery position for a better comfort. This

is especially important for users with mobility issues who

may perform pointing and foot positioning differently, in

accordance with their limitations.

A. Pointing Calibration

Pointing is performed differently by each user, and the esti-

mation of the pointing target may largely differ from the

one that is perceived by the user. For this reason, a point-

ing calibration algorithm was proposed that compensates the

user’s pointing error and takes into account specific task

requirements. Preliminary experiments showed user consis-

tency in pointing. It is important to note that users were in

a seated position that restricted their pointing gesture, which

in the proposed scenario ensured successful repeatability of the

pointing action. The calibration procedure is initiated by the

user and it is described in Algorithm 1. It can be performed as

many times as needed, although for this paper it was performed

only once before the assisted-dressing experiment.
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Algorithm 1 Pointing Calibration

1: {A, B} ← {1, 0} // default parameters values
2: if “pointing” then // user says “calibrate pointing”
3: shoes ← {blue, red, green, yellow}
4: user_angles ← {}
5: corrected_angles ← {}
6: for all shoe in shoes do // user points to a shoe
7: θu ← get_pointing_angle()
8: θc ← get_shoe_angle(shoe)
9: user_angles ← append θu

10: corrected_angles ← append θc // robot says “OK”
11: end for
12: {A, B} ← linear_fitting(user_angles, corrected_angles)
13: end if
14: θc ← Aθu + B // applying correction

During calibration, the robot asks the user to point to all four

shoes in a predefined order. The user points to each shoe and

confirms the pointing by voice. The robot stores the pointing

target associated with its corresponding shoe, and confirms

this to the user. For each target, the algorithm computes two

angles in the robot frame of reference: 1) the user angle, θu
s

and 2) the corrected angle, θc
s , s ∈ {blue, red, green, yellow},

as shown in Fig. 7(b). The user angle is computed from the

straight line passing through the elbow and wrist joints and

the robot’s x-axis; similarly, the corrected angle is computed

as the straight line connecting the elbow and the shoe s and

the x-axis. The values obtained in preliminary trials suggested

a close-to-linear relationship between the two sets of angles,

θc
s and θu

s

θc = Aθu + B. (8)

During experiments, individual user’s pointing calibration

results, i.e., the four values of θc
s and θu

s obtained for four

colored markers, were used to compute the parameters A and

B of the linear fitting function. Let pu = (xu, yu, zu) be the dif-

ference between the wrist and elbow positions, pu = pw − pe,

and pc = (xc, yc, zc) the difference between the shoe posi-

tion and the elbow, pc = ps − pe. The user angle, θu
s (xu, yu),

and corrected angle, θc
s (xc, yc), are then computed the same

as in (5) and (6), by substituting x
(k)
a and y

(k)
a with xu and yu,

and xc and yc, respectively.

The parameters A and B can now be computed from these

two sets of angles applying a linear regression model defined

in (8). The same equation will be used to correct the user’s

pointing angle during the experiments. The corrected pointing

target in the shoe plane, pc
t = (xc

t , yc
t , zc

t ), is then computed

using the polar coordinates with the user’s elbow joint, pe,

as the origin. The distance of the corrected pointing target is

given by

dc
t =

√

(xc
t − xe)2 + (yc

t − ye)2. (9)

Finally, the corrected pointing target coordinates can be com-

puted

xc
t = dc

t cos θc

yc
t = dc

t sin θc

zc
t = h (10)

Algorithm 2 Robot Position Adjustment

1: robot_pos ← initial_pos
2: while ¬ “ok” do // user says “ok”
3: if direction then // user says direction
4: adjustment_direction ← direction
5: while ¬ “stop” do // user says “stop”
6: robot_pos ← robot_pos + adjustment_direction
7: end while
8: end if
9: end while

10: initial_pos ← robot_pos

where h is the height of the shoe platform. It is important to

note that the pointing calibration algorithm corrects the accu-

racy of the user, but not the precision. Hence, the efficiency

of the pointing calibration depends on the individual user’s

consistency in performing the pointing gestures.

In the experiments in which only the speech modality was

used, no calibration was required, so the fitting parameters

were set to A = 1 and B = 0, such that θu = θc. Hence, no

correction of the pointing target was performed.

B. Robot Position Adjustment

A predefined shoe-delivery position may not fit all the users

as it may require an additional effort to place the foot inside

the shoe. To reduce the user workload, particularly the physi-

cal effort, a robot position adjustment algorithm is proposed.

The algorithm takes user requests to modify the distance (in

the xy plane) and the height (along the z-axis) of the robot

end-effector from the ankle joint, as shown in Fig. 8. The fol-

lowing requests given by voice are defined: “move forward,”

“move back,” “move up,” and “move down.” The procedure

of the position adjustment is described in Algorithm 2. The

robot modifies the end-effector position along the requested

direction until the user says “stop.” The modification in any

direction can be repeated until the user is satisfied with the

final position and confirms it by saying “that’s ok,” or the end-

effector reaches a safety limit (dxy = (0.2 m, 0.6 m), dz = (0 m,

0.5 m)). The robot position adjustment can be performed as

many times as needed, however, for the purpose of this paper

it was performed only once.

Both pointing calibration and adjusted robot end-effector

position were associated with a particular user and recorded

for future dressing tasks, until changed again on user request.

The Kinect 2 allows skeleton recognition and tracking of up

to six users in the sensor’s field of view. Each user’s skeleton

information has an associated userID that can be used to con-

sistently recognize and track a specific user; in our case, this

was the user closest to the robot.

IV. EXPERIMENTS

The developed autonomous robot dressing assistant was

tested in experiments with users who had no experience in

robotics. The robot’s task was to pick and deliver a shoe to

the user’s right foot. However, in each trial the participants

were required to repeat this task with the robot twice, in order

to increase the level of difficulty to the one of the real dressing
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task. The experiments were designed to evaluate performance

and user workload under different conditions. The following

sections describe the experimental setup, tasks, user profiles

and evaluation metrics.

A. Experimental Setup

The proposed experimental setup consisted of a WAM robot

with gripper, Kinect 1 and Kinect 2 cameras, and a platform on

which the shoes were placed, as shown in Fig. 2. Two pair of

shoes were used marked with four colors: 1) blue; 2) green;

3) red; and 4) yellow. The distance between the shoes was

0.2 m. The Kinect 1 was positioned above the platform fac-

ing downward to allow the visual recognition of the colored

shoe markers. Its location in the robot reference system was

(x, y, z) = (0.38 m, 0.07 m, 1.16 m), and its orientation given

by its Euler angles was (α, β, γ ) = (139◦, 80◦, 37◦). The

Kinect 2 was used to recognize speech, and track the user

movements. It was placed in front of the user, at an angle

that prevents occlusion of the foot by the WAM robot dur-

ing dressing. Its position in the robot reference system was

set to (x, y, z) = (2.03 m, 0.57 m, 0.53 m) and its orienta-

tion in the Euler angles was (α, β, γ ) = (0◦, 0◦, 121◦). The

entire system was manually calibrated to minimize the robot

positioning errors. The manual measurements were verified

by visualizing the scenario in the ROS framework, through

Rviz. The user was seated on a wheeled platform, allowing

the distance from the robot to be adjusted. However, two con-

straints were considered: the user had to remain inside the

detection range of the Kinect 2 camera and the right foot,

when extended, had to be inside the robot’s workspace.

The dressing task consists of the following steps, which

were provided as instructions to the users involved in the

experiments.

1) Start: The robot is in the home position and after the

user’s “begin” confirms with ready to help.

2) Shoe Selection: The user selects one of the available

shoes, either by pointing to the shoe and saying take

this shoe or using a voice command to specify the shoe’s

color, for instance “take the green shoe.”

3) Choice Correction: If the robot picks up a wrong

shoe, the user can correct it by repeating the first

step.

4) Shoe Delivery: The dressing is initiated by the voice

command dress me. The robot waits for the user to

extend the right foot (the posture is recognized), after

which it approaches the user’s foot at a safe distance,

taking into account the orientation of the user’s ankle

and knee joints (see details in Section II-C7).

5) Finish: The robot follows the user’s foot while main-

taining the safe distance until the user says stop. The

user can now safely place the foot inside the shoe. The

task finishes when the user says that’s ok, after which

the robot releases the shoe from the gripper and returns

to the home position.

Fine shoe fitting by the robot may be added to finalize

the dressing task, however, due to its complexity it is not

considered in this paper but as a part of future work.

B. Participants

The robot assistant was evaluated in experiments with 12

participants (8 males and 4 females) of similar educational

level (six electrical engineers, three computer scientist, twi

chemist, and one biologist) and age (between 22 and 29), with

no experience in robotics. The goal of the experiments was to

assist the participant with selecting and putting on a shoe.

To add complexity to the task, the participants were asked to

select two shoes from the set, the blue and green one, to com-

plete the task. The difficulty of choosing each shoe depended

on its distance from the user and the pointing angle required

to select it, so for a fair comparison, all the users were asked

to choose the same shoes.

To evaluate the effect of personalization on robot

performance and user workload, the participants were divided

into two groups of six participants, each group consisting

of two female and four male participants. The participants

from the Group 1 performed the task with the default robot

setup, i.e., without personalization. The participants from the

Group 2 were asked to perform the pointing calibration and

robot position adjustment (described in Section III) before

performing the dressing task. In both groups, the order of

experiments was changed for subgroups of three participants

for counter-balancing.

To study the effect of robot personalization on the type of

interaction modality, both groups of participants performed

two experiments. In the first experiment, only the use of voice

commands was allowed in selecting the shoes, while in the sec-

ond experiment a combination of pointing and speech (deictic

expression) was required to make a selection. Each experiment

consisted of five trials, in each of which the user was asked

to select and put on two shoes.

C. Evaluation

Several metrics were used to evaluate the performance of

the robot and the workload of the participants. The quantitative

metrics used to evaluate the performance were the task suc-

cess, task completion time, and number of corrections. Task

success is defined by

Si = Ni/2 · 100%,∀i = 1 . . . 10 (11)

where Ni represents the number of successfully delivered

shoes, and i is the number of the trial. Task completion time is

defined as the overall duration of a single trial. The number of

corrections refers to the number of times the participant must

repeat the request to the robot because it grasped the wrong

shoe.

For a qualitative evaluation, the participants were asked to

fill in the raw NASA-TLX questionnaire after each experiment.

The questionnaire evaluates six dimensions of user workload:

1) mental demand; 2) physical demand; 3) temporal demand;

4) performance; 5) effort; and 6) frustration, values from 0 to

100 [31]. The overall workload is computed as the average of

the above-mentioned six dimensions.

A mixed ANOVA test was conducted using the personaliza-

tion condition as a between-subject factor, and the interaction

modality as a within-subject factor divided in two levels
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Fig. 9. Effect of the interaction modality and robot personalization on the
number of corrections during shoe selection. Error bars represent the stan-
dard deviation of the mean. Note: Group 1—without personalization and
Group 2—with personalization.

(speech and pointing/deictic). Statistical significance was com-

puted for all the above-mentioned performance metrics. The

results were considered significant for p ≤ 0.05.

V. RESULTS AND DISCUSSION

For a total of 120 trials performed by 12 participants, 97.5%

were successfully accomplished. In three trials that were clas-

sified as failures, the participants successfully guided the robot

during the shoe selection and delivery, but failed to firmly

place their foot inside the shoe, which resulted in the shoe

being dropped on the ground. This suggests that the task was

relatively easy to perform regardless of the interaction modal-

ity used to perform the shoe selection, and whether the robot

personalization was performed or not.

Nevertheless, both type of modality and robot personaliza-

tion condition influenced the task performance. The results of

the ANOVA test show that there was a statistically signifi-

cant effect of the type of modality on the average number

of corrections, F(1, 10) = 5.022, p = 0.049. Furthermore,

the pointing calibration reduced the number of corrections

in the Group 2 by 79.2% compared to the results obtained

by the Group 1, as shown in Fig. 9. The difference between

the groups was statistically significant as determined by the

ANOVA test (F(1, 10) = 10.011, p = 0.01). In fact, the

Group 2 reported a similar number of corrections for both

modalities, meaning that after calibration, the use of pointing

gestures was as accurate as speech.

The effects of the interaction modality and robot person-

alization on task completion time are shown in Fig. 10. It

can be noted that the task completion time was approximately

the same in both groups when the speech modality was used.

However, as a result of personalization when the pointing

modality was used, the Group 2 required on average 23.3%

less time than the Group 1 to complete the task. It can also

be noted that for the Group 2, the task completion time was

similar regardless of the modality used. On the contrary, the

Fig. 10. Effect of the interaction modality and robot personalization on the
task completion time. Error bars represent the standard deviation of the mean.
Note: Group 1—without personalization, Group 2—with personalization.

Group 1 on average performed the task 24.2% slower with

pointing than when the speech was used, indicating that point-

ing was less accurate without previous calibration. Although

the ANOVA test results did not demonstrate statistically sig-

nificant effect of the type of modality on the average task

completion time, the effect of personalization was statistically

significant, F(1, 10) = 4.945, p = 0.05.

The results for the six dimensions of user workload obtained

with the NASA-TLX questionnaires are shown in Fig. 11.

The type of modality had statistically significant effect on

the user physical demand (F(1, 10) = 5.248, p = 0.045)

and user performance (F(1, 10) = 4.817, p = 0.053). On

average, the Group 2 who performed robot personalization

experienced less overall workload than the Group 1: 3.2%

when using speech, and 5.4% when pointing was used; how-

ever, the effect of personalization on user workload was not

proved statistically significant by the ANOVA test. It should

be noted though, that the user satisfaction analysis would be

more reliable over a long-term interaction study that would

also include a larger number of participants. For example, the

pointing calibration and robot position adjustment may add

both physical and mental demand to some users in a short

experiment since they increase its complexity, but would prove

beneficial over a longer period of interaction.

Though some of the results did not prove statistically signifi-

cant, they are here presented to describe the behavioral trend of

the participants. In comparison with the Group 1, the Group 2

experienced less physical demand (5.0% with pointing), tem-

poral demand (5.0% with speech and 8.3% with pointing),

and frustration (10.0% with pointing). The personalization per-

formed by the Group 2 also led to a better performance (19.1%

with speech and 8.3% with pointing). Although the personal-

ization had no statistically significant effect on the level of

user effort, it can be noted that the pointing modality required

approximately 10% higher effort than speech, for both groups.

Indeed, pointing was combined with speech to form deictic

expressions, therefore, the final effort is expected to be higher.
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(a) (b) (c)

(d) (e) (f)

Fig. 11. Effect of the interaction modality and robot personalization on the six dimensions of workload. Note that here higher performance values indicate
worse performance. Error bars represent the standard deviation of the mean. Note: Group 1—without personalization, Group 2—with personalization.

VI. CONCLUSION

Multiple modalities can add diversity and expressive power

to HRI, but also result in a higher level of engagement that

could positively impact the user’s level of concentration on

the task and thus reduce errors or safety concerns from dis-

traction, loss of interest or even boredom. This can be of high

importance for the users that require assistance with the ADL

such as dressing. For example, pointing can be used to make

more precise requests if speech proves limited when choosing

from a pile of similar shoes. A combination of modalities can

have synergistic benefits, as in the case of deictic expressions.

Also, more specifically, redundancy in the input to the system

can improve accuracy. For example, speech-recognition in a

noisy environment will be error prone.

In this paper, we exploited the concept of multimodality

to develop personalized interaction with a robot assistant for

support in dressing. The robot was able to adapt to the users’

individual requirements by performing pointing calibration

and gripper position adjustment, which allowed more accu-

rate shoe selection and more comfortable shoe positioning.

It is important to note that the implementation of the robot

personalization could be modified to improve its flexibility.

First the system could adapt while performing the dressing

task. For example, the user would be encouraged to point to

a specific shoe or garment and vocalize the specific name.

Given that the location of the user and the shoe are known

in real time, the correction of the pointing target could be

determined in this real scenario rather than a separate cal-

ibration routine. Second, a simple geometric model of the

user could be implemented that adapted the correction angle

with movement of the user or the garment, overcoming issue

with linear mapping. However, in the scenario proposed in this

paper, we are considering users in a seated position for which

the linear mapping of the pointing targets proved suitable.

Even though adding modalities to the robotic system

increases its complexity, in both system development and

evaluation, our results showed that the robot was able to suc-

cessfully perform the dressing task while reducing the overall

user workload, as a result of personalization. Future work

will include development of a framework that can intelligently

manage the use of interaction modalities in each interaction

event and transitions between them.

REFERENCES

[1] J. E. Cohen, “Human population: The next half century,” Science,
vol. 302, no. 5648, pp. 1172–1175, 2003.

[2] G. A. Warshaw et al., “Functional disability in the hospitalized elderly,”
J. Amer. Med. Assoc., vol. 248, no. 7, pp. 847–850, 1982.

[3] M. E. Pollack, “Intelligent technology for an aging population: The use
of AI to assist elders with cognitive impairment,” AI Mag., vol. 26, no. 2,
pp. 9–24, 2005.

[4] H. Robinson, B. MacDonald, and E. Broadbent, “The role of healthcare
robots for older people at home: A review,” Int. J. Soc. Robot., vol. 6,
no. 4, pp. 575–591, 2014.

[5] S. Satake et al., “How to approach humans?—Strategies for social robots
to initiate interaction,” in Proc. 4th ACM/IEEE Int. Conf. Human Robot

Interact. (HRI), 2009, pp. 109–116.

[6] T. Tamei, T. Matsubara, A. Rai, and T. Shibata, “Reinforcement learning
of clothing assistance with a dual-arm robot,” in Proc. 11th IEEE-

RAS Int. Conf. Humanoid Robots (Humanoids), Bled, Slovenia, 2011,
pp. 733–738.

[7] N. Koganti, T. Tamei, T. Matsubara, and T. Shibata, “Estimation of
human cloth topological relationship using depth sensor for robotic
clothing assistance,” in Proc. Conf. Adv. Robot., Pune, India, 2013,
pp. 1–6.
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