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ABSTRACT Identifying the orientation and location of a camera placed arbitrarily in a room is a challenging

problem. Existing approaches impose common assumptions (e.g. the ground plane is the largest plane in the

scene, the camera roll angle is zero). We present a method for estimating the ground plane and camera

orientation in an unknown indoor environment given RGB-D data (colour and depth) from a camera with

arbitrary orientation and location assuming that at least one person can be seem smoothly moving within

the camera field of view with their body perpendicular to the ground plane. From a set of RGB-D data trials

captured using a Kinect sensor, we develop an approach to identify potential ground planes, cluster objects in

the scenes and find 2D Scale-Invariant Feature Transform (SIFT) keypoints for those objects, and then build a

motion sequence for each object by evaluating the intersection of each object’s histogram in three dimensions

across frames. After finding the reliable homography for all objects, we identify the moving human object

by checking the change in the histogram intersection, object dimensions and the trajectory vector of the

homgraphy decomposition. We then estimate the ground plane from the potential planes using the normal

vector of the homography decomposition, the trajectory vector, and the spatial relationship of the planes to

the other objects in the scene. Our results show that the ground plane can be successfully detected, if visible,

regardless of camera orientation, ground plane size, and movement speed of the human. We evaluated our

approach on our own data and on three public datasets, robustly estimating the ground plane in all indoor

scenarios. Our successful approach substantially reduces restrictions on a prior knowledge of the ground

plane, and has broad application in conditions where environments are dynamic and cluttered, as well as

fields such as automated robotics, localization and mapping.

INDEX TERMS Image motion analysis, image segmentation, sensor orientation detection, ground plane

detection.

I. INTRODUCTION

With one additional dimension, 3D data provide a more

intuitive and realistic environmental perspective in computer

vision applications than traditional 2D data. By combining

traditional 2D RGB data with depth information, 3D data

create a more comprehensive digital representation of real

world environments, providing considerable value in many

applications such as training and simulation [1]–[3], con-

struction [4]–[6] and gaming [7]–[10]. The benefits of 3D

data over 2D data are particularly noticeable in cluttered

or dynamic environments. In these complex environments,

The associate editor coordinating the review of this manuscript and

approving it for publication was Guitao Cao .

3D data allow enhanced visual understandings, improved

precision and accuracy, easier risk/issue identification and

analysis, and intuitive model manipulation [11]–[15]. For

example, operating rooms typically have many objects that

frequently change depending on the nature of the emergency,

including multiple humans who enter and exit the room and

interact with the objects and each other. Constructing an

accurate 3Dmodel of an operating room and recording videos

of various processes within the room could create a helpful

and interactive tool for training and simulation, or be used in

real time to observe and monitor the room. For applications

like gaming, the room is often modified to accommodate

placement of a sensor (i.e., clearing out a space), the sensor

is intentionally located in an ideal position, and users are
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willing to undergo a calibration process if necessary. How-

ever, the applications we consider, such as the operating

room, are complex, dynamic and cluttered real-world envi-

ronments, where the sensor must be located out of the way

of the processes or occupants of the room, and systems using

the sensor would need to auto-calibrate because occupants of

the room are unlikely to be willing to perform calibrations.

Accordingly, in applications in these complex environments,

the sensor’s location and orientation in the room will gener-

ally be unknown (e.g., the sensor’s field of view cannot be

assumed to be parallel to the ground). In this paper, we focus

on addressing the difficulties of estimating the ground plane

and finding the camera orientation in a indoor environment

without any prior knowledge of the sensor or room.

In order to process image information from a unknown

environment, knowledge of the ground plane, and hence

the position and orientation of the camera, is fundam-

ental [16]–[20]. Indeed, most computer vision algorithms

implicitly assume knowledge of the ground plane (e.g., that

the ground is at the ‘‘bottom’’ of the scene [17], [21], [22]

or is the largest plane [23], [25], [26]). However, in complex

environments with unknown sensor placement, the ground

plane may not be the largest visible plane (e.g., many objects

on the ground) or at the ‘‘bottom’’ of the scene (e.g., overhead

perspectives). Still, identifying the ground plane, and accord-

ingly the camera position and orientation, is critical for most

computer vision applications; especially for indoor track-

ing, exploring, navigation and scene analysis. For instance,

in Simultaneous Localization and Mapping (SLAM) appli-

cations, RGB-D data have been used to extract the plane

feature in indoor environments for localizing robot positions,

outperforming both accuracy and efficiency of the traditional

point feature-based methods, even with low image quality

devices [55], [56]. With the recognition of the ground

plane and camera orientation, the robot performs better

SLAM occlusion detection during mapping [57] and obstacle

detection [58]. In addition, finding the ground plane and

calculating the camera orientation also facilitates improved

3D registration and 3D reconstruction of data from multiple

sensors viewing the same scene by converting a 3D problem

into a 2D problem. Ultimately our goal is estimating the

ground plane for each sensor in a multi-sensor system, such

that the ground can be used as a reference for finding the

positions and orientations of each sensor relative to each

other, which will facilitate the reliable 3D reconstruction of a

complex room.

To accomplish our goal, we aim to develop a system that

estimates the ground plane, camera orientations and rela-

tive locations of multiple RGB-D sensors with unknown

positions and orientations in an indoor environment. Our

only assumptions are: that most of at least one person can

be seen smoothly moving in the RGB-D camera field of

view; the person’s body is perpendicular to the ground plane

while moving; and the RGB-D camera’s position and orien-

tation remain unchanged until the ground plane estimation is

complete. In order to estimate the ground plane under this

condition, we combine the robustness of 3D Random Sample

Consensus (RANSAC) and 2D homography decomposition.

While 3D RANSAC extracts useful spatial information from

each 3D point cloud segment, 2D homography decompo-

sition constructs homography planes from people walking

on the ground. Our approach even accommodates scenarios

where the ground plane is a small region (i.e., barely visible)

or even not visible in the field of view (FOV) of the sensor by

utilizing other visible planes that are parallel to the trajectory

of movement and estimating the actual ground plane.

II. RELATED WORK

Existing ground plane detection can be broadly categorized

into 2D or 3D approaches based on the sensor type.Within 2D

approaches, the most popular approach for ground plane

estimation is homography. For example, homography-based

approaches have been used to first find the feature key points

in the scene, followed by Kalman filtering [27] or Modified

Expectation Maximization [28] to build confidence in the

ground plane transformationmatrix across successive frames.

These two approaches assumed the roll angle of sensors are

zero and the camera only see the ground plane with objects

above the plane. Homography has also been successfully used

as a first step, with the homography decomposition results

combined with a Bayes filter [29] or contour searching [30]

to estimate the ground plane with 2D images. However, again

the ground plane is assumed to be the area in front of the

camera [29], or the single colour ground plane is assumed to

occupy the majority of the FOV [30]. Other 2D approaches

have used depth-image data or V-disparity values (the his-

togram of the disparity map [31]) rather than traditional RGB

image data [23], [24]. Zhi Jin et al. [32] proposed a depth-map

driven ground plane detection algorithm by growing a plane

starting from the the largest area having similar depth val-

ues in the depth map, assuming the largest plane was the

ground plane. Kircali and Tek [33] estimated the ground

plane based on comparing the depth map of each new frame

with a pre-calibrated depth map in which the ground plane

was pre-defined. Assuming the majority area in the scene

comprises the ground plane, the gradient of the V-disparity

pixel values has also been successfully used to identify the

ground plane with an arbitrary camera roll angle [23]. Fur-

thermore, Cherian et al. [35] applied multiple texture based

filters with a Markov Random Field to reconstruct the depth

map from a single RGB image and estimate the ground plane

based on texture-based searching segmentation. Due to the

intrinsic features of the algorithm, this approach assumes

the camera is parallel to the ground plane, and that the

ground plane has a unique texture. Dragon et al. [34], [36]

proposed an approach where RGB frames captured from a

moving sensor are iteratively split into regions until reliable

homographies can be estimated from the feature points within

these regions. The decomposition of the homographywith the

highest probability indicates the orientation and ego motion

of the sensor’s movement. Unfortunately, this approach is

not suitable for indoor environments with a stationary sensor
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because moving objects will be a small proportion of the

scene, making it hard to distinguish between a homography

generated from mismatched key points and a homography

from a moving object. Further, their solution requires the

shape of moving objects to remain unchanged to ensure suc-

cessful feature correspondence between frames; a condition

that cannot be guaranteed in indoor environments with an

arbitrary fixed perspective. More recently, a ground plane

estimation approach using monocular images with a prede-

fined region of interest [38] was developed, but requires a

known pitch angle. Although the above 2D approaches can

successfully identify the ground plane, none of them work

in dynamic or cluttered environments where the location and

orientation of the sensor is unknown.

Ground plane estimation approaches in 3D commonly uti-

lize 3D Hough transform or 3D RANSAC with the raw data.

For example, a 3D Hough transform with a ball-based accu-

mulator, which collects the vote values [37], has been used

to define the ground plane based on the highest vote among

accumulators [41]. Due to the voting procedure, this approach

can only find the ground plane if it is the largest plane in the

scene. 3D RANSAC, a more direct and brute-force approach,

has been used on raw 3D data to find the ground plane

with the assumption that the ground plane is the closest or

largest plane in the camera FOV [21]. Other 3D approaches

have used an estimation of the 3D normal vector for each

raw data point rather than the raw points directly (e.g., [42]

and [43]), but assume that the camera roll and pitch angles

are zero. More recently, machine learning and a depth mask

has been used, but requires minimal orientation variations

(i.e., 0 ∼ 15◦) [39]. Ground plane estimation has also been

integrated into bigger applications (e.g., [21], [40], [57]), but

they also share the common constraints, such as zero roll

rotation or the ground plane being the largest plane. Similar to

promising 2D ground plane approaches, these 3D approaches

will also not work in cluttered or dynamic environments

because of their underlying assumptions.

Together, the most robust and reliable 2D and 3D methods

of finding the ground plane have common assumptions or

predicates, such as the known and unchanged orientation

of the camera, the ground plane being the largest plane in

the field of view, the shape of moving objects in the scene

remaining unchanged, the ground plane having a single color

or depth value, or the ground plane only appearing at a certain

location within the camera’s FOV. While these assumptions

restrict the complication of the ground plane estimation prob-

lem based on the requirements of specific applications, they

cannot be used in real-world scenarios where the camera

location and orientation are unknown, and the environment is

complex, cluttered or dynamic. To overcome the limitations

of these assumptions for our application, we build on the

approach of Dragon et al. [34], [36] because the assumptions

of their approach are closest to our conditions. Notably, while

their approach requires the sensor to be moving, we assume

that the sensor is stationary and something in the scene is

instead moving. In our case, we will restrict our interest to a

human moving in the scene, though this does not necessarily

need to be the case. We present our approach to accomplish

this in section III followed by our experimental setup and

results in section IV. We then present our discussion and

future work in section V.

III. METHODOLOGY

Our ground plane estimation approach combines the robust-

ness of 2D and 3D computer vision algorithms. The major

components of our approach are: 1) Data pre-processing

(section III-A) where we described the preparation of 2D

and 3D data with corresponding features; 2) 2D homogra-

phy decomposition (section III-B), where we decomposed

the 2D homography according to 3D feature restrictions to

estimate the trajectory of any moving humanoid objects in

the scene; and 3) 3D ground plane estimation (section III-C)

where we derived the most probable ground plane by refin-

ing 2D homography decomposition results into confidence

estimates.

A. DATA PRE-PROCESSING

To obtain a more useful 3D data representation, we first

generated a 3D point cloud from the RGB-D data using the

intrinsic and extrinsic parameters of the sensor. We calibrated

using Zhang’s approach with the intrinsic parameter matrix

defined as: [44]: Kc =

[fmx γ u0
0 fmy v0
0 0 1

]

, where f is the focal

length, mx and my are the scale factor in the image x- and

y-axes, γ is the skew coefficient between the x and y axes,

and (u0, v0) is the principal point. The extrinsic parameter

matrix is [
R3×3 T3×1
01×3 1

], composed of rotation and translation

parameters R and T . Finally, using radial distortion k1, k2, k3
and tangential distortion p1, p2 coefficients, we calculated

the camera matrix C by multiplying the intrinsic and extrin-

sic matrices, such that the depth images were undistorted

based on camera parameters and distortion coefficients [45]

according to

x ′ = p2(3x
2 + y2)+ x(k2(x

2 + y2)

+k1(x
2 + y2)+ 1)+ 2P1xy (1)

y′ = p1(x
2 + 3y2)+ y(k2(x

2 + y2)2

+k1(x
2 + y2)+ 1)+ 2p2xy (2)

z′ = z (3)

From Eqs.(1), (2) and (3), the coordinates (x, y) and value

of each pixel z in each depth image was transformed to an

individual point (x ′, y′, z′) in the associated 3D point cloud.

In general, the point cloud of an indoor environment is

composed of planes (e.g., walls, floor), objects (e.g, draw-

ers, chairs), and humans, though in some cases substantial

portions of objects are also planes (e.g., desks). In a cluttered

environment with unknown camera location and orientation,

the ground plane may not be visible (e.g., if the sensor is

on the ground facing up), or may be any region varying
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from a small region that is highly occluded by objects to

the largest visible plane. Therefore, after down-sampling the

point cloud by applying a voxel grid filter, we segmented the

point cloud into planes and non-planar objects. First, we itera-

tively extracted, stored and removed the largest plane from the

remaining point cloud, which is generated from the previous

iteration, until the number of remaining points is less than

20% of the total points in the original point cloud, using Ran-

dom Sample Consensus(RANSAC) [46] (See Algorithm 1).

Algorithm 1 Plane Extraction

1: procedure extract_PC_Planes(pointCloud)

2: planes← []

3: pc← pointCloud

4: originSize← Size of pc

5: while Size of pc > 20%originSize do

6: plane← RANSAC(pc)

7: if Size of plane < Threshold then

8: break;

9: planes← ps

10: pc← pc− plane

11: returnplanes, pc

After we stored and removed the planes in the scene,

we segmented the remaining point cloud into non-planar

objects using Euclidean clustering [47]. We first employed

Euclidean clustering to find groups of points that were phys-

ically close to each other, and then we stored all clustered

objects So and extracted planes Sp.

To identify which clustered objects are moving in the scene

in preparation for homography estimation, we needed to find

corresponding objects between successive frames. We uti-

lized SIFT [48] as the feature extractor on the RGB images

to derive 2D feature points. SIFT was able to generate a

sufficient number of 2D features for each object in the scenes;

particularly for any humans. Additionally, SIFT accommo-

dates a wide range of performance control through variation

of the octave layer number nOct , edge-like feature filter

threshold eThresh, and the sigma of Gaussian filter σ [49],

allowing excellent optimization for keypoint detection. For

each RGB frame, the 2D feature points were stored as an

output of the data preparation phase, along with the 3D points

of the clustered objects and the extracted planes.

B. HOMOGRAPHY ESTIMATION

A homography matrix [50] can be computed by matching

features in two RGB images of an object captured by two

cameras at different locations [27]. Since we assume the

camera is static and humans move on the ground plane,

we calculate the homography matrix using SIFT keypoints in

two RGB frames, which are captured at time t and t + 1t ,

from a single sensor, using the moving humans as motion

reference points. We used the homography between moving

objects across successive frames to construct a plane that is

perpendicular to the ground plane. With a minimal sample set

of four feature key point correspondences between frames at

time t and time t +1t , a nine-parameter homography matrix

H =

[h11 h12 h13

h21 h22 h23

h31 h32 h33

]

can be generated, which represents the

transformation between 2D points in image coordinates and

3D points in the camera coordinate system.

To find which objects were moving between successive

frames, we implemented the Blockwise Linearity Assump-

tion (see [34]). Instead of generating a result from each pair

of consecutive frames, the Blockwise Linearity Assumption

estimates an average result from an N-length block of frames

by processing the first frame of the block, which is used as

reference frame, and the ith frame in the block (where 1 <

i ≤ N ). Assuming the human moves reasonably smoothly

over the ground plane, the changes between the 1st ∼ ith

frame pair and the 1st ∼ (i + 1)th frame pair within one

blockwill grow linearly.We segmented the entire data set into

blocks B = {F1,F2, . . .Fx} of frames F ranging from frame

1 to x. Let S1o and S2o denote all the object segments in the

first and second point clouds representing a pair of successive

frames. We calculated the 1-D histogram of three dimensions

Histx , Histy, Histz for each object segment S1oi and S
2
oj
. Then,

we matched a pair of object segments in F1 and Fx that repre-

sented the same object Oi by determining if the intersection

ratio, which is the Jaccard index [54] of the pair of object

segments

intersectionxoi =
A(S1oi ) ∩ A(S

x
oj
)

A(S1oi )
(4)

between the histogram areas of S1oi and S2oj was greater

than zero, and decreased as x increased. To ensure the his-

togram intersection was larger than zero between the first

frame F1 and frame Fx , we chose a small block size similar

to [34], [36]. The resulting list of matched pairs of 3D objects

S1oi and S
2
oj
, including any moving humans, were projected to

2D pixel clusters C1
oi
and C2

oj
according to

x = x ′(1+ k1r
2 + k2r

4)+ 2p1x
′y′

+p2(r
2 + 2′2) (5)

y = y′(1+ k1r
2 + k2r

4)+ 2p2x
′y′

+p1(r
2 + 2y′2), (6)

where (x ′, y′) denotes the x and y values of a 3D point

(x ′, y′, z′), (x, y) denotes the corresponding distorted pixel

coordinates and r =
√

x ′2 + y′2. Consequently, each 2D pixel

cluster Cx
oi

is then converted to a 2D feature point cluster

Rxoi by using each 2D pixel (xi, yi) as the center point and

searching for the closest feature points within the radius τ ,

shown in Figure 1(a).

We removed any feature keypoints that were outside of the

regions, and applied Motion-Split-And-Merge (MSAM) [36]

to each pair of corresponding regions R1oi and R
x
oj
in F1 and

Fx respectively to find the most reliable keypoint clusters

Cx
ki
for generating homography matrices H x

oi
(Figure 1(b)).
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FIGURE 1. 2D human feature keypoint cluster example.

The homography matrix, which is directly generated from

human feature points Rxoi , can be unreliable because of the

different movement patterns of human heads, chest, arms

and legs. MSAM accounts for these differing movement

patterns by finding the most reliable keypoints (most likely

keypoints that are within head or body region) out of the set

Rxoi , allowing a reliable homography matrix to be generated

that represents the human’s stable movement through a block

B(e.g, [60], [61]). Similarly, the MSAM result H x
oi
indicates

the movement of a Rxoi cluster without any prior knowledge

or assumption. We then decomposed each homography H x
oi

into the four plane normal vector, trajectory vector, and rota-

tion vector solutions Dx
oi1∼4

= {Eni
oi1∼4

,Et i
oi1∼4

, Er i
oi1∼4
} [51],

and filtered out the invalid solutions to construct the most

reliable decomposition solution BRo = {Enoi ,Etoi , Eroi} for
each 2D object region Roi within a block. Here, invalid

homography solutions were characterized by checking if a

2D key point (xi, yi) and a 3D point cloud point (x ′i , y
′
i, z
′
i)

within region Roj , which yields z′i < 0
(

(x ′i , y
′
i, z
′
i) =

H (xi, yi, 1) and EnToi (x
′
i , y
′
i, z
′
i) = 1

)

, exists [34]. Finally,

we built the set of all the moving objects in the scene Smoi
by extracting the object regions that had large and suc-

cessively decreasing differences in intersection coefficient

intersectionxoi among all objects O in a block. Based on

the decomposition result and the assumption that the person

body is perpendicular to the ground plane while moving,

we use three conditions, which includes the longest edgeEl of

moving object bounding boxes larger than a length threshold

Threshl ; the ratios between the longest edge El and other two

edges are larger than a ratio threshold Threshr ; and trajectory

vectorEt ioi is perpendicular to the longest edge of object bound-
ing box El , to determine the moving humanoid object among

all moving objects [62]. The homography decomposition

result of the moving objects in a block were the output of

this phase, allowing us to estimate the ground plane out of

the candidate planes extracted in section III-A.

C. GROUND PLANE ESTIMATION

According to the assumption that a person is moving on the

ground, the ground plane is then the plane that best satisfies

the following criteria:
c1: its normal is parallel to the plane that is defined by the

block homography decomposition’s normal vector and

trajectory vector for the moving object;

c2: it is parallel to the trajectory vector of any moving

object;

c3: it does not dissect any objects in the scene;

c4: it is close to the object segments So in the scene, and in

particular to moving objects.

Based on these criteria we built a confidence estimate cas-

caded filter to score the likeliness that an extracted plane

is the ground plane, ranging from 0 (very unlikely) to 10

(very likely), from the complex and noisy 3D environment.

Conceptually, we found all horizontal planes (those parallel

to the homography’s normal and trajectory vector) from all

known planes.We then increased or decreased our confidence

in horizontal planes based on their proximity to the bound-

ary of the 3D scene. Finally, we adjusted our confidence

estimates based on each plane’s relationship to objects in

the scene, prioritizing their spatial relationship to moving

objects. To distinguish between low-confidence valid planes

and invalid planes, whose confidence estimates are reduced

by our cascaded filter, we assigned an small initial confidence

confI = 1 to each of the extracted planes Sp that were found

in section III-A. We then evaluated the fit of each plane to

our criteria to complete our confidence estimates. The overall

confidence of each potential ground plane is found as:

confSpp = confI + confHD + confRP + confOD (7)

where confHD, confRP, confOD represent Homography

Decomposition Checking confidence, Relative Position

Checking confidence, and Object Distance Checking confi-

dence respectively.

1) HOMOGRAPHY DECOMPOSITION CHECKING FILTER

We scored each ground plane according to criteria c1 and

c2: how parallel each potential ground plane is to both

the trajectory and the block homography decomposition of

each human moving object. To identify the moving objects

that were likely humans, we employed a heuristic. Since

the camera orientation was arbitrary, we used the normal

vector Enppi of each Spi as the camera’s reference orienta-

tion. The complementary angle of the angle between Enppi
and the x-axis θEnx indicates the roll angle of the camera,

while the complementary angle of the angle between Enppi
and the z-axis θEnz indicates the pitch angle of the camera.

Hence, the roll rotation matrix and pitch rotation matrix

were generated by: Rroll =





cos(CθEnx ) − sin(CθEnx ) 0

sin(CθEnx ) cos(CθEnx ) 0

0 0 1



 and

Rpitch =





1 0 0

0 cos(−CθEnz ) − sin(−CθEnz )

0 sin(−CθEnz ) cos(−CθEnz )



 based on right hand

rule, whereCθEnx andCθEnz represent the complementary angles

of the roll and pitch angles respectively. After we transformed

each moving object Smoi with its corresponding rotation

matrices Rroll and Rpitch to ensure the bounding box of Smoi
aligned with the x-, y- and z-axis, we determined whether the

moving object was humanoid based on three conditions:

82028 VOLUME 8, 2020
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1) The longest dimension was at least 1.5 times larger than

the other two dimensions [59];

2) The longest edge of the bounding box was longer than a

learned threshold; and

3) The trajectory vector Etmoi was perpendicular to the

longest edge of the bounding box.
Wefirst represented each humanmoving object Smoi as the 3D

plane Phomooi
, constructed from the normal vector Enmoi and the

trajectory vector Etmoi . The contribution of the Homography

Decomposition Checking confidence to the overall confi-

dence estimate cascaded filter was:

confHD = 2 cos θ (8)

where θ is the angle between the normal Phomooi
and the

normal of Spi . The cosine of the angle is used to ensure that

a small penalty is applied to planes that are nearly parallel

(likely due to sensor noise), but a large penalty to planes

that are not parallel. The constant scaling factor of two is

the associated weight of this component relative to the other

components of the confidence estimate cascaded filter. Since

the confidence only represents the likelihood that a plane is

horizontal, the associated weight factor is comparably small,

while ensuring that the confidence score of planes that have

a large θ angle are reduce to zero. Additionally, for each

moving object, we generated a set of planes that were parallel

to the movement of Phomooi
as Sppi .

2) RELATIVE POSITION CHECKING FILTER

We scored each plane in Sppi according to criteria c3: how

likely it is that potential ground planes do not dissect objects

in the scene. In most cases, the ground plane will not have

objects on both sides of it while other planes (e.g., tabletops)

can have objects on both sides. In the exceptional scenario,

where the floor contains planes with multiple height values

(e.g. stairs or theater stages) and the personwalks on the plane

that has the higher height value, our confidence estimate

directly relates to the size of each plane and the difference

between the sensor and the two planes. We will discuss this

rare scenario in the Section V. Furthermore, this filter was

essential for remediating the effects of noise and sensor depth

error in the data. We represented each plane Sppi by it’s plane

equation:

ρ = ax + by+ cz+ d (9)

The value of ρ will be positive, zero, or negative, indicating

which side of the plane the point is on, or whether the point

is on the plane. We applied the 3D coordinates (x ′, y′, z′)

of each point in each Sppi to Eq.(9), recording the number

of positive ρ+ and negative ρ− results, the maximum dis-

tance dmax+i
from the points above the plane to plane Sppi ,

and the maximum distance dmax−i
from the points below the

plane to plane Sppi . The contribution of the Relative Position

Checking score to the overall confidence estimate function

was represented by:

confRP = 2 cos(
ρ+

ρ+ + ρ−
) (10)

Again, the cosine of the proportion of points on one side of

the plane was used to apply a smaller penalty from objects

that are on one side of the plane and a larger penalty from

objects that are on both sides of the plane. Additionally,

similar to the Homography Decomposition Checking Filter

factor, the constant scale factor of two again is the relative

weight of this component to the overall confidence estimate.

3) OBJECT DISTANCES CHECKING FILTER

Finally, we scored each plane in Spp according to criteria

c4: how close all objects in the scene So are to the potential

ground planes. Here, we utilized the knowledge that far more

objects will be on the ground than any other plane, and in

particular that people walk on the ground plane. Since some

objects, such as decorations or lights can be on potential

ground planes like the ceiling or walls, we assign higher

weights to moving objects.

In order to calculate the object-to-plane distances, we align

all the 3D object segments So and planes Sppi to the axes

by applying roll and pitch rotation matrices Rroll and Rpitch
found in section III-B. Since the ground plane is likely to

be the highest or lowest plane in a 3D point cloud, our

confidence estimate increased or decreased proportionally

when the object-to-plane distance was smaller or larger than

a learned value of one-fourth of the point cloud height. The

contribution of the Object Distance Checking score to the

overall confidence estimate function was represented by:

confOD = ks

Ns
∑

i=1

(

h
4
− DSsoi

)

h
4

+kmo

Nmo
∑

i=1

(

h
4
− DSmoi

)

h
4

(11)

ks =
5

Ns +WmoNmo
(12)

kmo = Wmoks (13)

where ks and kmo are scaling factors for stationary andmoving

objects, DSsoi
denotes the absolute distance between a station-

ary object to plane Sppi , DSmoi
denotes the absolute distance

between a moving human object to plane Sppi , Ns and Nmo
denote the number of stationary object segments and the num-

ber of moving human objects,Wmo denotes the weight of the

moving human object, and h denotes the height of the point

cloud, as the confidence representation of each plane Sppi .

Additionally, the constant scale factor of five in Eq.(12) is the

relativeweight of this component, maximizing the confidence

of the real ground plane, and providing sufficient penalty to

reduce the confidence of planes in the middle of the room,

such as a table, to zero.

4) GROUND PLANE CONFIDENCE

A potential ground plane with a confidence estimate found

with Eq.(7) that exceeded a learned confidence threshold ζ

was then highly likely to be the true ground plane, suggesting

that no further processing was required. However, we could
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FIGURE 2. Ground plane estimation result examples with various camera orientations and locations.

FIGURE 3. Ground plane estimation result examples with special environmental scenarios.

only find the ground plane if the ground plane belonged to a

plane in the set Spp, and as such there may not be any planes

such that confSpp > ζ . In many practical cases, the actual

ground plane could be a small plane in the camera FOV,which

would cause the ground plane to be segmented as an object or

part of another object in So. Additionally, any surfaces that are

close to the true ground plane, but having a larger area than

the ground plane can lead to an incorrect identification of the

true ground plane. Finally, the ground plane may not actually

be visible in the scene. In these situations, we initiated a

secondary ground plane estimation.

5) SECONDARY GROUND PLANE ESTIMATION

In the case where no plane from Spp satisfied the condition

confSpp > ζ , we applied RANSAC to each 3D object segment

Soi , retrieving the largest plane within each object to generate

set Sppsd and iterating through the steps of sections III-A

to III-C. If no plane had a confidence confSpp > ζ after the

secondary estimation, the ground plane did not exist in the

camera FOV. In this scenario, the plane from Spp that had

the highest confidence was used to predict the ground plane.

Using the distances dmax+i
and dmax−i

from section III-C.2,

the ground plane formulawas estimated asAx+By+Cz+D =
dmax+i

or Ax + By + Cz + D = −dmax−i
, where (A,B,C,D)

are the plane coefficients, based on which Object Distance

Checking confidence was higher. However, if any plane in

Sppsd had a confidence confS
ppsd

> ζ , the plane with the

highest confidence was selected as the actual ground plane.

IV. EXPERIMENTS

We evaluated our algorithm on our own dataset of generated

video sequences, as well as on all relevant video sequences

from three public datasets. In this way, we ensured our

algorithm was generalizable, repeatable, and insensitive to

artifacts that may be present in our own data collection.

Specifically, we focused on representative scenarios with:

a high variety of camera orientations; camera locations;

ground plane size, shape and visibility; and room and occu-

pant complexity.

A. GENERATED VIDEO SEQUENCE DATA

We collected video sequence data using the Kinect v1 which

provides an RGB image and a depth image with a 27 frame

per second rate (FPS) on average, image data we combine

to form an RGB-D image, using a MacBook Pro (Retina,

13-inch, Mid 2014) with Dual core i5 CPU and 8G mem-

ory. We recorded video sequences by placing the camera

in 24 unique scenarios, which included various combina-

tions of different camera orientations and locations, multiple

planes, multiple people, diverse moving speeds, and various

body appearance ratios.

Our captured video sequences contained 40-140 data

frames from the time the first person entered the camera’s

field of view or started moving to the time the last person

left the camera FOV or stopped moving. Similar to the work

of [36], we chose an MSAM block size of five frames. From

experimentation, we determined that planes with a confi-

dence score ζ > 8.5 are highly likely to be the actual ground

plane, while planes with a confidence score of 6.0 < ζ < 8.5

are planes that are parallel to the ground plane, and may be

the ground plane. Based on our experimental results, theWmo

for the Object Distances Checking step in Section III-C is

optimally set to 8.0 to ensuring the moving person becomes

the decisive factor among all other stationary objects and

noise. Figures 2 and 3 demonstrate some representative data

sets and examples of our ground plane estimation results.

In the data preparation step, SIFT generated an average of

approximately 4,000 keypoints in each full 2D image with

10 layers in each octave, 0.02 as contrast threshold, 20 as

filter out edge-like features threshold, and 1.0 as sigma. The

size of voxel grid down-sample filter for point cloud frames

we selected was 2cm. The RANSAC distance threshold and
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FIGURE 4. Ground plane estimation result examples from public dataset sequences.

TABLE 1. Private dataset detailed results.

the cluster tolerance of Euclidean clustering were 2.5 and

2 times the voxel grid filter size respectively. Based on these

parameter, we extracted anywhere from 4 to 10 planes from

each scene, varying based on the indoor environment com-

plexity and camera perspective. In the homography estima-

tion step (section III-B), we set the block size to five to

ensure we achieve sufficient histogram intersection between

the reference frame F1 and frame Fx . The number of SIFT

feature keypoints on the human ranged from 150 to 380 out

of the approximately 4,000 keypoints. In the experiments,

the confidence of the results exceeded 7.5 even if the ground

plane only occupied a small fraction in the FOVs in each

scene where the ground plane was visible. Table 1 shows

the confidence of the three planes that have the highest con-

fidence, the human object’s moving speed, the number of

frames the algorithm took to estimate the ground plane, and

the total number of ground plane candidates we had before the

ground plane estimation checking steps. Notably, in Fig.2(f),

the ground plane is not visible, so we do not identify any

actual ground plane; rather we estimate the ground plane

TABLE 2. Public dataset detailed results.

equation based on the ceiling plane function. For example,

the estimated ground plane function for Fig.2(f) is −0.046 ·
x + (−0.699 · y)+ 0.713 · z+ (−0.0) = 0, a scene in which

only the ceiling is visible.

B. PUBLIC DATASETS

We evaluated our algorithm’s accuracy on three pub-

lic datasets: the RGB-D People Dataset [63], [64],

the SBM-RGBD Dataset [66] and the TVPR Dataset [65].

The large ground plane that is directly visible in the RGB-D

People and TVPR Datasets allow our algorithm produce

high confidence estimates for the ground plane - even higher

than those generated from our more challenging data trials,

with results shown in Table 2. Figure 4 shows some sam-

ple results obtained from the dataset trials in these public

datasets.

V. DISCUSSION AND CONCLUSIONS

In this paper, we proposed a novel ground plane estimation

method using the combination of 2D and 3D data analyses.
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Existing ground plane detection approaches require that sig-

nificant assumptions are met (e.g., that the ground plane is the

largest plane in the scene, the ground plane is at the bottom

of the sensor field of view, that the ground plane is constant

in colour or texture). These assumptions are not practical in

dynamic or cluttered environments, or in situations where

the sensor orientation or location are unknown, requiring

more expensive and specialized equipment (e.g., to detect

sensor orientation). Our approach robustly finds the indoor

ground plane with unrestrictive assumptions: the sensors is

an RGB-D camera; at least one person smoothly walks in the

scene with most parts of the body visible within the camera

field of view; and the human body is perpendicular to the

ground plane while walking.

We first segment the point cloud that is generated from

a pair of RGB and depth images into planes and object

segments, while finding the SIFT 2D key points in the RGB

image. This fundamental step requires the large planes and

object segments corresponding to the real world objects and

a sufficient amount of 2D feature key points. In general

scenarios, our algorithm successfully segments all the planes

and objects in the scene and provides a sufficient amount

of SIFT feature points with the parameters we used in the

experiments. Our algorithm can fail for one MSAM block if

the majority of the human is not segmented as a single object

segment, if no planes can be found in the FOV (i.e., RANSAC

generates unreasonable planes), or if the 2D feature key

points are too sparse to generate reliable homographies. How-

ever, these issues were resolved for all our trials by processing

through the entire trial data set.

In the second step, we project 3D object segments to the 2D

RGB image to find the regions that only contain the keypoints

belonging to these objects, and apply MSAM to each region

to find the decomposition of reliable homographies. MSAM

splits the keypoints within each region in a tree structure

taking 30-60 seconds to process with parallel threads, which

makes real-time ground plane estimation unfeasible. Building

object segment sequences within one block and identifying

the human is achieved by calculating the histogram inter-

section ratio between two object segments. This approach is

sensitive to movement in any direction; it provided 90% accu-

racy while matching corresponding object segments within a

block, and only fails whenKinect sensor generates significant

depth error. In addition, because of the depth error of our

hardware sensor [52], [53], estimating the ground plane with

only one block is not guaranteed for a video sequence because

object translation could appear to occur in both directions for

short sequences.

The final step builds the ground plane estimation confi-

dence based on homography decomposition vectors, plane

relative positions, and the distances between the planes and

other objects. With only one iteration of the confidence

estimation, our algorithm successfully estimated any ground

plane that was large in the FOV. Only one additional iteration

was required to retrieve the ground plane if it was smaller

in the FOV. Our approach of identifying humans from all

FIGURE 5. Point cloud plane segments for stairs.

other objects is naive, mainly depending on the gross shape

of the moving object segment and the correlation between the

homography trajectory vector and moving object’s bounding

box. In some situations, such as if only the torso of the

human (which has a similar dimension in both the x− and

y−axes) is segmented as a moving object, our algorithm will

ignore this potentially valid segment. Similarly, sequences

exemplified in Figures 2(e) and 2(f) take significantly more

frames to estimate the ground plane because the movement

of the human’s arms and legs changed the bounding box’s

dimensions of the human. The current solution is processing

through the full trial data set until the algorithm identifies the

human body, while this issue could be potentially solved by

synchronizing with other sensor in the system viewing the

same scene from a different perspective. Furthermore, due to

the limitations of our camera’s depth sensor (specifically lens

distortion), any wall characterized by the x− and y − axes

often consisted of multiple layers of points. The RANSAC

algorithm in the data preparation step yielded one slice of

the wall as an object segment with approximately one third

probability, which had an almost equal distance to both the

ceiling and the ground plane. Conditions like this led to us

increasing the confidence weight of the moving objects rela-

tive to non-moving objects, enlarging the difference between

the ceiling’s confidence and the ground plane’s confidence.

Specific to the distortion issues associated with segmenting

the wall, we also increased the RANSAC distance threshold

between models to reduce the number of slices generated

from one wall; an issue that could easily be rectified by

using a sensor with a higher depth resolution and accu-

racy. Accordingly, the correct ground plane estimation results

heavily relied on finding the accurate human (moving object).

We noted that increasing the RANSAC distance threshold

between models also had drawbacks: multi-plane surfaces,

such as stairs (fig.3(b)) and stages (fig.3(a)), are merged as

one plane. Since the resulting single plane representing the

stairs has a large angle value relative to the ground plane

(fig.5; approximately 45◦), it is found by our algorithm as

a potential plane, but is ultimately given a low confidence

as the actual ground plane. (fig.3(b)). Similarly, the plane

corresponding to the stage floor barely exceeds our ζ > 6.0

threshold (fig.3(a)) because this plane (comprised of points

from the stage plane and lower ground plane) is not parallel

to the ground plane leading the low confidence provided by

the Object Distances Checking step.
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We evaluated our approach on our own dataset, which

included 24 unique scenarios (e.g., sensor perspectives and

orientations, number of persons walking in the scene), as well

as on three public datasets (see [63], [64], [66] and [65]),

where we included 26 additional scenarios. Our approach

robustly estimated the ground plane directly (when the plane

was visible) or indirectly (when the plane was not visible)

with a large variety of sensor orientations, different ground

plane area sizes, room complexities, and multiple persons in

the scene in 50 of 50 scenarios (100%). Our experimental

results show that our algorithm is insensitive to the movement

speed of walking humans and is tolerant to partial occlusion

of the human body. In cases where the ground plane is not

visible the scene, we successfully estimated the ground plane

formula by translating the plane with the highest confidence

in the scene, suggesting that other sensors that can see the

ground plane can help to accurately find the ground plane.

This is exemplified through two scenes (e.g., Figures 2(b)

and 2(f)) where we successfully identify the ground plane

directly in once case (confHP = 2.99, confRP = 2.0,

confOD = 3.99, confS = 8.99), and indirectly in another

(confHP = 2.56, confRP = 2.0, confOD = 0.0, confS = 4.56).

In all cases, we were able to find the ground plane or a

plane parallel to the ground plane using RGB-D sensors data

without any pre-calibration or a prior knowledge of the sensor

location or orientation.

In the future, we will focus on improving the perfor-

mance of the algorithm; switching to a better RGB-D sensors

which provides higher quality data; enhancing the robust-

ness and accuracy of the human object detection algorithm;

and achieving potential human recognition or identification

within a RGB-D camera system. In addition, we will also

test our algorithm on video sequences that have higher indoor

complexity and more people visible in the scene.
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