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Neuromorphic computation is one of the axes of parallel distributed processing, and memristor-
based synaptic weight is considered as a key component of this type of computation. However, the
material properties of memristors, including material related physics, are not yet matured. In parallel
with memristors, CMOS based Graphics Processing Unit, Field Programmable Gate Array, and
Application Specific Integrated Circuit are also being developed as dedicated artificial intelligence
(AI) chips for fast computation. Therefore, it is necessary to analyze the competitiveness of the
memristor-based neuromorphic device in order to position the memristor in the appropriate position
of the future AI ecosystem. In this article, the status of memristor-based neuromorphic computation
was analyzed on the basis of papers and patents to identify the competitiveness of the memristor
properties by reviewing industrial trends and academic pursuits. In addition, material issues and
challenges are discussed for implementing the memristor-based neural processor. Published by AIP

Publishing. https://doi.org/10.1063/1.5037835

I. INTRODUCTION

As computer performance has continued to improve, arti-
ficial intelligence (AI) has attracted renewed attention. Along
with the development of machine learning, AI services are
growing as a new industry catering to bit data resources.1

Semiconducting materials are at the base of the value chain
for the computer hardware on which these advances rely.

Artificial Neural Network (ANN) algorithms offer fast
computations by mimicking the neuronal network of brains.2 A
weight matrix is used in neural networks (NNs) for parallel pro-
cessing that makes computing faster. Most of the commercially
available AI chips are actually accelerators3 and not neuromor-
phic processors. Some companies pursue the development of
Graphics Processing Unit (GPU)-based accelerators, Field
Programmable Gate Arrays (FPGAs), or Application Specific
Integrated Circuit (ASICs) for effective AI services such as
pattern recognition. However, the chip price of FPGAs, for
example, is still relatively high, and hardware competition will
focus on fast computation, low power consumption, small
footprint size,4 as well as low manufacturing cost.

The memristor has attracted much attention because of
its potential to have linear multilevel conductance states5,6

for vector-matrix multiplication (output = weight × input), cor-
responding to parallel processing. However, software also con-
tinues to improve with central processing unit (CPU) and GPU
resulting in higher speeds. Therefore, it is important for mem-
ristors to be positioned properly within the value chain of
hardware.

A bottom up approach is considered when identifying
the value chain, which starts from materials and extends to
AI service levels, and a top down approach is considered in

reverse. It is time to evaluate memristor’s value using both
approaches because unforeseen consequences may arise by
one of the approaches. For example, in the long short term
memory (LSTM) of the recurrent neural network (RNN)
algorithm where a forget gate is used, a fast weight has been
proposed that does not require erasing weight for the forget
process.7 This means that the synaptic weight need not be
nonvolatile. Such short term memory opens a new opportu-
nity for memristors. The fast weight, however, may motivate
a new DRAM-based product, too, for DRAM may be used
as fast weights. In such a competitive landscape, it is neces-
sary to analyze both threat and opportunity factors of mem-
ristors to take suitable and best action.

Some review articles on resistive switching material-based
neuromorphic computation have presented useful guidelines.
Yu has reviewed algorithms, architectures, and material proper-
ties in broad view.8 Kuzum, Yu, and Wong dealt with material
issues that are appropriate for biological synapse characteris-
tics.9 Burr et al. reviewed hardware from an implementation
viewpoint.10 In addition to these review points, it is desired to
review the effectiveness of the memristor-based hardware in
training and learning. Take back-propagation, for instance,
IBM fabricated transposable 8T SRAM in TrueNorth to run a
back-propagation algorithm. We need to review how transpos-
able resistive switching random access memory (RRAMs) are
being studied for on-chip training and learning. We also need
to understand trends of device development to identify the
competitiveness of memristors in comparison with other candi-
dates. It is our intention to propose a direction to explore and
improve the properties of memristors through this review.

II. MEMRISTOR-BASED NEUROMORPHIC
COMPUTATION

The following technologies are being studied and under
development as candidates for next generation computers.11
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Neuromorphic computing and open platforms are motivated
by “beyond Moore’s law” and machine learning.4 Google’s
Tensor Processing Unit (TPU) is one of the open platforms
for deep learning.

• Reconfigurable Logic
• Memory-Centric Processing
• Silicon Photonics
• Neuromorphic Computing
• Quantum Computing
• Analog Computing
• Open Platforms

One of the main functions of accelerators is matrix multipli-
cation. The main computation part in Google’s TPU is a
matrix multiply unit.12 Memristors are suitable for the node
of matrix multiplication because of their multilevel resis-
tance. However, memristors should be suitable for supervised
training/learning on chip in order to predominate over the
CMOS-based neural network.

A. Memristor terminology

We need to agree on the terminology of the memristor
before discussing the memristor-based hardware. A memris-
tor is “a contraction for memory resistor.”13 It has two prop-
erties, a charge-controlled memristor, v(t) =M[q(t)]i(t), and a
flux-controlled memristor, i(t) =W[w(t)]v(t).13 Therefore,
memristor material shows the relationship between memri-
stance and memductance, M(q) = 1/W(w). Biolek et al.

reported that the HP’s memristor was not a true memristor
but a type of a current controlled memristive system
(CCMrS).14 Vongehr and Meng published that memristors
were not yet found.15 Serrano-Gotarredona et al. defined the
memristor as a “two-terminal electronic device which is
similar to a resistor, but whose resistance changes dynami-
cally as the device is being used.”16 In this paper, we follow
the definition of Serrano-Gotarredona et al. that includes
resistive switching.

The resistive switching includes threshold switching and
memory switching with several switching mechanisms.
Threshold switching has two types, that is, current controlled
negative resistance (CCNR) and voltage controlled negative
resistance (VCNR).17 It was reported that memory switching
is driven by power.18

B. Neuromorphic computing devices

Since neuromorphic computation imitates a biologi-
cal brain, each part of the neuronal network is modeled
and implemented into hardware to run machine learning

algorithms. There are neural processors fabricated by
full CMOS technologies based on neuromorphic models.
Memristor based-neuromorphic hardware is also studied in
relation to both off and on-chip learning. For example, there is
a single spike and oscillating spikes generated by utilizing
memristor’s threshold switching.19,20 The memristive synaptic
weight stems from the memory switching property.21–24 There
are also memristive logic25 and memristor based-recognition
chip.26 Memristor-based neurons, memristor synaptic weights,
and memristor-based training/learning are reviewed in Sec. II.

C. Papers and patents related to memristor-based
neuromorphic computation

The patent analysis tool, LexisNexis PatentStrategies™,
was used in searching patents related to a memristor-based
neural processor. Appropriate patents were selected from the
searched data. Each patent was sorted into the fields of
neuron, synaptic weight, neural network, training/learning, and
neural processor. Published papers were also selected and
sorted similar to that of the patent search. When searching
patents with a keyword of “memristor based neural processor,”
memristor, memristive materials, or resistive switching materi-
als occupy a large part of the patent scope. Narrowing the
scope of the patent by using “memristor neuromorphic compu-
tation, memristor neural network, or memristor neural circuit”
gives rise to a relative distribution as shown in Fig. 1. The
number of patents and papers is updated every moment and it
is practically impossible to show exact numbers, so that the
relative sizes were made as done in Schuman’s review article.4

The reason that memristor synapse papers are dominat-
ing is that many memristor memory papers deal with synap-
tic weight, showing that researchers are giving top priority in
achieving synaptic properties. Publication numbers of patents
and papers are nearly equal in memristor neuron and
memristor-based training/learning. This is because many of
these papers were also filed into patents. The patent filing
numbers decrease as the topic moves from the device level to
the system level.

The trends of memristor-based neuromorphic computa-
tion are summarized as follows when considering papers,
patents, and company status:

• The research on memristive memory (storage) has been
expanded to synaptic weights.

• The portion of materials and devices is large in the neuro-
morphic patent portfolio.

• The neural processor (or AI chip) becomes specialized or
dedicated by FPGA or ASIC.

FIG. 1. Publications on memristor-
based neuromorphic computation.
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• As the amount of data increases, deep learning algorithms
are effective and deep neural network (DNN) is getting
applied even to mobile services.

Data scattering and reliability issues in memristor synaptic
weights are obstacles for commercialization of memristor-
based hardware. This is because switching data itself shows
an intrinsic statistical variance. For example, the number of
conducting paths occurring during switching shows Poisson
distribution,18 where randomness cannot be controlled. No
reliable nonvolatile linear multilevel memristor has been
reported yet. A group of memristors was tried to make a
multi-bit or multilevel synaptic weight,27,28 which may con-
tribute to reducing multilevel data variance.

D. Memristor neurons

Neuron models are classified into a biologically plausible
model and a biologically inspired model. The bio-plausible
model mimics a biological neural system, and the bio-inspired
model exploits the characteristics of a biological neural
system. Many transistors are needed when fabricating neurons
by CMOS technology only. Memristor-based neurons were
proposed to replace some CMOS devices to simplify circuits.
Memristor-based Hodgkin-Huxley,29 memristor-based Morris
and Lecar,30 memristor-based FitzHugh-Naguma,31 and
memristor-based Hindmarsh-Rose32 were reported by simulat-
ing their signals. There is also a memristor-based simple
spiking model and integrate-and-fire.33 Al-Shedivat et al. sim-
ulated a memristor-based stochastically spiking neuron.34

They proposed the enhanced analytical model of the memris-
tors. Shamsi et al. designed an analog modular neuron based
on the memristor.35 This memristor was also simulated with a

linear model for the Pt/TiO2/Pt device. Mehonic and
Kenyon observed the threshold voltage spiking/instability
by applying threshold current into SiO2 which is unipolar
switching memory.36 Pantazi et al. incorporated phase-
change memristors into the architecture implementing the
integrate-and-fire functionality of the neurons as well as
the plasticity of the synaptic elements.37 The sets of
level-tuned neurons demonstrated selectivity related to
the input signals. They presented how the single-neuron
building block of a spiking neural network (SNN) can be
realized with nano-scale phase-change devices in all-
memristive configuration; however, open issues remain to
be addressed related to interconnectivity and the integration
of the memristive components in a neuromorphic processor
chip.37 Teimoori et al. used memristor logic to fabricate
integrate-and-fire neurons, by replacing resistors of CMOS
neurons with memristors to obtain a single pulse or pulse
train.38 It is noted that a CMOS transistor can emulate the
memristor,46–48 but memristors cannot fully replace CMOS
transistors or CMOS circuits. Instead, a hybrid approach is
employed in which a memristor models a biological
synapse, while CMOS circuits model neuronal dynamics as
Mehonic suggested.36

Some authors demonstrated energy consumption of
CMOS neurons. Table I presents CMOS neurons and
memristor-based neurons with power consumption and/or
energy consumption per neuron spike. A combination of a
memristor node with CMOS circuits and memristor node
with transistors is also presented.

Some power consumption should be noted in Table I. The
Wijekoon-Dudek model using 14 transistors produces all types
of spiking and bursting like Babacan’s method but consumes

TABLE I. Comparison of CMOS neurons and memristor-based neurons.

Models Configuration Power or Energy/spike Reference

CMOS Leaky

integrate-and-fire

18–20 transistors 0.3–1.5 μW, 2850 pJ/spike Indiverib

16 transistorsa 40.2 pW, 0.4 pJ/spike Cruz-Albrecht et al.c

14 transistors 4.3 pJ/spike Shamsi et al.d

Morris-Lecar 9 transistorsa 4 fJ/spike Sourikopoulos et al.e

Hindmarsh-Rose 90 transistors 163.4 μW Lee et al.f

Wijekoon 14 transistors 8–40 μW Wijekoon-Dudekg

Babacan 1 memristor emulator (operational transconductance amplifier

OTA +multiplier) + 3 transistors

60–110 μW Babacanh

CMOS +

Memristor

Saxena Memristor emulator (8 transistorsa) 14 fJ–1.4 pJ/spike Saxena et al.i

(Oscillatory) 1 memristor + 1 magnetic junction + CMOS circuit 3.3 μW, 150 pJ/junction Mizrahi et al.j

(Stochastic neurons) 1 memristor + CMOS circuit 249 fJ/single write@50%

switching probability

Wijesinghe et al.k

aNumber of transistors was estimated according to circuits in each reference. Memristor-based neuron in this table is defined as CMOS circuits that include
memristive parts.
bRef. 39.
cRef. 40.
dRef. 41.
eRef. 42.
fRef. 43.
gRef. 44.
hRef. 45.
iRef. 46.
jRef. 49.
kRef. 50.

151903-3 Sung, Hwang, and Yoo J. Appl. Phys. 124, 151903 (2018)



40% of the power of Babacan’s memristor neuron. Therefore,
trade-off among chip size, computing speed, and power con-
sumption should be considered, and this may be determined by
application. Deng et al. analyzed energy consumption under
different learning stages.51 Perhaps, the most promising neuron
in Table I is Sourikopoulos’ Morris-Lecar from an energy
viewpoint. But, speed and chip size should also be considered
in hardware architecture depending on AI applications and
trade-offs may be required for a specific chip design.

A memristor can be used for output signals as well as
input signals. There is a patent (Fig. 2) that generates multi-
level synaptic weight signal using threshold switching of the
memristor.52 The neuron MOS (νMOS) transistor, which is
the original concept of the patent CN103324979, was intro-
duced earlier for parallel processing.53 The linear multilevel
synaptic weight is achieved in this device when memristors
connected to gates of the νMOS transistor are used as a
group of single bit memories.

Memristors may be used for various devices in neural
networks, i.e., neurons and synapses as well as neuronal cir-
cuits. Al-Shedivat et al. generated a spike by applying the
memristor to neurons and synapses and ran the winner-take-all
(WTA) algorithm in the SNN34 and determined the synaptic
weight by Spike Time Dependent Plasticity (STDP) learning.
It is true that the memristor replaces some of the CMOS
neural circuits, but the memristor becomes competitive only
when it significantly improves neural network performance or
reduce chip size compared to CMOS neural networks. The
performance of memristor-based neural networks has been
predicted mainly by simulation. It is therefore desired to dem-
onstrate a breakthrough in memristor characteristics.

E. Memristor synapses

The challenging issues in memristor synaptic weights
are nonvolatility, linearity, and multilevel. However, the
results satisfying these three properties simultaneously have
not yet been obtained. A number of patents and papers on
neuron, synapse, architecture, training, and learning have
been published with many efforts to have analog memory
characteristics. Figure 3 shows a CMOS integrated-and-fire
neuron generating a neuron pulse.54 The memristor is placed
between the input neuron and the output neuron, and a
memristor-based synaptic weight crossbar is formed. Each
memristor in the crossbar is trained by a STDP learning rule.

The synaptic weight is determined in STDP learning by
the difference between pre-neuron spiking time and post-
neuron spiking time. The synaptic weight gives nonlinear
values in this case, and it is generally applied to unsupervised
training/learning with the winner-take-all (WTA) algorithm
such as position detection.55 Zheng and Mazumder have
therefore proposed to develop a hardware friendly algorithm
rather than to develop hardware to fit the algorithm and dem-
onstrated weight dependent supervised STDP learning.56,57

The linearity of synaptic weight is highly required in
deep learning where vector matrix multiplication (VMM) is
applied for parallel processing in the neural network.
In general, the pulse train is applied to the input node and a
linear increase in potentiation and a linear decrease in depres-
sion of conductance are required for the memristor in VMM
processing. Symmetry between potentiation and depression is
also crucial for learning in the neural network. Table II sum-
marizes the mechanisms that determine some memristive
switching types of materials. No unipolar switching has been
reported so far that shows multilevel switching during poten-
tiation and depression simultaneously. The bipolar switching,
even though it may not be symmetric, gives multi-levels in
both potentiation and depression. Organic materials, mag-
netic materials, and other oxides such as ZnO may show syn-
aptic properties; however, full information of multi-level,
symmetry, and/or on-off ratio was not reported.

The unipolar switching may have the same mechanism
as that of bipolar switching in some cases. NiOx, for
example, has unipolar switching characteristics, but bipolar
switching and anti-bipolar switching have been observed so

FIG. 3. Crossbar SNN architecture with memristor synapses, a synapse connected between two spiking neurons showing pre-synaptic spike and post-synaptic
spike, and graphical depiction of a bio-inspired pair-wise STDP-learning rule. Partially adapted from Ref. 54.

FIG. 2. A linear multilevel synaptic device that takes advantage of floating
gate. This may be an example of activation function devices.
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that unipolar switching is found to be a part of these double
curves.68 This can be described by a schematic switching
model as shown in Fig. 4. There are many switching mecha-
nisms from soft breakdown through nano-filaments in resis-
tive switching materials. In Fig. 4, a typical filamentary
model was applied as an example. A similar unipolar switch-
ing with double bipolar switching may be presented.

The analog switching material may be volatile, but when
pulse rate, width, and voltage are optimized, the pulse train
can achieve linear potentiation even to volatile synaptic
weight.64 Therefore, on chip training/learning may be per-
formed during the period when retention loss occurs slowly.
However, precise modulation of the device conductance over
a wide dynamic range may be necessary with linearity to
maintain high network accuracy. In such a synapse, the syn-
aptic weight may be represented by the combined conduc-
tance of multi-cells.27 Irmanova and James designed 10
levels of synaptic weight by combining three sub-memristor
cells where each memristor of the cell is placed into
sub-cells.28

F. Memristor-based learning

Schuman et al. commented that perhaps the most
popular on-line, unsupervised learning mechanism in neuro-
morphic systems is STDP.4 STDP-based unsupervised learn-
ing has been proposed mainly for binary synapses,69 and
Covi et al. proposed an HfO2-based analog memristor as a
synaptic element which performs STDP within a small
spiking neuromorphic network operating unsupervised learn-
ing for character recognition.69 Zheng and Mazumder also
pointed out that many of the spiking neural networks (SNNs)
do not have the capability to conduct on-chip learning.56 The
training is performed in advance using a computer or server
for off-chip learning, and then memristor synaptic weight
information is stored separately. In this case, the weight infor-
mation can be stored sequentially in columns or rows of the

weight matrix so that the control circuit can be simplified as
compared to that for simultaneous storage. Inference by unsu-
pervised training can be effective in mobile AI services where
simplicity and speed are crucial. Recently, there have been
reports of both on-chip unsupervised learning70 and on-chip
supervised learning by simulation.71 We must be able to
update the weight by accessing each synaptic weight ran-
domly, independently, and directly during on-chip learning in
order to perform learning in real time as soon as data arrive.
Synaptic weights should be accessed simultaneously for
perfect random access. But this operation requires more circuit
lines. For example, in the case of the 2 × 2 1T-1R synapse
arrays as shown in Fig. 5(a), it is possible to access one cell,
two cells, and four cells at the same time and randomly, but it
is impossible to access three cells simultaneously. Thus, a sep-
arate and additional word line or bit line is required for each
cell for perfect random access. This makes the circuit overhead
increase. Since the circuit overhead should be minimized in
order to reduce the chip size, we have to accept some degree
of sequential processing when updating the synaptic weights
even during in situ on-chip learning. Consequently, the data
processing must be fast for on-chip learning, but fast process-
ing also increases the circuit overhead.

1. STDP learning

Both unsupervised STDP learning72–74 and supervised
STDP learning have been reported.56,57,75,76 Pedretti et al.

presented unsupervised STDP learning with a memristor
synapse where synaptic weights are updated by STDP.72

They discussed applications of unsupervised techniques such
as data clustering and anomaly detection. Ly et al. trained the
neural network with a stochastic STDP.73 In this work, a
visual pattern extraction application, they fully connected the
network of Leaky-Integrate and Fire (LIF) neurons and
RRAM-based synapses.

Nishitani et al. reported that STDP supervised learning
can be performed using ferroelectric memristors.77 This is

TABLE II. Multilevel memristive synaptic materials. Off current level and current resolution of multilevel should be considered in field operation. Values
with asterisk are reported in references. Other values were estimated based on data in each reference. Incremental voltage pulses are applied to ferroelectric
switching for making multilevel while constant voltage pulse train is applied to other materials for potentiation and depression.

Source of switching mechanisms Materials system Multi-level

Symmetry between

potentiation and depression

On-off

ratio Off-current Ref.

Electrochemical filament-based resistive switching Ag/Pd/SiGe 100 Symmetric 100* 10 nA 58

Ag/AgInSbTe 50 Asymmetric 2 800 μA 21

Ag/Si 100 Symmetric 10 5 nA 6

Oxygen vacancy filament-based resistive

switching

HfO2/AlOx 40 Symmetric 3* 1 μA 22

TaOx/HfOx 100 Asymmetric 5 1 μA 59

SiO2/TaOx 300 Symmetric 2 40 μA 23

Ta2O5/TaOx 20 Asymmetric 2 40 μA 60

Interface resistive-based switching Ta/TaOx/TiO2/Ti 50* Asymmetric 2 7 nA 61

Mo/PCMO 32* Asymmetric 15 500 pA 62

Al/Mo/PCMO 100 Asymmetric 100 10 pA 24

Mo/TiOx 64* Asymmetric 20 1 nA 63

WOx 100 Asymmetric 100 20 nA 64

TiOx/TiOy 100 Symmetric 10 1 nA 65

Ferroelectric tunneling BTO/LSMO 100 Asymmetric 10 10 μA 66

Ferroelectric switching HZO 32* Symmetric 45* 1 μA 67
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because the ferroelectric has polarization and polarization
reversal property. The ferroelectric is polarized in the posi-
tive direction during forward propagation and in the oppo-
site direction during backpropagation. Positive polarization
corresponds to excitatory postsynaptic potential (EPSP),
and negative polarization corresponds to inhibitory post-
synaptic potential (IPSP). This bi-stable synaptic weight
improves the dynamic range of weight as discussed in
Sec. III A.

2. Backpropagation circuits

The back-propagation algorithm is carried out when
correcting errors in the neural network during supervised
learning. Select transistors are connected to synaptic
weights to update them randomly in hardware. This opera-
tion should be possible not only in forward propagation but
also in backward propagation. Figure 6(a) shows the fea-
tures how to access synaptic weights during both forward
propagation and backpropagation. It is seen that the weight

FIG. 4. Analysis of correlation between double switching curve and unipolar switching curve in NiOx thin films.
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matrix of the forward direction and that of the backward
direction make a transpose relationship, W and WT. Each
weight should be randomly accessible in both forward and
backward directions for both matrices. In the case of 1T-1R
memory such as RRAM, a bit line and a plate line are

placed in parallel as shown in Fig. 6(b), and the word line
is perpendicular to both the bit and plate lines. Thus,
random access is possible in both forward and backward
directions in the memory array. However, the input bit line
and the output line are placed perpendicular to each other in

FIG. 6. Transposable synaptic weight 2T-1R for backpropagation circuit.

FIG. 5. Random access of synaptic weights. Simultaneous random access requires circuit overhead.
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the neural network. Thus, an additional transpose word line
WLT is required that is perpendicular to the output line for
backward propagation as shown in Fig. 6(c). IBM connected
two select transistors to the SRAM synaptic weight to enable
backpropagation and called it transposable memory.78 In the
case of the memristor, we use two select transistors making
2T-1R as shown in Fig. 6(c), which we call transposable syn-
aptic weight. Another IBM patent gives an example of trans-
posable weight, a phase change material (PCM), with two
select transistors.79

As for energy consumption between off-chip unsuper-
vised STDP and backpropagation, Deng et al. analyzed
energy consumption by simulation for various memristive
networks under different learning strategies.51 An order of nJ
energy consumption for STDP and μJ for neural network is
estimated in their article.

G. Memristor-based neuromorphic chip

Shafiee et al. analyzed power consumption in memristor-
based vector matrix multiplication.80 Bayat et al. demon-
strated a classifier equipped with memristor perceptron.81

knowm® has also released a classifier product using
anti-Hebbian and Hebbian rules using a binary switching.82

Memristor-based neuromorphic computation shows limita-
tions, especially in the dynamic range of the synaptic weight
during on-chip learning. The wide bit-width of synaptic
weight is required even in off-chip learning for best perfor-
mance. It is practically impossible for memristor to match
with 16 bit width or 64 bit width of synaptic weight which is
not so unusual in software-based learning. Accordingly, data
compression or pruning techniques have been proposed by
preventing the AI function from being damaged when receiv-
ing learning information on a mobile device.83 In addition,
there is an example of fine tuning technique that performs
on-chip learning for in situ optimization.81 Bayat et al.

trained perceptron to classify a stylized letter pattern using
four alternative approaches as shown in Table III. In their
demonstration, some stages of in situ training were assisted
by an external computer. Table III compares the pros and

cons of combinations in on-chip learning and off-chip learn-
ing. They pointed out that a potential drawback of a
defect-aware ex situ scheme is that the chip-specific precursor
training may not be suitable for some applications, e.g.,
when training takes too much time. In the light of such limi-
tations, the mobile neural processor may become a special-
ized and a dedicated ASIC, but reconfiguration may be
required to some extent.

H. Discussion on Sec. II

Analog property of the memristor was applied to the
Hodgkin-Huxley neuron at first, and multilevel RRAM
became one of the candidates for synaptic weight. Yu sum-
marized8 the guidelines of synaptic weight properties such as
linearity, bit-width, nonvolatility, lifetime, etc. Even though
memristors including resistive switching materials,
metal-insulator transition (MIT) materials, and others have
potentials to make memristor neurons, memristor synapses,
and even memristor logic, satisfactory candidates have not
yet been developed. Instead, most memristor-based neuro-
morphic computing is demonstrated mainly by simulation.
Nevertheless, the multilevel conductance property of memris-
tor still motivates the development of new algorithms and
chip architectures in addition to the material property itself.
That is the reason why materials science and engineering
such as switching mechanisms should be studied more rigor-
ously in order to control the conductance level, even at the
quantized scale, for example.

Accuracy, speed, size, and power will be issued continu-
ously in AI chips for applications. The top priority for
mobile AI chip may be speed and low power, for now. Then,
the mobile device will take over minimal AI functions with
the help of the main server or computer in training and learn-
ing as suggested by Bayat et al.81 Unsupervised learning is
useful and has many applications; however, supervised learn-
ing is also one of the social needs when considering various
AI services. Then, memristor-friendly algorithms such as
Mazumder’s weight dependent STDP57 may become one of
the main streams in the near future.

TABLE III. Training approaches to cope with imperfect hardware.81

Training approach Training steps Pros Cons

Ex situ Step 1. Precursor training

Step 2. Weight import to HW

Lowest HW overhead • Poor imperfection tolerance/fidelity

• Off-line learning

Defect-aware ex-situ Step 1. HW test

Step 2. Precursor training

Step 3. Weight import to HW

Best imperfection tolerance/fidelity

Low HW overhead

• Poorly scalable step 1 (HW test)

• Off-line learning

• Chip specific training

In situ In situ training on HW Suitable for on-line learning • High HW overhead

• Sub-optimal fidelity

• Long training times

• Chip-specific training

Hybrid Step 1. Precursor training

Step 2. Weight import to HW

Step 3. In situ training on HW

Best imperfection tolerance/fidelity for on-line learning • High HW overhead
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III. COMPETITIVENESS OF MEMRISTOR

Memristor may be able to make neurons and synaptic
weights, but there are competing technologies available.
CMOS-based neural processors rely on software and store
the weight information in a separate storage, and they are
reliable in neuromorphic computing. Therefore, in order to
have dominating competitiveness of memristors, character-
istics such as multilevel weight with reliability which
cannot be obtained in any other competing technologies
should be secured.

A. Memristor synaptic weight

Synaptic weight may have negative values during train-
ing and learning. These bi-weights are caused by EPSP and
IPSP. It is usual for software to assign a dynamic range of
weight having both positive and negative weight values. It
can also use floating point with an unlimited weight bit
width. However, a memristor has limited fixed point of
weight with a narrow bit-width. It cannot have a negative
value resistance, either. A floating gate transistor can have a
positively induced channel when it is charged with elec-
trons, but it cannot be charged with positive charges to make
a negatively induced channel. Thus, it has been proposed
that a group of memristors be used to make a bi-polarity
weight. For example, a run-time programmable complemen-
tary bi-polarity synapse crossbar was reported in Ref. 57.
The memristor bridge synapse using four memristors can
have positive, negative, and zero weight values.41,84

On the contrary, ferroelectrics show intrinsic bi-stable
memory due to positive and negative polarization. This makes
bi-weight in a simpler cell. When a ferroelectric is deposited
on the gates of both n-type metal–oxide–semiconductor
(NMOS) and p-type metal-oxide-semiconductor (PMOS) tran-
sistors, the direction of the current flowing through the
channel is determined by the polarization direction of the fer-
roelectric so that a positive weight and a negative weight can

be distinguished. Figure 7(a) illustrates the working principle
of bi-stable ferroelectric synaptic weight.85 As for memris-
tors such as resistive switching materials, circuits and opera-
tional scheme of the complementary crossbar are more
complicated than that of the intrinsic bi-stable synaptic
weight of the ferroelectric transistor.56,86 For example, a pos-
itive voltage or negative voltage can be applied to the ferro-
electric synaptic weight directly on ferroelectric transistors.
But one of the memristor pairs should be set at the “off”
state, when the other is written at a certain weight value.56,87

Therefore, four memristors are required to make a memris-
tive bi-weight, while two ferroelectric transistors are required
to make a ferroelectric bi-weight as shown in Fig. 7.

Nonvolatility and relatively high weight bit-width are
strong properties of ferroelectrics.67,88,89 TFT type ferroelec-
tric bi-weight was also patented for stacked structure of high
density synaptic weight.90 Even though the ferroelectric
shows a nonvolatile bi-stable multilevel synaptic weight, this
is still nonlinear. Fatigue in the ferroelectric is also a concern
for reliability. Even though fatigue of some ferroelectric
materials has been overcome by using a conductive interlayer
between electrode and ferroelectrics, new interlayer materials
may be required for synaptic ferroelectric materials such as
HfOx and HZO(HfZrxOy).

B. Memristor vector matrix multiplication (VMM)

A conductance-based VMM using resistors [Fig. 8(a)] is
registered in US 9,934,463.91 A capacitance-based VMM
scheme [Fig. 8(b)] was also filed earlier (US 5,146,542).92

Memristors are elements of conductance-based VMM archi-
tecture. The DC power consumption issue was pointed out for
conductance-based VMM. That is why capacitance-based
VMM began to be considered recently90 because it guarantees
low power consumption with linearity. But parasitic capaci-
tance such as bit line capacitance is unavoidable and one of
the essential issues.

FIG. 7. Synaptic weights for excitatory and inhibitory inputs. (a) Operation of bi-stable ferroelectric synaptic weight. Polarity of weight is distinguished by
current flow direction. Two ferroelectric transistors make a bi-weight.85 [(b) and (c)] Memristor pair for a bi-weight. Excitatory and inhibitory currents flow sep-
arately in the same direction. Four memristors are required to make a bi-weight. Partially adapted from Refs. 57 and 86.
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Just as the memristor needs multilevel, so the capacitor
also needs multilevel. However, nonvolatile multilevel
capacitance cannot be achieved so that the capacitor is
charged by applying a pulse train to make multilevel-valued
capacitance. In this case, AI services should be carried out
in a short period of time before capacitors are discharged.93

The ferroelectric synaptic weight is also capacitive switch-
ing and power consumption can be avoided during the write
process (training). It is conductance-based multiplication
when reading weight values of the ferroelectric synaptic
weight, and parasitic capacitance can be avoided. Therefore,
once ferroelectric weight is controlled linearly, it can be
used as a nonvolatile multilevel synaptic weight, up to 5 bit-
width, according to the report of Jerry et al.67 If the
bi-weight scheme is applied to the above Jerry’s HZO syn-
aptic weight, it will cover a dynamic range of ±5 bit (or 6
bit, 64 levels). But the ferroelectric synaptic weight is a
three-terminal device in contrast to the memristors including

the ferroelectric tunneling junction66 that are two-terminal
devices, which leads to sacrifice in chip size.

C. Memristor stacked crossbar

Both conductance-based VMM and capacitance-based
VMM require high capacity structure such as stacked cross-
point. It is the same case in storage. 1S-1R (1 selector-1
resistor) or 1D-1R (1 diode-1 resistor) synaptic weights are
stacked, layer by layer, to make stacked cross-point struc-
tures. This structure is, therefore, a horizontal cross-point.
The vertical cross-point in Fig. 9(a) is fabricated in a way
similar to the NAND process. However, the vertical cross-
point stack is suitable for 1D-1R only.

Figure 9(a) shows the capacitors connected to the diode
line with conducting paths. It guarantees the linearity of the
capacitive synaptic weight with sufficient multilevel with a
wide dynamic range.94 In this structure, an insulator or a

FIG. 8. Synaptic weights for vector matrix multiplication.

FIG. 9. Multiple capacitor based synaptic weights with vertical cross-point structure.
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unipolar switching memristor is deposited between the verti-
cal line and the horizontal line, and the point where the inter-
section of the vertical line and the horizontal line breaks
down or the low resistance state (LRS) is made to allow
current to flow. As shown in Fig. 9(b), the number of con-
ducting points is formed on each horizontal word line, from
0 to N, in order. When selecting the corresponding word line
during on-chip learning, as many capacitors are charged as
the number of the vertical bit lines connected to the selected
word line. This allows designating and updating the capaci-
tive synaptic weight. Although this structure guarantees the
linearity of the synaptic weight, the final weight information
needs to be stored separately after training and learning. The
circuit overhead is large, too. It is a matter of course that
overhead can be reduced if nonvolatile linear multilevel
memristors replace capacitors in Fig. 9.

D. Discussion on Sec. III

Three-terminal ferroelectric synaptic weight shows non-
volatile multilevel bi-weight compared to the two-terminal
memristor. No detailed issues such as integration process and
reliability on ferroelectric have been reported yet. However,
special circuits that generate incremental voltage pulses,
fatigue proof interlayer, and semi-conductive oxides may be
required in order to realize stacked ferroelectric synaptic
weights. Capacitive “write” and conductive “read” of ferro-
electric synaptic weight are also attractive; however, it is hard
to get linear weight values by applying incremental pulses.
Therefore, the ferroelectric friendly algorithm may need to be
developed.

Vertical cross-point synaptic weight may guarantee a
linear wide dynamic range of synaptic weight, but it takes
large space when integrated into the chip. But, this device
will be useful when it is equipped with large systems such as
a server. NAND and DRAM compatible process can be
applied to the vertical cross-point structure. It is noted that
the vertical cross-point matrix itself is storage. Memristors
such as resistive switching materials are facing challenges to
overcome issues of nonvolatility, multilevel, and linearity as
well as lifetime. Therefore, hybrid structure such as vertical
cross-point memristor synaptic weight may be one solution.

IV. SUMMARY

Neuromorphic computing was motivated by beyond
Moore’s law and machine learning leading to parallel distribu-
ted processing. Memristor-based vector matrix multiplication
was proposed to satisfy this need. A parallel distributed archi-
tecture is also required even in a mobile application for fine-
tuning when supervised learning is indispensable. However,
since the parallel distributed processing makes the chip bulky,
it has limited scalability. As a result, making multilevel with a
wide synaptic weight bit-width is a fundamental breakthrough
that overcomes the limit of scaling down. A development
guideline of memristor synaptic weight is nonvolatility, linear-
ity, and multilevel.

Resistive memory switching based on bipolar switching
and unipolar switching has been found to coexist in the same
switching material so that more detailed physical interpretation

is necessary for memory switching mechanisms. Analog
switching is not limited to threshold switching. Charge trap
materials can also be used as an analog switching node.95 It
has been used as a floating gate, but it can be used for neuron
and short term memory node. Thus, it is desired to develop
new charge trap materials with various de-trap rates with cor-
responding physical interpretation.

No perfect memristor-based neuron is developed yet
except for node such as MIT threshold switching and mag-
netic tunneling switching while CMOS-based memristors
have been emulated. This implies that memristor will be
adopted to the CMOS circuit for specific and special func-
tionality such as analog switching node that may reduce
circuit overhead.
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