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Nowadays, computer simulations have become a standard tool in essentially all fields of chemistry,
condensed matter physics, and materials science. In order to keep up with state-of-the-art experiments
and the ever growing complexity of the investigated problems, there is a constantly increasing need
for simulations of more realistic, i.e., larger, model systems with improved accuracy. In many cases,
the availability of sufficiently efficient interatomic potentials providing reliable energies and forces
has become a serious bottleneck for performing these simulations. To address this problem, currently
a paradigm change is taking place in the development of interatomic potentials. Since the early
days of computer simulations simplified potentials have been derived using physical approximations
whenever the direct application of electronic structure methods has been too demanding. Recent
advances in machine learning (ML) now offer an alternative approach for the representation of
potential-energy surfaces by fitting large data sets from electronic structure calculations. In this
perspective, the central ideas underlying these ML potentials, solved problems and remaining chal-
lenges are reviewed along with a discussion of their current applicability and limitations. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4966192]

I. INTRODUCTION

Machine learning (ML) methods1 have a long tradition
in chemistry and physics.2,3 While for many years they have
been used almost exclusively as a classification tool to assist,
e.g., the analysis of spectra,4 the prediction of binding sites
of biomolecules5 or the derivation of quantitative structure-
activity relationships (QSARs),6 they have now started to
enter the heart of theoretical chemistry and computational
materials science in a manifold way. This process was
initially slow, because of the understandable scepticism of
theoretical chemists and physicists, who are used to well-
controlled hierarchies of physical approximations, regarding
these obscure black box methods. Further, only in recent years
ML methods have reached a mature state mainly driven by
commercial needs, resulting in a variety of new applications.

The border between ML, which is a subtopic of artificial
intelligence, and other purely mathematical regression
methods is difficult to define and is not possible without
some degree of arbitrariness. Still, several definitions have
been proposed in the literature over the years starting from the
famous classical definition given by Arthur Samuel, a pioneer
in ML research, in 1959: “[ML is a] Field of study that
gives computers the ability to learn without being explicitly
programmed,” to a modern definition by Tom M. Mitchell:1

“A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P,
if its performance at tasks in T , as measured by P, improves
with the experience E.”

Nowadays, ML affects everyday life in manifold ways,
like character and voice recognition software, fingerprint
identification, e-mail spam filtering, autonomously driving
cars, computer game opponents, credit card fraud detection
and too many others to mention. For these purposes, ML offers

a whole toolbox of techniques, like artificial neural networks,7

Gaussian processes,8 and support vector machines.9

Driven by the desire for a more rational design of
materials, in recent years ML has also established a new
trend in computational materials science,10,11 which shows
many similarities to the traditional field of QSAR and drug
design. In both cases the goal is to identify systems, molecules
or materials, exhibiting certain properties. To reach this goal
the machinery of ML is used to search large databases for
hidden relationships between the atomic structure, which can
be encoded directly or indirectly using a huge number of
possible descriptors, and the property of interest.12

The idea to employ information from large databases
is not new, and repositories of experimental data like the
Cambridge Structural Database13 and the Protein Data Bank14

have been existing for decades. New is the availability of
enormous amounts of high quality theoretical data from
electronic structure calculations, which are inaccessible to
a manual inspection and analysis. Still, in spite of the
high performance of modern supercomputers, it will remain
impossible for a long time to screen all candidate structures
directly by electronic structure calculations due to the
exponentially increasing complexity of configuration space
with chemical composition and system size. ML now offers a
very exciting tool to fill this gap enabling the analysis of the
available data, the discovery of hitherto unknown relationships
and the identification of new promising materials.

The topic of this perspective is a different application
of ML methods, i.e., the accurate representation of atomic
interactions for applications in atomistic computer simulations
of problems in chemistry, physics and materials science.
In contrast to the classification and pattern recognition
applications discussed above, the task to be performed for
this purpose is the fitting of a complicated function using a set
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of known function values. This function, the potential energy
surface (PES), is a multidimensional real-valued function
providing the potential energy of a system as a function of the
atomic positions.

The concept of a PES is founded on the Born-
Oppenheimer approximation15 of quantum mechanics. If
the atomic positions, the nuclear charges and the total
charge are known, the potential energy of a system is fully
defined by its electronic Hamiltonian. Electronic structure
methods enable in principle the calculation of arbitrary atomic
configurations corresponding to individual points on the PES,
which can be either a ground state or excited state surface.
For applications like molecular dynamics (MD) simulations,
the energies and forces for a large number of atomic
configurations are required, which can be obtained either
on-the-fly, by performing the electronic structure calculations
as needed while the trajectory evolves, or by evaluating
an analytic expression, which provides a direct functional
relation between the atomic configuration and the energy.
This analytic expression, which has to be defined before
running the simulation, is often called “interatomic potential,”
“force field” or potential-energy surface.

Electronic structure calculations are computationally very
demanding, even if relatively efficient methods like density
functional theory (DFT) are used, and DFT-based “ab initio
MD simulations”16 are thus restricted to a few hundred
atoms and simulation times significantly shorter than 1 ns.
Analytic potentials, which provide a much simpler direct
relation between the structure and its energy in closed form,
can be calculated many orders of magnitude faster, but they
are usually derived by introducing physical approximations.
While in most cases, the essential features of the atomic
interactions are still reasonably described, these potentials
necessarily represent a compromise between efficiency and
accuracy. Interatomic potentials employing ML techniques
aim to combine the advantages of both approaches, the
accuracy of first principles calculations and the efficiency
of a simple functional form. Much progress has been made in
recent years to reach this goal, but still this field is young and
developing very dynamically.

In principle, the requirements to be met by ML potentials
are very similar to conventional empirical potentials. The
evaluation should be fast to enable large scale MD and Monte
Carlo simulations. The computational effort to construct the
potential should be significantly lower than the costs of a
direct application of electronic structure methods. Minimum
human effort and manual intervention should be needed to
develop the potential and systematic improvements should
be possible. Analytic energy gradients for the calculation
of the forces, the stress tensor and other gradient-dependent
quantities should be available. The information required to
evaluate the potential should not include any classification
of atoms into types beyond the specification of the nuclear
charge, as chemical environments and bonding situations
should be allowed to change in the course of simulations.
Consequently, also the use of predefined atomic connectivities
and bonds should be avoided to obtain a reactive potential
enabling the making and breaking of bonds. Ideally, potentials
should be generally applicable and not restricted to certain

types of atomic interactions, like covalent, ionic, or metallic
bonding, and due to their purely mathematical unbiased form
ML methods are particularly promising candidates to reach
this goal. Finally, the most important requirement is the
accuracy of the potential, i.e., the energies and forces should
be as close as possible to the underlying first principles
data. Aiming for predictive simulations, the most stringent
test concerns the transferability to structures, which are very
different from the data used in the construction of the potential.

Based on these requirements, a definition of ML potential
can be given. A ML potential

• employs a ML method to construct a direct functional
relation between the atomic configuration and its
energy;

• does not contain any physical approximations apart
from the chosen reference electronic structure method
used in its construction;

• is developed using a consistent set of electronic
structure data.

In particular, the last point is of high practical importance
because the use of experimental data or the mixing of
electronic structure data from different levels of theory would
result in numerically inconsistent data, which would give rise
to serious problems in the construction of the potential.

The application of ML potentials in computer simulations
in chemistry, physics, and materials science involves several
steps. When using a ML potential, e.g., in MD simulations, in
the first step the atomic positions need to be transformed
to a set of coordinates suitable as input for the ML
method. The complexity of this crucial step has represented a
significant challenge in the early days of ML potentials. This
problem emerged rather unexpectedly since in most empirical
potentials feeding the structure into the functional form is
quite trivial, and often, like in classical force fields, readily
available internal coordinates like interatomic distances, bond
angles, and dihedral angles are well suited. Overcoming the
problem of finding appropriate structural descriptors for ML
potentials has slowed down their development substantially in
the first ten years, but nowadays several options are available.
After the transformation of the coordinates onto a suitable set
of descriptors, which must have certain properties as discussed
in Section II, a ML method is used to evaluate the energy and
if required the atomic forces. In principle, they can further
be validated to get an estimate for the reliability. They are
then passed to the propagator of the MD code and a new
atomic configuration is obtained, which then undergoes the
same cycle again.

In this perspective, the construction and application of
ML potentials for computer simulations with first principles
accuracy is reviewed and discussed. A special focus is
put on the two central components of any ML potential:
the transformation of the atomic positions onto suitable
descriptors and the subsequent assignment of an energy to this
structure using a functional form provided by a ML method.
Since there is no strict border between ML potentials and
other available mathematical fitting approaches to represent
PESs, the list of methods covered in this perspective cannot
be complete, and several important related approaches like



170901-3 Jörg Behler J. Chem. Phys. 145, 170901 (2016)

splines,17 modified Shepard interpolation,18 interpolating
moving least squares,19 and permutation invariant polynomial
fits,20 which are very similar in spirit in that they do
not employ a physically derived functional form and to
some extent face similar challenges, will not be discussed
here.

II. STRUCTURAL DESCRIPTION

A. The role of the descriptor

Many different names have been used in the literature for
the effective coordinates, i.e., the descriptors, representing
the structural inputs for the ML algorithms. The set of
descriptors plays a central role, not only in the construction of
PESs,21 but also beyond in applications like structure-property
relationships for property prediction in materials science22

and also in the strongly related older field of QSAR.23 Further
applications with similar requirements regarding the structural
description are the analysis of MD trajectories, the screening
of large numbers of atomic configurations for certain features,
and structure identification in general.24 Even the collective
variables used in simulation techniques like metadynamics
have similar requirements.25

The substantial challenge of finding suitable descriptors
for ML potentials has been recognized in the advent of the
first NN potentials about 20 years ago,26 which initially have
been developed for rather low-dimensional systems like small
molecules and diatomic molecules interacting with frozen
surfaces. As NNs, like all other ML methods, process ordered
vectors of numbers, the output is not invariant with respect
to any permutation of the position of equivalent atoms in
the structure. Further, directly available descriptors of the
atomic positions like Cartesian coordinates are not invariant
with respect to translation and rotation of the system, while
the resulting ML potential must possess these properties.
There have been satisfying customized solutions for specific
molecular27 and surface systems28,29 also beyond the field of
ML potentials, e.g., for permutation invariant polynomials.20

Still, initially the lack of suitable input descriptors was the
main obstacle to construct ML potentials for high-dimensional
systems including hundreds or thousands of atoms.

In general, a transformation of the atomic coordinates
onto a suitable set of descriptors must provide the same
numerical descriptor values for any equivalent atomic
configuration, including translation, rotation, permutation,
and any applicable point group symmetry. If this is
ensured, then all these equivalent representations of the
system have the same effective coordinate values and
consequently they are considered as the same structure
with necessarily the same energy by the ML method. For
simple potentials like classical force fields meeting these
requirements is straightforward, because internal coordinates
are translationally and rotationally invariant, and the total
energy is constructed as a sum of very low-dimensional terms,
which maintain permutation invariance. For more accurate
potentials employing ML, many-body descriptors are needed,
that are much more complicated than additive low dimensional
functions.

It is of utmost importance that the descriptors do
not contain any artificial symmetries because in this case
two different structures would be mapped onto the same
coordinates and become indistinguishable. Ideally there would
be a one-to-one correspondence between the structure and the
set of descriptor values, but this would only be guaranteed if
there would be one descriptor per degree of freedom in the
system. In this case the number of descriptors would depend on
the system size, which should be avoided to obtain generally
applicable ML potentials as discussed below. It should also
be noted that the transformation from the atomic positions to
the set of descriptors does not need to be inverted, and rather
complicated functional forms can therefore be used.

Apart from these formal requirements there are also
practical aspects concerning the choice of descriptors. Since
the transformation onto the descriptors has to be carried
out for every structure, the evaluation should be fast, and
the descriptors need to be differentiable with respect to the
atomic positions to enable the calculation of analytic gradients
for the forces. To obtain very accurate ML potentials, the
descriptors must provide a very detailed structural description
and typically multidimensional functions are required to allow
for fitting the many-body interactions in electronic structure
calculations with high precision.

In summary, the choice of the descriptors is of vital
importance because it is the set of descriptors to which
the energy is assigned. The number of descriptors has an
immediate impact on the feasibility of any ML potential, as it
does not only restrict the efficiency of the energy evaluation
but also determines the dimensionality of the coordinate
space to be mapped by the training sets. On the other
hand, the number of descriptors must be sufficiently large to
enable an unambiguous distinction of different structures. In
Secs. II B 1–II B 4 several descriptors which have been
developed for ML potentials are discussed. This list is by
far not complete, and there are plenty of new interesting
approaches, which have been proposed recently, like moment
tensors,30 scattering transforms,31 and many others.

B. Descriptors for machine learning potentials

1. Atom centered symmetry functions

A ML approach applicable to high-dimensional systems
containing large numbers of atoms has been proposed by
Behler and Parrinello in 2007 employing NNs.32 As in many
conventional empirical potentials, the potential energy E is
constructed as a sum of local atomic energies Ei of all atoms
i in the system,

E =
Natoms
i=1

Ei. (1)

This locality of the atomic interactions is known as near-
sightedness in quantum chemistry33 and has also been
exploited in a series of electronic structure methods for a
long time. The chemical environments of the atoms are
characterized by sets of atom-centered symmetry function
(ACSF) descriptors, which depend on the positions of the
neighboring atoms up to a cutoff radius Rc, at which the
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atomic interactions are screened by the cutoff function,

fc
�
Ri j

�
=




0.5 ·

cos

(
πRi j

Rc

)
+ 1


, for Ri j ≤ Rc

0.0, for Ri j > Rc

. (2)

This function is essentially the monotonously decreasing part
of a cosine function of the distance Ri j to all neighboring
atoms j inside the cutoff radius and zero otherwise. Similar
cutoff functions have been used for many years in empirical
potentials like the Tersoff potential.34

The positions of the atoms inside Rc are then described
by many-body ACSFs, which simultaneously depend on the
positions of all neighboring atoms. The most important ACSFs
are the “radial function”

Gatom,rad
i =

Natom
j=1

e−η(Ri j−Rs)2
· fc

�
Ri j

�
, (3)

and the “angular function”

Gatom,ang
i = 21−ζ

all
j,k,i

�
1 + λ cos θi jk

�ζ · e−η
(
R2
i j
+R2

ik
+R2

jk

)

· fc
�
Ri j

�
· fc (Rik) · fc

�
Rjk

�
. (4)

The radial function in Eq. (3) is a sum of Gaussians of Ri j,
which can be shifted by parameter Rs and are multiplied by fc
to ensure a smooth decay in value and slope to zero at Rc. The
width of the Gaussians is controlled by the parameter η and
typically a set of η values is used to obtain a radial fingerprint
of the environment. Due to the summation over all neighbors
in the cutoff spheres, the number of ACSFs is independent of
the coordination of each atom i, which is important since NNs
require a constant number of input descriptors irrespective of
the coordination number that might change frequently in MD
simulations.

The angular ACSF (Eq. (4)) provides an angular
fingerprint of the environment using the angles θi jk formed
with each pair of neighbors j and k. The angular resolution
can be controlled by the parameter ζ , while λ = ±1 defines
the positions of the extrema of the cosine function.

A number of potentials have been constructed using these
ACSFs,35 and typically 50–100 symmetry functions are used
per atom differing in the specific values of η, ζ , Rs and λ.
The cutoff Rc is a convergence parameter, which needs to
be increased until all energetically relevant interactions are
included, and in most cases values between 6 and 9 Å have
been found to be sufficient. All ACSFs provide a rotationally
and translationally invariant description of the environment
because they depend on the internal coordinates Ri j and
θi jk. Further, because of the sum over all neighbors, they
are invariant with respect to any permutation of chemically
equivalent atoms in the environment. The number of ACSFs
grows with the number of elements in the system because
for each atom there is one radial function per element. The
angular functions must be constructed for all possible element
combinations involved in the angles θi jk. Further details and
a discussion of the properties of these and other ACSFs can
be found elsewhere.36

It can easily be shown that Eq. (1) can be written as a
sum of atom pair energies Ei j,

E =
Natoms
i=1

Natoms
j>i

Ei j . (5)

Also this form can be used for the construction of
ML potentials using the pair centered symmetry functions
(PCSF)37

Gpair,rad
i j = fc

�
Ri j

�
· e−η ·R

2
i j

·



k

fc (Rik) e−η ·R
2
ik +


k

fc
�
Rjk

�
e−η ·R

2
jk


(6)

and

Gpair,ang
i j = fc

�
Ri j

�
· e−η ·R

2
i j · 21−ζ


α

(1 + λ cos α)ζ

· e−η ·(R
2
ik
+R2

jk
) · fc(Rik) · fc(Rjk)


, (7)

which have been demonstrated to be equally suitable for
obtaining high-quality potentials.

2. Bispectrum of the neighbor density

An alternative approach to describe the atomic envi-
ronments based on Eq. (1) has been proposed by Csányi
and coworkers in 201038 for constructing ML potentials for
high-dimensional systems employing Gaussian processes. In
this very systematic approach, the selection of parameters
defining the spatial shape of the descriptors, that is required in
case of ACSFs, is avoided by an expansion of the environment
in a series of spherical harmonics.

The starting point for developing the descriptors for the
atomic environments is the construction of a neighbor density
ρi(R) at each point in space R for each atom i. This is done
by placing δ functions at all positions of neighboring atoms j
in the environment up to the cutoff and at the position of the
reference atom itself as38

ρi(R) = δ(R) +


Ri j<Rc

fc(Ri j) · w j · δ(R − Ri j). (8)

The dimensionless weights w j enable a discrimination of
different elements. The cutoff function fc, which is the same
as used for the ACSFs (Eq. (2)), ensures a smooth decay to
zero at the cutoff Rc. The angular distribution of the neighbors
is then obtained by projecting all neighbors onto a sphere to
obtain a projected density ρ̂(θ,φ), which is then expanded in
spherical harmonics Ylm,

ρ̂(θ,φ) =
∞
l=0

l
m=−l

clmYlm(θ,φ). (9)

While the radial distribution could be described in principle
by a set of radial functions in full analogy to basis sets used
in electronic structure calculations, instead they are converted
to an additional angle θ0 extending the spherical harmonics
to four dimensions. The positions on the four-dimensional
sphere, which are given by

(φ,θ, θ0) = �
tan−1(y/x),cos−1(z/|r|), |r|/r0

�
(10)
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are then expanded in hyperspherical harmonics U j

m,m′ as

ρ =

∞
j=0

j
m,m′=− j

c j

m,m′U
j

m,m′. (11)

The coefficients c j

m,m′ =

U j

m,m′|ρ


are used to build the
bispectrum matrix,

Bj1, j2, j =

j1
m1,m

′
1=− j1

j2
m2,m

′
2=− j2

j
m,m′=− j

(
c j

m,m′

)
·C jm

j1m1 j2m2
× C jm′

j1m
′
1 j2m

′
2
· c j1

m′1m1
· c j2

m′2m2
, (12)

which has originally been developed for image and pattern
recognition applications.39 The C jm

j1m1 j2m2
are Clebsch-Gordon

coefficients.
Like in the case of ACSFs, the structural description by

the bispectrum has all required properties like translational
and rotational as well as permutation invariance. An advantage
is the possibility to refine the description of the environments
very systematically by using more and more spherical
harmonics.

3. Smooth overlap of atomic positions

A drawback of the neighbor density defined in Eq. (8)
is that it employs δ-functions and consequently even slight
deviations of the positions between two environments result in
strong numerical changes. In the SOAP (Smooth Overlap of
Atomic Positions) approach,21 the δ functions have therefore
been replaced by Gaussians centered at the central atom and at
all Nenv neighboring atoms in the environment. The neighbor
density in SOAP is then given by

ρSOAP(R) =
Nenv
i=1

exp(−α|R − Ri|2). (13)

This expression is related to the radial ACSFs (Eq. (3))
in Section II B 1 in which a sum of distance-dependent
Gaussians is used. But while for each radial symmetry
function Gatom,rad

i only a single function value is obtained
and the full environment is characterized by a set of
functions, ρSOAP can be viewed as a three-dimensional
generalization characterizing the full atomic environment at
once. Consequently, ρSOAP cannot be rotationally invariant,
and when comparing two different neighbor densities ρSOAP
and ρ′SOAP, one of the densities needs to be integrated over all
possible rotations to incorporate this invariance.

The SOAP kernel for comparing two environments is
therefore the overlap of the two corresponding neighbor densi-
ties, one of which has been integrated over all rotations R̂ as21

k(ρSOAP, ρ
′
SOAP) =


dR̂

�����


ρρSOAP(r)ρρ′SOAP

(R̂r)dr
�����

nSOAP

.

(14)

The exponent nSOAP is usually chosen as 2, since for
nSOAP = 1 the rotational information is lost due to the
interchangeability of the integrals. Finally, a normalization by
the factor 1√

k(ρSOAP, ρSOAP)k(ρ′SOAP, ρ
′
SOAP)

ensures that the overlap

of any environment with itself is one. Finally, an expansion
of ρSOAP using a set of normalized radial basis functions
gn(r) and spherical harmonics has been advocated21 as it is
computationally significantly more efficient resulting in the
kernel

k(ρSOAP, ρ
′
SOAP) =


n,n′,l

pn,n′,lp′n,n′,l (15)

with

pn,n′,l =

m

cn,n′,l(cn,n′,l)∗ (16)

containing the expansion coefficients cn,n′,l of the basis
functions and pn,n′,l corresponding to the power spectrum.

4. Coulomb matrix

In 2012 Rupp et al. have proposed a very different
descriptor in form of the eigenvalues of a Coulomb matrix,40

which is related to the concept of a distance matrix. The
Coulomb matrix M is defined as

MI J =




0.5 · Z2.4
I , for I = J

ZI · ZJ

|RI − RJ | , for I , J
. (17)

The diagonal elements represent a polynomial fit of the atomic
energies to the nuclear charge ZI . The off-diagonal elements
take the form of the Coulomb repulsion between the nuclei,
which can be viewed as scaled inverse distances. Apart from
containing the full information about the pairwise distances
of all atoms, the inclusion of the nuclear charges introduces
numerical offsets for different element combinations allowing
to encode information about the chemical composition without
the introduction of additional descriptors, which however
might also result in numerical difficulties in the fits due
to the range of values over many orders of magnitude.
While the original Coulomb matrix in Eq. (17) contains
an overcomplete description of the system, which would be
no problem for ML methods, the Natoms permutation invariant
eigenvalues represent only a subset of the information in
the 3 · Natoms − 6 dimensional configuration space and nicely
illustrate the frequent problem of simultaneously finding a
complete descriptor while the required symmetry is still fully
included. The size of the Coulomb matrix, which contains
one line and one row per atom, is given by the largest system
used in the reference data set, and for smaller systems the
unnecessary parts of the matrix are filled with zeros. Like
the other descriptors discussed before, the eigenvalues of
the Coulomb matrix are invariant with respect to rotation,
translation, and permutation.

Several of the drawbacks of the original Coulomb matrix
have been removed by introducing local Coulomb matrices41

depending on the neighboring atoms inside a cutoff radius.
In this way the description of many-atom systems becomes
possible, while the locality of many properties is exploited like
in the other methods developed for high-dimensional systems.
Still, access to the analytic derivatives is complicated, as
the eigenvalues are not continuous and differentiable if the
number of neighbors in the environment changes.21
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To date, the Coulomb matrix has not been applied to the
construction of PESs, but several energy-related applications
have been reported, like the atomization energies of small
organic molecules,40 and atomic forces as a function of the
environment.41 Further, also new related approaches like the
“bag of bonds” method have been proposed recently with
promising first results.42

III. A BRIEF SURVEY OF ML POTENTIALS

A. Overview

The development of ML potentials has taken place
in two steps, which are intimately related to the progress
made in the derivation of suitable structural descriptors.
In the initial phase, ML potentials have been available
only for low-dimensional systems, since ML approaches
based on the decomposition of the total energy into atomic
contributions according to Eq. (1) had not been devised.
These early potentials almost exclusively relied on artificial
neural networks43,44 and have been applicable to systems
containing up to about six atoms. Nevertheless, several
interesting and quite successful attempts have also been
made in this early stage to extend the applicability of NNs
to systems including larger numbers of atoms.45,46 Starting
with NNs32 in 2007, several different ML approaches
suitable for high-dimensional systems containing thousands
of atoms have now become available38,40 and are still evolving
rapidly.10,47,48 An overview about the increasing use of
different ML techniques to the construction of PESs is shown
in Fig. 1.

In this section, several ML methods along with their use in
the construction of PESs are outlined, which in principle could
be combined almost arbitrarily with the descriptors discussed
above. Still, currently there are a few dominant combinations
of descriptors and ML methods, but this is not because of the
compatibility or incompatibility of the different approaches,
but it is mainly a consequence of the personal preferences of
the developers.

FIG. 1. Historic development of machine learning potentials.

B. Neural networks

Artificial neural networks are the oldest ML method49

and they have first been developed to understand the signal
processing in the brain. They also represent the first ML
method which has been used to fit a DFT PES by Doren
and coworkers in 1995,26 and to date a large number of
NN potentials have been developed for many molecular and
condensed systems.27,28,50

The central component of all NN potentials (NNPs) are
feed-forward neural networks (FFNNs) as shown in Fig. 2.
The artificial neurons plotted as circles are arranged in one
or more hidden layers and provide the functional flexibility
to represent arbitrary functions. In the input layer a set of
descriptors {Gi} is fed into the network, the output node on
the right provides the potential energy E. Each node i in each
layer k is connected to the nodes j in the next layer l = k + 1
by weight parameters akl

i j , which are the fitting parameters of
the network. Thus, the small FFNN in Fig. 2 corresponds to
the analytic form

E = f *.
,
b3

1 +

3
k=1

a23
k1 · f *.

,
b2
k +

3
j=1

a12
jk · f *

,
b1
j +

2
i=1

Gi · a01
i j
+
-
+/
-

+/
-
.

(18)

The bias weights bj
i are acting as adjustable offsets for

each node, and the functions f are non-linear activation
functions like the hyperbolic tangent or a Gaussian function.
The weight parameters are determined using energies and
forces from electronic structure calculations in an iterative
gradient-based optimization process and finally they contain
all the information of the reference set. When applying the
NN potential, Eq. (18) is directly evaluated without the need
to know the reference set.

By using a FFNN for each atom in the system and
employing Eq. (1), an extension to high-dimensional NN
potentials applicable to very large systems has been proposed
by Behler and Parrinello in 2007.32 For this purpose, the atomic
environments have been described by ACSFs. Further details
about this method can be found elsewhere.35,51 In 2013 it has
been explicitly demonstrated by Geiger and Dellago52 that this
scheme, i.e., the combination of atomic NNs and ACSFs, can

FIG. 2. Structure of a feed-forward neural network.7
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also be used to accurately identify amorphous and crystalline
structures in MD simulations. They found that this approach
is superior to conventional methods for structure identification
like Steinhardt parameters,53 which supports the suitability of
ACSFs for the distinction of different structural motifs. This
application, which is very useful on its own, can be viewed as
an intermediate step of the construction of the NN PES, since
the proper characterization of the atomic environments is a
mandatory ingredient for obtaining a reliable structure-energy
relation in NNPs.

Finally, it should be noted that NNs are currently
experiencing an enormous boost in development under the
name “deep learning,” which is essentially based on very
large NNs.

C. Gaussian approximation potentials
and kernel methods

Gaussian approximation potentials (GAPs)38,54 are an
important example for kernel-based ML potentials, which are
obtained by combining a suitable structural descriptor and
a kernel establishing the connection between structure and
energy. In case of GAPs, the atomic energies Ei in Eq. (1) are
interpolated in the bispectrum descriptor space using Gaussian
process regression,8

Ei =

Nref
n=1

αne−0.5·L
l=1[(bl−bn,l)/θl]2

=

Nref
n=1

αneG(b,bn), (19)

where L is the number of components in the truncated
bispectrum and the θl are fitting parameters. Thus, the atomic
energy is a weighted sum over the energies of the known
atomic environments in the reference set, which has to be
available when applying the potential. The determination
of the parameters αn requires an O(N3

ref) inversion of the
covariance matrix, which is a rather demanding operation.55 In
earlier work, also Popelier and coworkers have used Gaussian
processes, which are also called Kriging, for the fitting of
electrostatic multipoles56 for improving conventional force
fields.

GAPs belong to the class of kernel methods, which have
the general form

Ei(di) =
Nbasis
j=1

α j χ j(di), (20)

i.e., they are linear combination of some basis functions
χ j depending on descriptor di for the environment of i. The
coefficient vector α is independent of the specific environment.
The energy is expanded in terms of the known data points
using a nonlinear kernel function K(d,di) providing a measure
for the similarity of any two structures or environments,54

Ei =

Ntrain
j=1

α jK(d,d j). (21)

GAPs use the squared exponential kernel

KSE(d,d′) = exp *.
,
−


j

(d − d ′)2
θ j

+/
-
. (22)

Kernel methods are very frequently used. Another example
is the combination with a Coulomb matrix descriptor for
representing the atomization energies of organic molecules by
Rupp et al.40 Here, the “distance” between two molecules is
defined as

d(M,M′) = d(ϵ, ϵ ′) =


n

|ϵn − ϵ ′n |2, (23)

which is the Euclidean norm of the diagonalized Coulomb
matrix.

D. Support vector machines

Support Vector Machines (SVMs)9 belong to the most
important ML methods, but to date they have been rarely
used for the construction of PES.57,58 Originally, SVMs have
been developed for the classification of data into two groups
with different properties by introducing a multidimensional
hyperplane separating the data. As this hyperplane usually
has a very complicated non-linear shape, the data is processed
by a kernel substitution, which is in essence the mapping of
the original data onto a higher-dimensional feature space, in
which a linear separation is possible (see Fig. 3). In order to
assign the data to real-valued properties like energies, instead
of the original SVMs, an extension in the form of support
vector regression (SVR) is used.57

E. Spectral neighbor analysis potential

The Spectral Neighbor Analysis Potential (SNAP)
introduced by Thompson et al.59 represents a linear version of
GAPs and is based on the same bispectrum components, which
are now assumed to be related linearly to the atomic energies.
The atomic energy of atom i in SNAP is then given as a linear
combination of the K projected bispectrum components by59

Ei,SNAP = β
αi
0 +

K
k=1

β
αi
k
· Bi

k (24)

FIG. 3. Operation mode of support vector machines (SVMs):9 The data to
be classified into two categories cannot be separated linearly by a hyperplane
(a). This linear separation becomes possible after the transformation onto a
higher-dimensional space as shown in (b).
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using the coefficients βα
k

, which can be determined in a least-
squares linear regression. αi specifies the atom type of atom
i, Bi

k
is the bispectrum component k of atom i, and β

αi
0 is a

constant element-specific contribution. Also further properties
related to the energy gradients, like the forces and the stress
tensor, can be expressed as similar linear combinations of the
corresponding derivative terms.

IV. DISCUSSION AND OUTLOOK

Starting from the two main components discussed in
Secs. II and III, ML potentials can be constructed by
combining a descriptor to convert the structure into a
representation fulfilling the required invariances and a ML
method to relate the set of descriptor values to an energy.
In principle this approach is quite modular and many
combinations of descriptors and ML techniques are possible,
although only a few have been used so far.

The obtained ML potentials have a solid theoretical
foundation. Concerning the physics this is the Born
Oppenheimer approximation. Mathematically it has been
proven for several ML approaches, e.g., for NNs,60,61 that
very accurate representations of the potential energy functions
are possible, although for practical applications these proofs
are of limited use. Therefore, the application of ML to PES
fitting is more rigorous than the prediction of other physical
properties, although in the end most properties are related to
the quantum mechanical Hamiltonian, i.e., to the structure.
This relation, however, might be very indirect and thus more
complicated to identify for ML.

ML potentials have many advantages. They offer a very
fast calculation of the energies and forces, although they
are usually one or two orders of magnitude slower than
very simple force fields. High-dimensional ML potentials
employing Eq. (1) can easily be parallelized and scale close to
linearly with system size. Therefore, they enable simulations
of very large systems much beyond the realm of ab initio
MD. They all provide very accurate energies close to the
underlying electronic structure methods, but they cannot and
must not provide better results than this chosen reference
method because by themselves they are not relying on a
physical functional form but must learn the physical shape of
the PES from the provided example data.

Still, there are also some remaining challenges. The
construction of ML potentials currently requires very large
reference data sets from electronic structure calculations,
making the construction computationally very demanding and
time consuming. Reducing the size of the reference sets
should therefore be one of the primary goals, and all available
information about the PES, like forces, should also be used.
The minimum size of the reference sets strongly depends on
the complexity of the PES, which must be fully mapped, and
research in this direction is just in its infancy. In any case, the
identification of missing relevant structures is closely related
to the analysis of structural similarities.24,62,63 Alternatively,
the flexibility of the ML methods can also be used to identify
structures, which are too far away from the known reference
set.51 Another interesting approach is to test ML forces on-
the-fly in MD simulations and to add more data if necessary

while running the simulations.55 In any case, ML potentials
require very careful testing and validation because they can
fail spectacularly, if they have not been constructed properly.
ML potentials are a tool to speed up simulations, but they are
unable to provide new insights that have not been provided
in the training set, but these insights might be complex and
hidden and very difficult to extract without the use of ML
techniques.

Another current limitation is caused by the exponentially
growing complexity of configuration space with chemical
composition, which drastically increases both, the number of
descriptors and the amount of reference data. Therefore, many
ML potentials are restricted to only a few chemical elements,
a limitation that they share with many other potentials in
materials science. Only if the configuration space is reduced,
either by using only very low-dimensional terms like in
classical force fields, or by the restriction to local minima of
the PES,40 a higher chemical complexity can be dealt with.

A future trend to overcome this limitation will certainly be
the combination of ML methods with physically meaningful
energy terms. The first step in this direction has already
been taken for the most obvious choice, the electrostatic
energy contribution. Already in 2007 Popelier and coworkers
demonstrated that NNs can be used to represent atomic
electrostatic multipoles64 to obtain improved electrostatic
energy terms in classical force fields. In 2011 environment-
dependent atomic charges have been expressed as an extension
to the short range energy part in high-dimensional NN
potential to avoid the truncation of the atomic interactions
at the cutoff radius defining the atomic environments.65

Both approaches rely on reference charges from electronic
structure calculations, which are mathematically well-defined
but physically not unique. A possible solution to overcome
this limitation in a ML framework has been proposed by
Ghasemi et al.66

V. CONCLUSIONS

A lot of progress has been made in recent years in
the development of interatomic potentials based on the
combination of ML techniques and data from electronic
structure calculations. For this purpose, a toolbox of structural
descriptors and ML methods is now ready for use and
several new techniques can be expected to enter the stage
soon. First applications have demonstrated that potentials
of very high accuracy can be obtained for realistic systems
containing many atoms and complex atomic configurations.
Apart from benchmark studies, state-of-the-art simulations
can now be performed, which allow to solve problems in
chemistry, physics, and materials science that have hitherto
been inaccessible due to the lack of suitable potentials with
first-principles accuracy.67–73

In spite of this success, the construction of ML potentials
is still very demanding and the potentials need to be tested
very carefully due to the lack of a physical basis of their
functional form. Consequently, the distribution of potentials
from developers to users is not as quickly as for other types
of potentials, which is certainly one of the main reasons for
the only slowly increasing usage of these methods. Further
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efforts are also required regarding the applicability to systems
containing more than a few elements. This bottleneck, which
ML potentials share with many conventional potentials in
materials science, is one of the most urgent problems to be
addressed in the near future. Finally, it would be desirable
to compare different approaches for well-defined benchmark
cases to identify and possibly combine the advantages of
these methods. To date only the tip of the iceberg of the field
of ML has been exploited in the construction of interatomic
potentials and many new approaches will be developed to
further extend the applicability of ML-based potentials in
atomistic simulations.
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