
 Open access  Proceedings Article  DOI:10.1109/ICABME.2013.6648849

Personalized temporal medical alert system — Source link 

Juan-Pablo Suarez-Coloma, Christine Verdier, Claudia Roncancio

Institutions: University of Grenoble

Published on: 31 Oct 2013

Related papers:

 Visualising Communication Network Security Attacks

 Analytics-Based Solutions for Improving Alert Management Service for Enterprise Systems

 Graph model for alert interpretation in enterprise security system

 Sensor Alert Verification for Incident Operational Response (SAVIOR)

 Automatically and Adaptively Identifying Severe Alerts for Online Service Systems

Share this paper:    

View more about this paper here: https://typeset.io/papers/personalized-temporal-medical-alert-system-
57wbyxw74q

https://typeset.io/
https://www.doi.org/10.1109/ICABME.2013.6648849
https://typeset.io/papers/personalized-temporal-medical-alert-system-57wbyxw74q
https://typeset.io/authors/juan-pablo-suarez-coloma-1cx7taga8h
https://typeset.io/authors/christine-verdier-tpalqg1b45
https://typeset.io/authors/claudia-roncancio-3ysaa4v4tl
https://typeset.io/institutions/university-of-grenoble-1irzuhle
https://typeset.io/papers/visualising-communication-network-security-attacks-u1p483nr1g
https://typeset.io/papers/analytics-based-solutions-for-improving-alert-management-196x4in0as
https://typeset.io/papers/graph-model-for-alert-interpretation-in-enterprise-security-4ujfopsgr2
https://typeset.io/papers/sensor-alert-verification-for-incident-operational-response-5ffp6corem
https://typeset.io/papers/automatically-and-adaptively-identifying-severe-alerts-for-1gj39h4nzn
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/personalized-temporal-medical-alert-system-57wbyxw74q
https://twitter.com/intent/tweet?text=Personalized%20temporal%20medical%20alert%20system&url=https://typeset.io/papers/personalized-temporal-medical-alert-system-57wbyxw74q
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/personalized-temporal-medical-alert-system-57wbyxw74q
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/personalized-temporal-medical-alert-system-57wbyxw74q
https://typeset.io/papers/personalized-temporal-medical-alert-system-57wbyxw74q


HAL Id: hal-00944104
https://hal.inria.fr/hal-00944104

Submitted on 12 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Personalized Temporal Medical Alert System
Juan Pablo Suarez Coloma, Christine Verdier, Claudia Roncancio

To cite this version:
Juan Pablo Suarez Coloma, Christine Verdier, Claudia Roncancio. Personalized Temporal Med-
ical Alert System. 2013 2nd International Conference on Advances in Biomedical Engineering
(ICABME’13), Sep 2013, Tripoli, Lebanon. pp.69-72. ฀hal-00944104฀

https://hal.inria.fr/hal-00944104
https://hal.archives-ouvertes.fr


Personalized Temporal Medical Alert System 
Trend configuration and follow-up 

Juan-Pablo Suarez-Coloma
1,2

, Christine Verdier
1
, Claudia Roncancio

1 

1 
Univ. Grenoble – Alpes, France 

2 
Calystene S.A. 

Firstname.Lastname@imag.fr

 
Abstract—The continuous increasing needs in telemedicine 

and healthcare, accentuate the need of well-adapted medical alert 

systems. Such alert systems may be used by a variety of patients 

and medical actors, and should allow monitoring a wide range of 

medical variables. This paper proposes Tempas, a personalized 

temporal alert system. It facilitates customized alert 

configuration by using linguistic trends. The trend detection 

algorithm is based on data normalization, time series 

segmentation, and segment classification. It improves state of the 

art by treating irregular and regular time series in an 

appropriate way, thanks to the introduction of an observation 

variable valid time. Alert detection is enriched with quality and 

applicability measures. They allow a personalized tuning of the 

system to help reducing false negatives and false positives alerts.  

Keywords—time series; trend; alert; fuzzy logic; quality metric; 

valid time; personalization  

I.  INTRODUCTION 

Alert systems have been largely implemented in different 
domains as home, car, natural risks surveillance, or medical 
follow-up. In most cases, alerts are notified when a monitored 
variable value is out of a predefined range. In medical domain, 
alerts concern different users and a variety of interests. More 
automatic and popular alert systems concern drug prescription 
[1]. Alert systems detect drug interaction, contraindication, 
cross allergies, and other drug related events [2] [3] [4]. Such 
alert systems are often included in drugs databanks (in France, 
Claude Bernard’s, Vidal’s or Thériaque’s). More expert alert 
systems are used in Intensive Care Units (ICUs) [5] [6]. These 
systems are based on the same model: vital parameters 
monitoring and alert notification when the measured value goes 
beyond predefined thresholds. Alerts are notified to physicians 
and nurses. Medical alert systems are mostly used in health 
professional environments (office or hospital). 

Telemedicine tends to a largely and legal development for 
different and complementary reasons as reducing health costs 
and improving patients’ quality of life. Transferring medical 
actions towards paramedical professionals or patients 
themselves become a reality. Context-aware medical alerts 
measuring trends becomes particularly important in the new 
private environment where there are no, or few, medical skills. 
Some already existing systems are dedicated to elderly 
surveillance (physiological or home sensors). These Alert 
systems are preconfigured with most often no actions except: 
on or off position. Systems are activated manually by elderly 
people themselves each time they feel in danger. A customer 
service is informed and decisions are taken. 

This paper presents Tempas, a context-aware alert system 
based on linguistic trends. Tempas works with different kind of 
variables, and can be used in all environments (specialized or 
not) by every kind of users (expert or not). Trends are detected 
over regular and irregular time series extracted from patient 
observations. Linguistic trend values are stemmed from fuzzy 
logic. The application index measures the quality of the trend 
classification. It is used for alert filtering.  

Tempas extends Pas [7], an alert system, based on fuzzy 
logic and linguistic values, connected to medical and 
environmental databases. The linguistic values are expressed in 
natural language such as “low”, “normal”, and “high”. Tempas 
introduces time management in the system. Linguistic values 
are used to classify variable evolution such as “decreasing”, 
“stable”, and “increasing”. Tempas has been implemented and 
integrated within an ERP solution called Futura, owned by 
Calystene S.A. 

Section II presents a global view of Tempas and focuses on 
alert configuration. Trend definition and trend detection are 
explained in detail in section III and section IV, respectively. 
Section V presents related works on alert systems, time series, 
and trends. We present our conclusions and perspectives in 
section VI. 

II. TEMPAS 

In this section, we present an overview of Tempas and a 
brief summary of the alert configuration process. Tempas is not 
an expert system but a decision making help tool. Next sections 
explain how the user defines trends and how the algorithm 
detects alerts.  

Tempas is a context-aware alert systems based on trend 
analysis and user personalization. The personalization allows 
medical actors to create their own alert system by defining:  

• The variables to monitor, vital and non-vital 
parameters, environmental conditions, etc. 

• Specific valid value ranges for the monitored 
variables. This information allows overriding default 
values if required 

• Relevant trends leading to alerts during variable 
monitoring. For example monitoring increasing trends 
in body temperature to alert detection. 

• Target population, patient or group of patients 
potentially concerned by the alert. 
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Fig. 3. Left graphic uses degrees Celsius for temperature and hours for time. 

Right one uses degrees Fahrenheit and seconds instead. Body temperature

range is [37 °C - 42 °C] equivalent to [98.6 °F - 107.6 °F], time range is [0 h -

60 h] equivalent to [0 s - 216000 s].

• Alert notification parameters as the users to notify 
and the notification method. 

• The expected alert quality. This is provided by the 
application index, which expresses how much an alert 
concerns a patient. 

An example of alert definition is the following: “Send an 
alert to all nurses if a decreasing body temperature trend is 
detected for patient Johnson”. The alert behavior is adapted to 
the whole context (user, patient, alert itself) e.g. use a range of 
[36°C – 42°C] for body temperature in all alerts, and [37°C – 
40°C] in alerts created by Dr. Smith. Only the alerts with an AI 
superior to 0.8 are notified. 

Personalization and context-awareness tend to reduce the 
false negatives and false positives, and to have always relevant 
alerts. Anyone can use Tempas. No high mathematics or 
informatics skills are required to create or edit trend alerts. The 
more the system is used, the highest its quality becomes. 

III. TREND DEFINITION  

We explain in this section how the user defines linguistic 
trends. Each linguistic value is stemmed from fuzzy logic. 
Each fuzzy set represents a linguistic value. Segments are 
classified in a trend from its slope (angle) and the fuzzy sets. In 
section IV we explain how to find segments in time series and 
how to proceed to alert detection. 

Before be informed by alerts, users need to define how 
trends can be linguistically classified e.g. “decreasing”, 
“stable”, “increasing”. A range of angles is specified for each 
classification set. Tempas provides a fuzzy set generation 
algorithm to help the user to avoid the tedious task of 
trapezoidal sets definition. The algorithm requires two input 
values: the number of sets (the different linguistic values) and a 
classification tolerance CT. Generated fuzzy sets can be 
modified by users if needed. Fig. 1 shows the generated sets for 
different CT and five linguistic values.  

The Trapezoidal membership function maps each element 
from the universe X to a value between 0 and 1. The 
membership degree (computed from trapezoidal membership 
function) covers the classification ambiguity. Fig. 2 shows the 
trapezoidal membership function that computes the AI of a 
segment. The segment AI is the same as the alert AI. Equation 
(1) computes the membership degree. 

Segment classification is closely related to false positives 
and false negatives. Users may reduce false positives 
increasing the AI quality filtering, redefining the number of 
classification sets, or redefining the CT. In case of false 
negatives, users may decrease AI, redefine the number of 
trends, or redefine the CT.  

IV. TREND DETECTION 

Trend detection in Tempas consists in three steps explained 
in the next subsections. The normalization process transforms 
the observation information (measured value and timestamp) 
into a space between 0 and 1. Segmentation and fusion finds 
the most important k segments on regular and irregular time 
series. Finally, segment classification classifies each obtained 
segment as a linguistic trend.  

1) Normalization  
Data normalization translates data obtaining values between 

0 and 1, allowing using segment slope as unique criteria for its 
classification. The algorithm uses segment angle, easy human 
eye understandable, for trend detection. The advantage is to 
avoid graphic perception problems. Graphically, the slope in 
Fig. 3 seems to be the same at left and right. Apparently, Unit 
changing does not affect the trend form. This happens when 
axis units are well chosen to draw both time series. In fact, the 
slope (defined as “vertical changing over horizontal changing”) 
changes if unit does. A temperature changing from 37.7 to 38.2 
degrees Celsius in an 8 hours period can be presented as a 
changing from 99.86 to 100.76 degrees Fahrenheit in a 28800 
seconds period. Slope is defined as 0.5/8 in the first case and 
32.9/28800 in second. Slope is 0.1 in both cases if data are 
normalized. Tempas normalize data using variable and time 
ranges obtained from variable context and window length, 
respectively.  

2) Segmentation and fusion 
In this step, Tempas gets the observation set, segments the 

data, and merges until obtaining the k most significant 
segments. The k value is defined by the user. The segmentation 
algorithm uses a Piecewise Linear Representation [8] and data 
approximation by linear interpolation for two related reasons. It 
is easy to understand, thus, users can configure alerts by 
themselves. 

 The segmentation algorithm uses a bottom-up approach 
and a window based approach to deal with real time data 
streams [9]. A window corresponds to time series containing a 
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Fig. 2. Trapezoidal membership function 

Fig. 1.  Five generated fuzzy sets changing CT. Each set represents an ordered 

linguistic value among: “strongly decreasing”, “decreasing”, “stable”, 
“increasing”, “strongly increasing”.  

AI(x) = AI(x) = AI(x) = 

 (1)
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Fig. 4. At left, a 4 points time series with a valid time vt1 (square markers)

and a valid time vt2 (triangle markers). At the top right, the segmentation uses

vt1 and produces 2 non-connected segments. At the bottom right, the
segmentation uses a valid time vt2 producing 3 connected segments. 

patient observation set. The user specifies (1) the period length 
containing the desired observation set, and (2) the wished 
number of observations (no). These two parameters are used by 
the algorithm to create a hybrid window. A hybrid window has 
two measures, size and length. The window length is a 
temporal distance between the two extreme points of the 
observation set. The size is a quantitative measure defined by 
the number of points of the window. The window size and 
length do not always correspond to the number of observations 
and the period length specified by the user. A two-step 
algorithm uses the window to find the k most representative 
segments. Each segment is used to calculate one trend.  

The first step is the segmentation. Tempas pass from n 
points to n-1 or less segments. Tempas uses the observation 
variable valid time OVVT (how long the variable value is true 
for trend detection) [10]. OVVT is a segmentation parameter 
(see Trendability). This parameter let to handle regular and 
irregular time series differently. Segment fusion comes after 
time series segmentation.  

Trendability is the ability that two consecutive points have 
to belong to the same trend. If the temporal distance between 
them is superior to the OVVT, they cannot belong to the same 
trend. Consequently, it is possible to find non-connected 
segments after segmentation. Fig. 4 shows two segmentations. 
One segmentation process (top-right) generates two non- 
connected segments. The second segmentation process 
(bottom-right) generates three connected segments.  

An iterative algorithm finds the k most representative 
segments. Each cycle merges two connected segments into one. 
The decision is based on the smallest merging cost. Merging 
cost is a metric for merging two connected segments. It 
represents the Manhattan distance between the extreme points 
of two segments. If there is more than one smallest merging 
cost, the rightmost one is chosen. It is nearest the current time. 
The algorithm stops when the k segments have been found, or 
when the smallest merging cost goes over a user defined value. 
Fig. 5 shows the iterative fusion process until getting two 
segments. 

3) Segment classification 
Segment classification is the final step of trend detection. 

Final Segments are classified using the fuzzy sets generated by 
the user. Each segment classification returns a linguistic trend 
value and an AI. Detected trends with an AI over the threshold 
are notified to users e.g. a segment is classified as “stable” and 
“increasing” with a membership degree of 0.4 and 0.6, 
respectively. If threshold defined by the user is inferior or equal 
to 0.6, then, the system sends an increasing trend notification. 

V. RELATED WORK 

Medical alert systems are often preconfigured alerts. The 
main problem is that users lose interest in these types of alert 
systems because: they produce many false positives, false 
negatives, not well targeted alerts, or useless alerts 
[11][12][13]. For this reason, alert systems are not well 
accepted in clinical information systems [1]. 

Time-series are multidisciplinary and produces huge 
amounts of data. Many works use dimensionality reduction 
based on signal treatment [14][15][16][17]. Charbonnier and 
Gentil [5] define three thresholds to detect a trend in a signal. 
Their values are chosen from normal behavior of monitored 
variables. Their algorithm uses these thresholds to classify 
online-detected segments as one of seven temporal shapes. 
Fuzzy logic on time-series helps to get human understandable 
results according to context situations [18] [19][20]. These 
works find only one trend on the time series from predefined 
fuzzy sets. In some cases, fuzzy sets are domain independent. 
Time warping techniques are used to compare time-series with 
different time length with the purpose of pattern matching [21]. 
Existing works are domain-dependent. To the best of our 
knowledge, no other works propose trend and variable 
information normalization 

Most online segmentation algorithms use a sliding window 
approach. The algorithm tries to merge the new segment with 
the current segment. In case of positive merging, the current 
segment grows, else, the new segment becomes the current [5] 
[8]. Other approaches extend from two to three consecutive 
segments merging [22]. Time-series segmentation is achieved 
by bottom-up techniques [6]. SWAB is a generic algorithm for 
time-series segmentation [23]. SWAB mix a sliding window 
approach with a bottom-up approach for online segmentation. 
Systems express trends using rules over time-series segments 
e.g. “oxygen interval slope > 0.4 Kilopascal per second”. 

Papadimitriou, Sun et Faloutsos introduce SPIRIT [24]. 
SPIRIT monitors multiple streams at same time to found k 
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Fig. 5. Iteration process. A shadowed row contains the selected two consecutive segments to be merged. At the top left, the merging cost for the segments [0.4,

0.8] and [0.6, 1] is 0.1616 and is the smallest. The system chooses the rightmost one ([0.6, 1]). 



hidden variables. Each hidden variable corresponds to a 
summarization of a group of correlated streams. Hidden 
variables are used to found (forecasting) trends using multiple 
variables. Forecasting trends are commonly used for anomaly 
detection [25] [26]. TrendX use trend templates to express 
expected behaviors (trend) of specific disorders [27]. Normal 
or abnormal behaviors are used for diagnostics. A trend 
template contains a temporal pattern in multiple variables. 

VI. CONCLUSION AND PERSPECTIVES 

This paper presented Tempas, a temporal alert system 
allowing customized variable monitoring. It facilitates alert 
configuration by using linguistic trends. The system is generic 
– working with several kind of variables – and can be 
instantiated in any application domain. Tempas has been 
implemented in a real ERP solution. Preliminary experiments 
have been made. A non-expert user was able to create an alert 
to monitor rising body temperature. He adjusted the application 
index and the classification tolerance following his common 
sense. An expert user validated the results. More experiments 
will be realized in the near future. Automatic validation is not 
advised given that quality is a subjective value in alert systems.  

This work introduced a quality index expressing how much 
an alert concerns a patient. Future work will improve quality 
information by introducing a trust index metric. This trust 
index will reflect how much the user can trust the alert. We will 
investigate the introduction of complex alerts combining trends 
and simple events (as medicine taking) and simultaneous 
trends.  
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