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It is well known that physical phenomena may be of great help in computing some difficult problems

efficiently. A typical example is prime factorization that may be solved in polynomial time by

exploiting quantum entanglement on a quantum computer. There are, however, other types of (non-

quantum) physical properties that one may leverage to compute efficiently a wide range of hard

problems. In this perspective, we discuss how to employ one such property, memory (time non-

locality), in a novel physics-based approach to computation: Memcomputing. In particular, we focus

on digital memcomputing machines (DMMs) that are scalable. DMMs can be realized with non-linear

dynamical systems with memory. The latter property allows the realization of a new type of Boolean

logic, one that is self-organizing. Self-organizing logic gates are “terminal-agnostic,” namely, they do

not distinguish between the input and output terminals. When appropriately assembled to represent a

given combinatorial/optimization problem, the corresponding self-organizing circuit converges to the

equilibrium points that express the solutions of the problem at hand. In doing so, DMMs take advan-

tage of the long-range order that develops during the transient dynamics. This collective dynamical

behavior, reminiscent of a phase transition, or even the “edge of chaos,” is mediated by families of

classical trajectories (instantons) that connect critical points of increasing stability in the system’s

phase space. The topological character of the solution search renders DMMs robust against noise and

structural disorder. Since DMMs are non-quantum systems described by ordinary differential equa-

tions, not only can they be built in hardware with the available technology, they can also be simulated

efficiently on modern classical computers. As an example, we will show the polynomial-time solution

of the subset-sum problem for the worst cases, and point to other types of hard problems where simula-

tions of DMMs’ equations of motion on classical computers have already demonstrated substantial

advantages over traditional approaches. We conclude this article by outlining further directions of

study. Published by AIP Publishing. https://doi.org/10.1063/1.5026506

I. INTRODUCTION

A. Computing with Physics

Computing is fundamentally a physical process. At the

start and at the end of this process, it requires some agent

(e.g., a person) to interpret the results of the computation.

However, in between the end points of the computation,

namely, in between the input, the agent supplies, and the out-

put they interpret, any physical object or phenomenon can

perform some type of computation.

For instance, the planets in our solar system perform a

well-defined motion with respect to the Sun. Without know-

ing, they compute their trajectory in a very complex environ-

ment, in fact, in the presence of the whole Universe

surrounding them! Anyone equipped with a powerful enough

telescope could determine the initial point of these trajecto-

ries (the input of the computation by the planets), and

observe the final position of the planets after some time has

elapsed (to read the output of the computation). In the inter-

val of time in between the observations, the planets have

then “calculated” their orbits. Therefore, the telescope and

the planets form some type of computing machine.

We could make similar considerations for any physical

system. In a wide sense, any physical system performs some

type of computation, whether it is easy or not for us to input

the data at the beginning of such computation, or read them

at the end of it.

B. Computing �a la Turing

Of course, this is not how, traditionally, we interpret

computation. It is still commonplace to refer to the way in

which Turing has formalized the process of computing more

than eighty years ago.1 Computing, �a la Turing, is a mapping

between a finite string of symbols into a finite string of sym-

bols in discrete time.2,3 The map itself, that transforms from

the initial set of symbols to the final one, is called the transi-

tion function.2,3

If we look back at the example of the trajectories com-

puted by the planets, we can definitely identify the transition

function with the physical process (the laws of dynamics)

that brings the planets from one point in space-time to

another (without including the physical process that allows

us to observe their initial and final positions). However, the

computation the planets perform is continuous in time. Most

importantly, since their initial and final positions, with

respect to some reference frame, are real numbers, these
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numbers cannot be represented with a finite string of sym-

bols: an arbitrary real number requires an infinite number of

bits to be represented. Therefore, this type of computation,

although physically possible, does not fall into the original

Turing definition.1 A machine as the one represented by the

telescope and the planets would be called analog, to distin-

guish it from the Turing one, which would be called digital.

Note that it is not the transition function that really dis-

tinguishes between a digital and an analog computer. Rather,

it is the ability to read/write the output/input of the computa-

tion with finite means. If that were not the case, it would be

physically impossible to build any digital computer.

C. Modern computers and scalability

To make this important point clearer, consider our mod-

ern computers. In these, we manipulate finite strings of num-

bers (collections of 0s and 1s). However, we do this by

representing these numbers as low (0) and high (1) current

(or some other physical property) in actual physical devices,

such as transistors; or patterns of magnetization in a magne-

tizable material, or charges in capacitors, etc.4

Let us consider, for instance, transistors. Without going

into details of how transistors work, it should not surprise

anyone that it takes some finite time for any physical transis-

tor to switch from a high current to a low current, and vice

versa. Most importantly, since the dynamics of physical sys-

tems are always subject to noise and some other perturba-

tions, there is no way that, at any given time, a transistor

could be in a well-defined high current (representing the

mathematical 1) or a low current (representing the mathe-

matical 0). In other words, even if we neglected the time it

takes a transistor to switch, it is a physical impossibility for it

to represent the ideal, mathematical values of 0 and 1.

Therefore, even our modern computers, which are classified

as “digital,” viewed as physical systems, are in reality

“analog.”

However, there is a very important difference between

our modern computers and, say, the example of the “planet

analog computer.” Even though transistors cannot represent

a mathematical 1 or a 0 with absolute physical precision, the

error one makes in assigning a given physical value of cur-

rents that represent those integers is independent of the size

of the machine. Therefore, that error may be at most depen-

dent on the ability to assign a 0 or a 1 out of a single transis-

tor, but it does not scale with the number of transistors we

put together.

Stated differently, although a physical realization of a

(mathematically) ideal Turing machine does not exist, in

practice our modern computers come very close to it: we can

read and write outputs and inputs, respectively, of our mod-

ern computers with an error that is independent of their size.

Without this important feature, which is not shared by true

analog systems, our modern computers would suffer from

scalability issues, in the sense that the bigger the size of the

machine, the more resources (in time, space and/or energy)

one would need to perform the computation with the same

level of accuracy. With these caveats in mind, we may then

rightfully call our modern computers “digital.”

D. The digital memcomputing paradigm

Why then, instead of trying to force a physical system

(like our modern computers) to represent a (mathematical)

Turing machine, do not we conceive of a completely differ-

ent type of machines that take full advantage of appropri-

ately designed physical systems, and yet allow us to read/

write output/input digitally, namely, with finite precision, or

with an error that is independent of their size?

In this perspective article, we discuss such machines,

that we have called digital memcomputing machines

(DMMs).5 DMMs are a subclass of a much larger class of

universal memcomputing machines (UMMs),6 that include

also analog ones.7 We focus on their digital version, because,

as we already mentioned, these are the ones that are easily

scalable in terms of resources.

UMMs have been shown to be Turing-complete, mean-

ing that they can simulate any Turing machine.6 Recently, it

was also explicitly shown that they are quantum-complete

and reservoir-complete,8 referring to the fact that they can

simulate quantum computers as well as some type of recur-

rent spiking neural networks known as liquid-state

machines.9 Apart from these theoretical, albeit important

conclusions, we have also shown that DMMs can be realized

in practice by designing appropriate (non-quantum) non-

linear dynamical systems. These dynamical systems have

internal degrees of freedom (memory, hence the name mem-

computing10). This allows us to engineer a new type of

Boolean logic that is terminal-agnostic,5 namely, one that

does not distinguish between the input and output.

Therefore, while maintaining the digital structure of the

input and the output (hence requiring finite means to read/

write the output/input), DMMs built out of these new types

of gates can self-organize, collectively, to solve very com-

plex (non-convex) problems very efficiently. Loosely speak-

ing then DMMs perform computation embedded in memory,

employing all (or large chunks) of their fundamental units, at

once. These are features that are generally attributed to the

brain.11

E. Memelements and more

The inspiration for the dynamical systems representing

DMMs comes from electrical circuit elements with memory

(memelements).12 In general terms, a memelement is one

that when subject to an input, u(t), responds with an output,

y(t), with a generalized response function g of the type

yðtÞ ¼ g ~x; u; tð ÞuðtÞ; (1)

_~x ¼ f ~x; u; tð Þ; (2)

with f some vector function of internal state variables, ~x,

namely, those variables that provide memory to the system,

such as spin polarization, atomic position of defects, etc.13

Memelements have been demonstrated to be good can-

didates not only for storing data,14 hence employed as alter-

native to current memory storage devices, but also to enable

the possibility of building a new generation of computational

180901-2 M. Di Ventra and F. L. Traversa J. Appl. Phys. 123, 180901 (2018)



memories, i.e., memory devices that can perform basic com-

puting tasks directly with and in memory.15–22

However, it is important to stress that the machines we

propose need feedback to operate as we desire.5 Therefore,

memelements alone are not enough. One needs to add active

elements as well, such as transistors, that are able to modify

the state of the system “on the fly” according to specific rules

to determine.5 Nonetheless, even these extra active compo-

nents can be realized with standard electronics. Therefore,

the machines we consider can be built in hardware with

available materials and devices. In fact, they do not require

more than standard complementary metaloxide semiconduc-

tor (CMOS) technology, if emulators of circuit elements

with memory are employed.23

Importantly, since DMMs are non-quantum, their equa-

tions of motion can be simulated efficiently on our modern

computers. Therefore, for some applications they can already

deliver substantial advantages compared to standard algo-

rithms for a wide range of non-convex (hard) problems of

combinatorial/optimization type.24,25

We will discuss the physics behind their power and pro-

vide as an additional example the polynomial-time solution

of the search version of the subset-sum problem [which

belongs to the non-deterministic polynomial (NP)-complete

class3]. For this example, we still employed simulations of

DMMs on a single processor, showing once more that even

without having been built in hardware yet, DMMs allow us

to reap great benefits from just simulating them on our tradi-

tional computers. We finally conclude with future directions

in the field.

II. LEVERAGING PHYSICS

A. Dynamical systems for computation

We have anticipated in the Introduction that if we found

a physical system that, by solving a problem (say a combina-

torial or optimization one), while preserving the digital

(finite) structure of the input and output, we may take advan-

tage of its continuous time (and space) power, and, at the

same time, be able to interpret the results of the computation

with finite means. These computing machines would then be

scalable.

Here, we stress that “time” is not just “counting steps” of

an algorithm, as algorithms are traditionally intended.2,3

Rather, it is a well-defined physical variable that labels the

dynamics of the system. Therefore, the correct framework in

which we want to work is that of dynamical systems theory.26

In mathematical terms, a dynamical system is described by

a (typically non-linear) differential equation of motion of the

type (we consider only autonomous systems in our work)26

_xðtÞ ¼ FðxðtÞÞ; (3)

where x is an n-dimensional set of variables that defines the

state of the system, and belongs to some n-dimensional

space, X � R
n, called phase space, and F is a vector (called

the flow vector field) representing the laws of temporal evo-

lution of x.

Equivalently, Eq. (3) can be written as

TðtÞxð0Þ ¼ xð0Þ þ

ðt
0

Fðxðt0ÞÞdt0; (4)

where T(t) is a flow field.

B. Intrinsic parallelism

From either Eq. (3) or Eq. (4) it is easy to see why a

physical dynamical system has already a feature, we call

intrinsic parallelism, that is not shared by our standard

“parallel” machines. To understand this important point, sup-

pose a physical system described by Eq. (3) starts from a

time t in a (input) state xðtÞ. After an interval of time T , it

will be in a new (output) state xðtþ T Þ, as determined by

Eq. (3). Therefore, Eq. (3) can be interpreted as a mapping,

or (in computer science language) a transition function, d,2,3

that relates the initial and final states, the input and the out-

put, respectively, of the computation performed by this phys-

ical system. In this language, we can then write Eq. (3) in the

form

dðxðtÞÞ ¼ xðtþ T Þ: (5)

This equation may appear simple, but it represents a

very profound and important characteristic for a machine

whose computation is described by it. To see this, let us

pause to consider the “parallelism” that is currently imple-

mented in our modern “parallel computers.”

C. Standard parallelism

Nowadays, to avoid increasing the clock frequency of

computers (for heating issues), even laptops have multiple

central processing units (CPUs) (or multi-cores), so parallel

machines are becoming the norm rather than the exception.

The definition of parallel machines we will use also includes

some classes of parallel Turing machines, in particular the

Cellular Automata and non-exponentially growing Parallel

Random Access Machines.27–29

Irrespective of this, let us consider a fixed number of

(or, at most, a polynomially increasing number of) CPUs

that perform some tasks in parallel. In this case, each CPU

can work with its own memory cache or accesses a shared

memory depending on the architecture. In any case, in prac-

tical parallel machines, all CPUs are synchronized. This

means that each of them performs a task in an interval of

time T , which here means the synchronized clock time of

the system of CPUs. At the end of the clock cycle, and only

at the end of the clock cycle, all CPUs share their results,

and follow up with the subsequent task.

To make the comparison with Eq. (3) clearer, let us

describe also these “parallel machines” within the mathemat-

ical framework of dynamical systems theory, an analysis that

we have already outlined in Ref. 30, and expand on here for

clarity.

Suppose that these machines have, say, ns CPUs with ns
memory units. (The number of memory units may be differ-

ent than the number of CPUs, but for simplicity of notation

let us assume they are the same.) Consider the vector func-

tions sðtÞ ¼ ½s1ðtÞ;…; snsðtÞ� and kðtÞ ¼ ½k1ðtÞ;…; knsðtÞ�
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defining, respectively, the states of the ns CPUs, and the state

of the slot kj of the total memory k allocated to be written by

the CPU sj. While the CPUs perform their computation, dur-

ing each clock cycle T they operate independently of each

other. Therefore, there are ns independent flow vector fields,

/
j
T with 1 � j � ns, describing the dynamics during the

computation of the form

ðsjðtþ T Þ; kjðtþ T ÞÞ ¼ /
j
T ðsjðtÞ; kðtÞÞ; 1 � j � ns; (6)

where kj is the memory unit written by the j-th CPU, and /
j
T

is a function of its arguments, and which, in principle, could

be different for the different CPUs.

Since the j-th CPU reads the memory kðtÞ at only the

time t, and not during the interval IT ¼�t; tþ T �, and it does

not perform any change on it, apart from the unit kj, the evolu-

tion (time-dependence) of the entire state during IT is

completely determined by the set of ns independent equations

ðsjðt
0 2 IT Þ; kjðt

0 2 IT ÞÞ ¼ /
j
t0�tðsjðtÞ; kðtÞÞ; (7)

with 1 � j � ns.

A quick comparison between Eq. (7) with Eq. (5) shows

that they describe fundamentally different dynamics. In each

interval IT , the ns CPUs do not interact in any way, and

their dynamics are independent. We call then the dynamics

described by Eq. (7), standard parallelism. This is visually

represented in Fig. 1, left panel.

On the other hand, the dynamics described by Eq. (5)

are collective, namely, any element of the vector xðtÞ is, at
any given time, affected by the dynamics of all the other ele-

ments in the vector through their common flow vector field

F. In other words, at any given time, any element of the

machine is somehow “aware” of (or “knows”) what the other

elements are doing.

As already mentioned, we call this intrinsic parallelism,

to distinguish it from the standard parallelism implemented

in our modern computers (see Fig. 1, right panel). This is,

indeed, the power of any physical machine: it is the physical

interaction among the different constituents of the machine

that provides collective dynamics to the whole system.

Our goal is then to marry the physical power of a

machine described by Eq. (3) with the digital structure of its

input and output so that we need only finite means to read

the outputs and write the inputs. To accomplish this, we need

to leverage more physical properties.

III. LEVERAGING MEMORY

A. Why memory?

Having established that a physical system described by

Eq. (3) offers a type of parallelism that is not available in our

modern computers, we have yet to answer the question:

What type of physical interaction should we look for to com-

pute efficiently? Or, to put it differently: How does

“knowing” any other part of the system help computing a

complex problem?

To answer this question, let us start by looking at an

example that has attracted considerable attention in the past

three decades: Quantum Computing.31 The latter means

computing by taking advantage of some features of Quantum

Mechanics. In particular, in Quantum Mechanics, we have at

our disposal a type of spatial non-locality known as entan-

glement.31 Entanglement allows a quantum machine with

such characteristic to have its elements “correlate” with each

other at very long distances, as if the whole system were

“rigid”: a perturbation in (measurement of) one of its parts,

would be immediately felt in other parts arbitrarily far away.

Entanglement then realizes an ideal long-range order, one in

which the correlations do not decay spatially.

It is this type of interaction that allows a Quantum

Turing Machine (QTM) to solve a non-deterministic polyno-

mial (NP) problem, such as factorization, efficiently, albeit

probabilistically.32 Unfortunately, a QTM has not been

shown to efficiently solve other, more difficult problems,

such as NP-complete problems, although quantum computers

(that support entanglement) are now being engineered to find

the ground state of some quantum Hamiltonians.33 However,

in order to take full advantage of the entanglement, these

machines need to work at extremely low (cryogenic) temper-

atures, with substantial increase in hardware complexity, and

difficulty in scaling them up to large size.34 In addition, since

the Hilbert space of a quantum system typically scales expo-

nentially with the size of the system (e.g., the number of its

FIG. 1. Left panel: representation of a standard parallel machine. Right panel: representation of an intrinsically parallel machine.
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elementary units), quantum machines cannot be simulated

on our modern computers efficiently.

It would then be desirable to have some type of long-

range order (that allows distant parts of a machine to corre-

late with each other efficiently), without recurring to the

entanglement of Quantum Mechanics. In fact, the long-range

order is quite a common physical feature. It is shared by

many systems and emerges in a wide-variety of phenomena

and structures such as continuous phase transitions,35 self-

organized criticality,36 and complex networks,37 to name a

few. Therefore, it should not come as a surprise if it emerges

in appropriately designed dynamical systems.

Typically, classical systems have spatial interactions

that are local/short ranged (if we exclude gravitation and

note that Coulomb interactions in condensed matter systems

are generally screened). Therefore, spatial non-locality in

non-quantum systems seems difficult to achieve from only

local interactions, unless we work, say, at a phase transition,

or somehow engineer the system to have correlations that are

scale-free (decay as a power law).

Instead, we point out an obvious fact: any physical sys-

tem (whether classical or quantum) supports some level of

memory (time non-locality).38 In fact, it can be shown that

any system (whether passive or active) with memory (any

memelement) can be compactly written as in Eqs. (1) and

(2), starting from its microscopic dynamics.39 This is

because no physical system can respond instantaneously to a

perturbation. (Of course, in many cases this memory is diffi-

cult to detect, but this is beyond the point we are making

here.)

B. Memory promotes spatial non-locality

Memory then seems a good ingredient to exploit, if it

does lead to long-range correlations. This has already been

shown in, e.g., complex networks, where scale-free proper-

ties (such as a power-law distribution of the degree connec-

tivity in the network) can emerge by allowing only time non-

locality.40,41 This is the case, which can be intuitively under-

stood from an example taken from the natural world: how

ants find the shortest path to a food source from their nest.42

In order to find food, a few ants are initially randomly

dispatched out from their nest. These ants randomly scout

the nest surroundings, and, while doing so, release a chemi-

cal substance (pheromone) that can be detected by other

ants, and which decays in time. In simple words, these ants

leave a “memory trace,” with this memory decaying in time.

Now, if we assume that the decay time of the pheromone

memory is, on average, the same for all ants, after some time

has elapsed, the longest the path traced by an explorer ant,

the less pheromone it would contain, compared to another,

shorter path traced by another ant. Other ants then exiting

the nest would be attracted by the strongest pheromone

scent, and hence would be drawn towards the shortest path,

rather than the other paths.

C. Collective behavior and self-organization

While going through the shortest path, these ants then

reinforce it by further releasing pheromones, so that,

ultimately, the shortest path (or the one close to it) is collec-

tively chosen by the colony. Note that the ant colony uses

two main ingredients to solve this path (network) optimiza-

tion problem: memory and “collective behavior.” A single

ant does not solve the problem. It is the cooperative/collec-

tive behavior of many ants that accomplishes the task.

If the pheromone memory did not exist, ants being non-

quantum objects (and assuming they do not interact with

other ants in any other physical way), have no means to

“correlate” with each other at long distances, and hence

solve the shortest-path problem. In fact, due to the memory

trace they leave, ants self-organize into the solution, namely,

in a total unsupervised way (without an external agent guid-

ing them), they find the solution to the shortest path. This

same self-organizing behavior has been shown to occur also

in networks of memristors (resistors with memory).43,44

The above example then clearly shows that spatial

correlations (space non-locality) among physical (and non-

quantum) systems can emerge from time non-locality

(memory) alone, even if the physical constituents them-

selves interact locally. In addition, collective dynamics

with memory, leads naturally to the phenomenon of

self-organization.

Of course, for computing purposes, we are not interested

in any type of spatial correlations. In fact, most of the time,

correlations between physical systems decay exponen-

tially.35 We would instead like those correlations to decay at

most as a power law (scale-free behavior).35 Ideally, we

would like those correlations not to decay at all, as in the

case of entanglement of Quantum Mechanics (ideal scale-

free behavior).31 This way, distant parts of our (non-quan-

tum) machine may correlate and self-organize easily into the

solutions of the problems they are designed to tackle. In

order to realize a machine that has the above features, we

first need to replace the standard Boolean logic framework

with a new one.

IV. A NEW LOGIC FRAMEWORK

Memory and self-organization allow us to address the

last aspect of the computation we are after: read and write

the outputs and inputs, respectively, with finite precision.

Since finite precision simply translates into expressing a

problem in binary (Boolean) format, this means that we

focus here on all those problems that are naturally written in

Boolean format, such as combinatorial/optimization prob-

lems.2,3 We will discuss in the conclusions how to apply

memcomputing to other types of “continuous-variable” prob-

lems. The question now is how to utilize a physical system

described by Eq. (3) to solve a Boolean problem.

A. Example: Prime factorization

To this end let us consider an example: factoring a num-

ber into primes, a problem that is believed to belong to the

NP class (albeit it is not NP-complete).3 Suppose you are

given an integer n that, for simplicity, can be factored into

only two prime numbers, say p and q, n¼ pq. Due to the fun-

damental theorem of arithmetics,45 if the number n can be

factored in two prime numbers, those are unique.
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All these numbers can be expressed in binary represen-

tation as n ¼
PN

j¼0 nj2
j; p ¼

PN�1
j¼0 pj2

j and

q ¼
PdN=2e�1

j¼0 qj2
j, where, nj, pj, and qj are the 0s and 1s rep-

resenting the respective integers; N ¼ b log2nc; bXc is the

floor function that rounds the elements of X to the nearest

integer towards 0, and dXe is the ceiling function that rounds

the elements of X to the nearest integer towards 1.

Since we have assumed that p and q are primes, then we

can choose p0; q0 6¼ 0, which guarantees that p and q are not

divisible by 2. This means that n0 ¼ 1 and we also set

nN¼ 1. This implies that n has the shortest binary

representation.

Let us then assume we know p and q. If we multiply them

to get n, we would obtain at each step of the computation the

following remainders, rj, of the above arithmetic operation:

r0 ¼ p0q0 � n0 ¼ 1� 1� 1 ¼ 0; (8)

rj ¼
Xj

k¼0

pj�kqk þ
rj�1

2
� nj; j ¼ 1;…; dN=2e � 1; (9)

rj ¼
XdN=2e�1

k¼0

pj�kqk þ
rj�1

2
� nj; j ¼ dN=2e;…;N � 1; (10)

rN ¼
XdN=2e�1

k¼0

pN�1�kqkþ1 þ
rN�1

2
� 1; (11)

that must satisfy

rj � 0 ; j ¼ 1;…;N � 1 ;

rj ¼ 0 ; mod2 j ¼ 1;…;N � 1 ;

rN ¼ 0 :

(12)

This is standard arithmetics. However, it lends itself

immediately to a Boolean representation. In fact, by looking

at the truth tables of the XOR and AND gates,46 we easily rec-

ognize the following mapping between the arithmetic opera-

tions of sum,
P

, and product�, with the corresponding logic

gates:
P

! XOR;AND, and � ! AND. This means that

the entire arithmetic operation of factoring an integer can be

implemented as a Boolean problem. In fact, any combinatorial

or optimization problem can be written as a Boolean circuit.3

Now, the Boolean circuit that summarizes the above

arithmetic operation is not unique. One could use different

Boolean gates and circuits to accomplish the same task. This

is because we could use different logic gates as a basis of

Boolean logic. For instance, the pairs f AND, NOT g or f
OR, NOT g are two sets of Boolean gates that can be used to

represent any Boolean gate.46 The gates NOR (not-OR) or

NAND (not-AND) represent another complete (singleton)

basis set. As an example of a Boolean circuit factoring a

number, we show in Fig. 2 one of the many possible circuits

that accomplishes the multiplication of p and q to obtain the

number n ¼ 35 ¼ ð100011Þ2 (in the little-endian notation).

B. Self-organizing logic

A machine that, given p and q, uses that circuit, would

spit out n. Of course, to solve prime factorization we need

to work in reverse: given n, we want our machine to find p

and q.

It is obvious that if we used standard logic gates, they

would not allow us to solve the problem. A standard Boolean

gate is a mapping that receives truth values of some input var-

iables (we may also call them terminals), and spits out the

truth values of some output variables/terminals (see Fig. 3,

left panel). In other words, standard Boolean logic is sequen-

tial: given truth values of some input variables (terminals), it

provides a truth value of output variables (terminals).

FIG. 2. A possible Boolean circuit that multiplies two integers p and q to give n ¼ 35 ¼ ð100011Þ2 (in the little-endian notation).
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However, we have discussed in Sec. III that memory

(time non-locality) may promote spatial non-locality, so that

physically distinct parts of the same system can effectively

communicate with each other, even if the interactions are

local. Let us then consider a Boolean gate as a physical sys-

tem, and its “input” and “output” terminals as physically dis-

tinct states of that system, which we may intuitively think of

as being located at distinct regions of space.

With this new point of view in mind, we can design

gates in such a way that, regardless of the terminal to which

the truth value is assigned—in what we have called so far

the “output” terminal or the “input” terminal—the logic

proposition is always satisfied. This is a type of terminal-

agnostic logic. Note that this is not the same as inverting the

logic in a one-to-one sense, as, e.g., in Toffoli gates.47 The

latter ones have the same number of input and output termi-

nals, hence they can define a bijection. Our gates generally

do not.

Take for instance, the AND gate. There are two “input”

terminals, and only one “output” terminal. Hence, this gate

cannot be inverted in a one-to-one sense. However, we can

always demand that, if the “output” terminal is fixed at the

truth value 1, the two “input” terminals need to be both 1.

Instead, if the “output” terminal is 0, the two “input” termi-

nals need to have one of these three possibilities, (0,0), (1,0),

(0,1), in order for this gate to be logically consistent. That is

all we ask of our gates. In this way, the distinction between

the input and output is no longer necessary, i.e., signals can

go in and out at the same time at any terminal, resulting in a

(albeit non-linear) “superposition” of the input and output

signals as depicted in the right panel of Fig. 3.

One immediately recognizes that in order to have this

extra feature, not present in standard Boolean gates, we need

to add extra degrees of freedom to the system. This way, the

system must be able to adapt or self-organize to any value of

the terminal, and to do so, it needs extra “room to

maneuver.”

As already mentioned, we then construct these gates by

adding time non-locality, namely, a dependence on the inter-

nal state variables. In practice, this means using memele-

ments [Eqs. (1) and (2)], or their emulators, and other

standard circuit elements (active and passive), appropriately

designed to satisfy the correct logical propositions of the

gate. We encode the terminals’ truth values with voltages (or

currents) of these circuits, e.g., þ1V representing the logical

1, while –1V the logical 0.5

The active elements of the circuit have the role of

dynamically correcting the gate state, if the latter is in a

wrong configuration. We call these dynamic correction mod-

ules (DCMs),5 see Fig. 4 for a sketch of DCMs. For instance,

in the gates we have proposed in Ref. 5 the DCM dynami-

cally reads the voltages at the terminals of the gate, and

injects a large current when the gate is in an inconsistent

configuration, a small current otherwise. We re-iterate that

this task cannot be done by only passive circuit elements,

whether they have memory or not. It requires active

elements.

Now, since these gates are described by dynamical sys-

tems, they will dynamically reach their consistent logical

proposition according to the initial conditions they are in,

namely, not just the initial Boolean truth value the terminals

have, but also what value the internal state variables start

from in the attraction basins of each equilibrium point. In

other words, we need to assign the value of xðtÞ of Eq. (3) at
t¼ 0. We call the objects having these logical and dynamical

properties self-organizing logic gates (SOLGs), see Fig. 3.

We name the circuits built out of SOLGs, self-organizing

logic circuits (SOLCs). These are an actual physical realiza-

tion of DMMs.5

Of course, DMMs could be realized in other ways. For

instance, one may design SOLGs using optical devices. The

connections between these SOLGs to generate SOLCs may

also be realized using optical means. We focus here only on

their electronic realization, since it is the easiest to build in

hardware [and arguably the only way for very-large-scale

integration (VLSI) realizations] and simulate in software.

V. THE MATHEMATICAL REQUIREMENTS OF SOLCs

So far, we have shown how to transform a Boolean

problem into a physical problem, so that we can solve it also

in reverse. This allows us to invert the so-called “one-way

functions,”3 namely, those problems, such as factorization,

that are easy to solve in one direction (from p and q one eas-

ily gets n¼ pq), but not the reverse (from n, find p and q).

FIG. 3. Left panel: sketch and symbol of a standard n-terminal logic gate

with m inputs and n�m outputs. Right panel: sketch and symbol of the

corresponding self-organizing logic gate.

FIG. 4. Left panel: sketch and symbol of internal modules of a 3-terminal

self-organizing logic gate. Right panel: sketch and symbol of the dynamic

correction module.
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By doing so, we have maintained the digital structure of the

input and output (the terminals of the SOLGs can be written/

read with finite means). We are then on our way to exploit

the power of a physical system, while maintaining the scal-

ability of the computing machine. However, we have quite a

bit of freedom to engineer SOLGs (and corresponding

SOLCs) in such a way that when they are built in hardware

or simulated in software they perform the tasks we require of

them, such as solving the Boolean problems they have been

designed to tackle.

First of all, it is clear from Eqs. (1) and (2) (and also the

equations of the dynamic correction modules5) that Eq. (3)

turns out to be a non-linear equation of all the state variables

(voltages, currents, and memory variables of the whole cir-

cuit) lumped into the state xðtÞ. However, not all non-linear
dynamical systems with memory are good for the job. This

is because a general non-linear dynamical system of the type

(3) may have several attractors with unwanted features;

hence it may not solve the problem we are after. To make

this point clear, let us consider the following problem,

known as subset-sum problem (belonging to the NP-

complete class).2,3

A. Example: The subset-sum problem

Consider a set G of N integers (N 2 Z), each repre-

sented with p bits (precision of each number). Consider

another integer s 2 Z. Question: is there a subset of G whose

sum is s? This problem may have no solution, one solution

or many. In fact, if there is a solution, we would like to know

the integers that do satisfy the sum (“search version” of the

problem).2,3

As for the factorization problem, we can build a

Boolean circuit that represents this problem. We then replace

the gates of that circuit with our SOLGs. The whole circuit

can be represented by an equation of motion of the type (3)

with the state variables, xðtÞ, again describing voltages at the

SOLGs’ terminals, currents in the circuit, and internal state

variables representing memory.5 We then let the dynamical

system “run in reverse” to find the numbers (if they exist)

that sum to s.

B. The choice of dynamical systems

We face several problems if we pick some arbitrary

dynamical system with memory to accomplish this task.

First of all, how do we encode the solution(s) to this prob-

lem? The easiest (and most natural) way to do so is to encode

the solution(s) of the problem into the steady-states (equilib-

rium points) of Eq. (3), namely, we read the solution (the

voltages) at the appropriate SOLGs encoding the output of

the calculation, when all SOLGs have satisfied their logical

proposition [equilibrium points of Eq. (3)].

If we follow this path, however, we need to avoid the

system falling into a periodic orbit from which it will never

exit, or end up into a strange attractor (chaotic behavior).48

On top of these requirements, we need the system to reach

the equilibrium points exponentially fast. Finally, if we

increase the size of the problem (say, the number of elements

N in the set), hence the number of SOLGs in the circuit, the

convergence rate to equilibrium points better scale at most

polynomially with size, or we have not gained much with

respect to traditional (algorithmic) approaches. (In fact, we

want all the resources to scale polynomially, not just time.)

C. Point dissipative systems

In Ref. 5, we have suggested a set of dynamical systems

with memory that accomplishes all these properties. The

main, most important, ingredient is that the dynamical sys-

tems we suggested are point dissipative.49–51 These are spe-

cial dynamical systems that support a compact global

attractor. This implies that all trajectories of the system are

bounded and will ultimately end up into the global attractor,

irrespective of the initial conditions.

From a mathematical point of view, this means that the

flow field T(t) in Eq. (4) can be written as the sum5,51

TðtÞ ¼ UðtÞ þ SðtÞ: (13)

The functions U(t) and S(t) are two vector fields that, how-

ever, must be chosen with completely different dynamical

behavior. In fact, a point dissipative system requires that for

S(t) there exists a continuous function k : Rþ ! R
þ such

that kðt; rÞ ! 0 as t ! 1 and jSðtÞxj < kðt; rÞ if jxj < r,

with r being a positive constant.51 This means that in the

long-time limit only the function U(t) has any effect on the

dynamics of the state.

Now, to fully exploit this property, we design U(t)

appropriately, namely, we choose U(t) to describe a globally

passive circuit.52 This means that the equilibrium points of

U(t), hence of the total flow field T(t), are reached exponen-

tially fast. If we make this choice, we have an additional ben-

efit: in the presence of equilibrium points, U(t) [and

consequently T(t) or F(t)] cannot support either periodic

orbits or chaos.52,53

As an example, the functions U(t) and S(t) can be read

from Eqs. (52)–(55) and Eqs. (56)–(59) of Ref. 5, respec-

tively. In fact, in Ref. 5, we have shown that, for that particu-

lar choice of dynamical systems, there is a constant n > 0

such that jSðtÞxj < e�nt.

We then conclude that one can indeed engineer dynami-

cal systems representing SOLCs with appropriate mathemat-

ical properties that guarantee to find the solution(s) of the

given Boolean problem, if they exist. If there are multiple

solutions, the system will find one of them according to the

initial conditions assigned. Typically, one solution is

required. If all of them are needed, one can simply add extra

constraints to the circuit that take into account the solution(s)

already found, and repeat this process till all solutions are

found. Finally, if no solution exists, by knowing the scalabil-

ity of the corresponding problem in terms of its size, one can

check if the system has reached equilibrium or not: if it does

not within the expected time, then no solution exists.5

D. Properties of SOLCs

Let us then summarize the mathematical properties of

the SOLCs we have introduced in Ref. 5. These are the prop-

erties that any other type of dynamical system has to satisfy
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in order to solve a given Boolean problem efficiently

(namely, with polynomial resources):

(i) Design SOLCs whose equations of motion are point

dissipative.

(ii) Design them so that there cannot be equilibrium points

other than solutions of the given problem at hand.

(iii) For each size of the problem, equilibrium points are

reached exponentially fast from all points in their

attraction basin.

(iv) The convergence rate scales at most polynomially

with the input size.

(v) SOLCs’ resources grow at most polynomially for

problems whose solution tree grows exponentially.

(vi) In the presence of equilibria (solutions), there cannot

be periodic orbits or chaos.

Note that the SOLCs we have proposed in Ref. 5, do sat-

isfy all criteria (i)–(vi), including the last one (see Refs. 53

and 54). Once SOLCs with these properties have been

designed, we can follow this procedure to tackle any

Boolean problem:

(i) Construct the Boolean circuit that represents the prob-

lem at hand (this circuit is not unique).

(ii) Replace the traditional (uni-directional) Boolean

gates of this circuit with SOLGs. The electronic cir-

cuit built out of these SOLGs can be described by

non-linear ordinary differential equations with mem-

ory of type (3).

(iii) Feed the appropriate terminals with the required

“input” of the problem (e.g., the number that needs to

be factored).

(iv) Build the corresponding SOLC in hardware or simu-

late its differential equations in software.

(v) Find the equilibrium (steady-state) points of the dynam-

ical system, which encode the solution to the problem.

E. Combinatorial vs. optimization problems

A clarification is in order. In the case of combinatorial

problems (such as factorization and subset-sum) the SOLCs

designed to tackle them, do solve them, if solutions are pre-

sent. In other words, we can guarantee that if the combinato-

rial problem has a solution, the SOLC, designed for that

problem, will find it (see also discussion in Sec. VII). It is

also easy to check if the solution is the correct one: we can

do it in polynomial time once we have a candidate solution.

On the other hand, when we deal with optimization

problems (especially those in the NP-hard class), where we

are looking for the global optimum out of a large number of

possibilities in a non-convex landscape (one with many sad-

dle points, local minima/maxima, in addition to the global

minimum), we cannot guarantee that the solution we find is

the global optimum, namely, we cannot check in polynomial

time if what we find is indeed the optimum. (This would

require comparing the solution to all other local minima, one

by one, till we exhaust them all. This defies the purpose.)

Therefore, for optimization problems in the NP-hard

class, when the SOLCs reach an equilibrium, the only thing

we can say is that the equilibrium found is the best approxi-

mation to the optimum the machine has found within an

assigned time. For example, in the famous maximum satisfi-

ability (Max-SAT) problem,3 one is given a Boolean formula

in conjunctive normal form (Boolean variables related by OR

clauses, with the different clauses related by AND gates), and

asked to find the assignment of all the variables in the formula

that maximizes the number of satisfied clauses (that have a

truth value of 1). In general, there is no way to know that,

once an assignment is found, it is indeed the maximum.

VI. EXAMPLES

A. Optimization problems

After these important considerations, we can now dis-

cuss the application of DMMs to specific hard problems. We

have already shown that the simulations of SOLCs perform

orders of magnitude better than the winners of the 2016

Max-SAT competition55 on a wide variety of optimization

problems. For instance, in Ref. 24 we have shown that the

simulations of the equations of motion of SOLCs using a

sequential MatLab code already offer substantial advantages

over traditional algorithms for the Random 2 Max-SAT, the

Max-Cut, the Forced Random Binary problem, and the Max-

Clique.2 In some cases, the memcomputing approach finds

the solution to the problem when the winners of the 2016

Max-SAT competition could not.24

We have also performed scalability tests on hard instan-

ces of the Max-SAT problem whose conjunctive normal

form representation contains exactly k literals (k � 2) per

clause. This problem, known as Max-EkSAT,3 has an inap-

proximability gap,56 meaning that no known algorithm can

overcome, in polynomial time, a fraction of the optimal solu-

tion, assuming P 6¼ NP. We have shown instead that for the

hard cases considered, the simulations of SOLCs succeed in

overcoming that gap.24 In addition, we have shown that for

the SOLCs we have used in those simulations, this happens

in linear time, namely, the time it takes to overcome the

inapproximability gap scales linearly with the number of var-

iables (clauses) in the problem, vs. the exponential scalabil-

ity of the best solvers of the 2016 Max-SAT competition

specifically designed to tackle those problems.

B. Application to machine learning

In order to explore the advantages of DMMs in hard

problems even further, we have also used them in the train-

ing of deep belief networks.25 In particular, we have applied

them to the training of restricted Boltzmann machines

(RBMs) that are difficult to pre-train. In fact, the standard

way to training these networks relies on Gibbs sampling,57

which is very inefficient. Quantum machines, such as D-

Wave ones58 have been shown to substantially accelerate

such pre-training in hardware.

The pre-training of RBMs can be cast in the form of a

quadratic unconstrained binary optimization (QUBO) prob-

lem.3 This is equivalent to finding the ground state (lowest

energy state) of a non-convex energy landscape. By employ-

ing our memcomputing approach we have shown that the
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simulations of SOLCs sample very effectively the vast phase

space defined by the energy cost function of the neural net-

work, and provide a very good approximation close to the

optimum.25 In fact, the acceleration of the pre-training

achieved by simulating SOLCs is comparable to, in the num-

ber of iterations, the reported hardware application of the

quantum annealing method implemented by the D-Wave

machine on the same network and data set.58 However, the

memcomputing approach performs far better than the quan-

tum annealing approach in terms of quality of the training.25

In addition, the pre-training offered by simulating

SOLCs maintains a considerable advantage over other super-

vised learning methods, such as batch-normalization59 and

rectifiers,60 that have been designed to reduce the advantage

of pre-training all together. Instead, we find that the mem-

computing method still maintains a quality advantage (>1%

in accuracy, corresponding to a 20% reduction in error rate)

over these approaches.25 The substantial advantage of the

memcomputing approach again rests on finding a very good

approximation to the optimum compared to the traditional

approaches.

C. A combinatorial problem

All the above cases pertain to NP-hard problems. Here,

we report instead the solution of an NP-complete one, for

which checking the solution is (polynomially) easy. Let us

then consider again the subset-sum problem of Sec. V. For

this problem, it is easy to choose the hardest cases: those cor-

respond to the number of elements, N, in the set equal to the

precision (in number of bits), p, required to represent each

element. For N¼ p, no pseudo-polynomial algorithm is

known.

The standard algorithm for these hard cases requires

checking the sums of all possible subsets of the given set, till

one is found that sums to the given integer s. A brute force

implementation of this algorithm then diverges exponentially

for these hard cases, whether the load of the calculation is

done by directly checking all subsets (hence the algorithm

scales as 2N), or half of the load is transferred to memory by

storing partial sums of the computation [so that the computa-

tion scales as 2N=2 and the memory scales as

2ðpþ log2pÞ2
N=2].61 Either way, for these hard cases, N¼ p,

the computation and/or the memory requirements diverge

exponentially. This is evident in Fig. 5, where we show the

exponential divergence of the standard algorithm with just

brute force computation (no storing of partial results in mem-

ory). In the same figure, we report simulations of SOLCs

representing the same instances.

The simulations have been done by employing a sequen-

tial MATLAB implementation of the equations of motion of

the SOLCs (see Ref. 5 for the actual equations) on a single

processor of the Comet cluster of the San Diego

Supercomputer Center, so no parallelization has been

employed. Since we solve equations of motion of the type

(3), the memory requirement for these simulations scales

quadratically with the size of the problem, namely, with

Np ¼ N2 ¼ p2. For comparison, the largest case we have

considered, if done with the standard algorithm and

implemented in MatLab and run on the same processor,

would require more than 2000 years to find the solution. If

we used the method of storing partial-sum results in memory,

we could reduce the time of computation considerably, but

at an exponential cost of storage needed. The SOLCs’ simu-

lations instead scale as a polynomial of �4th power for that

particular circuit we have chosen (a circuit example is shown

in the inset of Fig. 5 for a small case, N ¼ p ¼ 9). The fourth

power is easy to understand for this particular circuit realiza-

tion: the circuit is spatially quadratic, and we used implicit

methods to integrate forward the equations of motion.

VII. TOPOLOGY, INSTANTONS, AND ORACLES

The above problems show that once the dynamics are

initiated at some (arbitrary) point in the phase space, the sys-

tem is “guided” towards the solution (if this is an NP-

complete problem) or towards a very good approximation of

the optimum, or, possibly, the optimum itself (if this is an

optimization problem of a non-convex nature). It seems as

though the trajectory in the (enormous) phase space is con-

strained, and only very specific paths are chosen to slice

through this vast space to reach equilibria in an efficient

way. Put differently, it is as if the physical system has some

global “knowledge” of the whole phase space.

Typically, global features of a space are associated with

its topology, as opposed to some local (geometrical) proper-

ties of the same.62 Therefore, it seems natural to ask if the

DMMs we have introduced, and in particular, their SOLC

realization, exhibit some topological character when they

attempt to find the equilibrium points of the dynamics. If the

FIG. 5. Simulations of the SOLCs’ differential equations, as reported in Ref.

5, describing the subset-sum problem. We consider only the worst cases,

namely, when the number, N, of elements in the set is equal to the precision

(number of bits), p, per element. For these cases, there is no known pseudo-

polynomial algorithm available and the standard algorithm scales exponen-

tially as shown by the red stars. The red curve is a guide to the eye. The sim-

ulations of digital memcomputing machines scale instead as a polynomial of

the fourth power (blue squares and curve). The inset shows an example of a

small SOLC (for N ¼ p ¼ 9) used to represent this problem. Both the stan-

dard algorithm and simulations of SOLCs have been implemented in a

sequential MATLAB code running on a single processor of the Comet clus-

ter of the San Diego Supercomputer Center.
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answer to this question is affirmative, then we have an added

benefit: our machines must be robust against noise and struc-

tural disorder. This is because, if the search of the equilib-

rium points is carried out by topological objects, then in

order to destroy them one needs to destroy the global (topo-

logical) structure of the phase space.62 In practice, one needs

to change the physical system all together.

A. The SOLCs’ architecture

A first, quite obvious, topological feature of SOLCs is

the architecture of the Boolean circuits they represent.

Say, we want to solve for the factorization. We then build

the corresponding Boolean circuit and solve it “in reverse.”

We know that, given that circuit, there is a solution to the

prime factorization problem. We have also designed the

corresponding SOLC so that no equilibrium points may

exist other than those representing the solution(s) to this

problem (see SOLC’s properties in Sec. V). Simply put,

the solution is embedded in the architecture of the circuit.

It just needs to be found. (The information embedded in

the architecture of SOLCs is what we called information

overhead in Ref. 5.)

This, by itself, constrains the dynamics enormously,

similar to the constrained dynamics of a liquid if it is forced

to go through a maze:63 although the maze may be very com-

plex, and have multiple paths, to find the exit the liquid is

constrained to go through only those paths that solve the

maze. The architecture (topology) of the maze already forces

the liquid to follow specific paths, even if the corresponding

phase space of the dynamical system may be large.

In a similar vein, the architecture of the SOLCs forces

the “electron liquid” (if we now interpret those circuits as

actual electronic components) to go through specific paths in

the phase space, till the liquid reaches the equilibrium points

(the exit points of the “maze”). However, the architecture of

the circuit is not the only topological feature of the physical

systems representing DMMs.

B. The topology of phase space

A vast phase space with a non-convex landscape sup-

ports critical points, namely, points, xcr , at which the flow

vector field F in Eq. (3) is zero26

FðxcrÞ ¼ 0: (14)

In a neighborhood of any critical point, we can perform lin-

ear stability analysis, namely, we can expand Eq. (3) to the

linear order

_x 	 JðxcrÞðx� xcrÞ; (15)

where J is the Jacobian matrix

JðxÞ½ �ij ¼
@FiðxÞ

@xj
: (16)

We can now determine the eigenvalues, ki, and eigenvectors,

vi, of this matrix for the given critical point. The linearized

equation (15) then results in the local trajectories

xðtÞ 	 xcr þ
X
i

vie
kit: (17)

The eigenvectors corresponding to Re ki < 0 and

Re ki > 0 define the vector spaces tangent to the stable and

unstable manifolds, respectively, at each critical point. For a

negative eigenvalue, from Eq. (17), it is clear that the

dynamics tend to bring the system back to the critical point;

that direction is attractive (stable direction). Instead, a posi-

tive eigenvalue indicates that the corresponding direction in

the phase space is repulsive (unstable direction). Those criti-

cal points that have some attractive and some repulsive

directions are saddle points, while those having only attrac-

tive (repulsive) directions are local minima (maxima).26 In

fact, there exist both strong (statistical mechanics) argu-

ments64,65 and empirical evidence66 suggesting that in non-

convex landscapes, the number of local minima is exponen-

tially smaller than the number of saddle points with increas-

ing size of the phase space, which renders standard local

methods for optimization, such as gradient descent,

inefficient.66

All eigenvectors with Re ki ¼ 0 span a flat manifold tan-

gent to a center manifold.26 It is clear from Eq. (17) that cen-

ter manifolds are somewhat irrelevant to the dynamics, since

in those manifolds the system does not “move.”

The critical points are of topological character, namely,

their number and index (the number of their unstable direc-

tions) is only determined by the topology of the phase

space.67 Although it is not so easy to determine the number

and index of critical points, especially when the dimension

of the phase space is large, in Ref. 68 we have done an exten-

sive search of critical points for a simplified version of AND

and OR SOLGs. That analysis has shed a lot of light about

the dynamics of these systems.

It turns out that the unstable critical points are such that

the magnitude of the eigenvalues, ki, of their unstable direc-

tions, is much smaller than the magnitude of the eigenvalues

of their stable directions.68 This is consistent with other

numerical results showing that generic high-dimensional

non-convex landscapes have mainly saddle points sur-

rounded by quasi-flat unstable directions.66 The amount of

memory in the system then determines the degree of curva-

ture of the unstable directions. This means that the system,

starting from an arbitrary initial condition in the phase space,

can easily get “very close” to these critical points, despite

having repulsive (unstable) directions. Once the system has

reached a critical point with some unstable directions, it can

get out of it and move somewhere else.

C. Instantons

Here, another topological feature emerges. Instead of

wandering around the vast phase space aimlessly, the system

can take advantage of particular trajectories that connect crit-

ical points with different indexes. These trajectories are

called instantons,69 and they are the classical (Euclidean)

analogue of quantum tunneling, and, apart from the “instant”

at which “tunneling” occurs, the system spends most of its

time at the critical points (classical vacua),70 with this time

180901-11 M. Di Ventra and F. L. Traversa J. Appl. Phys. 123, 180901 (2018)



determined again by the amount of memory in the system.

Memory that is too large or too small may lead to a consider-

able slowing down of the dynamics.68

Instantons are topologically non-trivial deterministic tra-

jectories, xcl, (namely, functions that have different limits for

t ! �1 and t ! þ1) satisfying70

_xclðt; rÞ ¼ Fðxclðt; rÞÞ; xclð61; rÞ ¼ x
i;f
cr ; (18)

with xicr and xfcr being the arbitrary critical points of the flow

vector field F [of Eq. (3)] with different indexes. The param-

eters r are the so-called moduli of instantons, which can be

used as their coordinates, and represent the non-local charac-

ter of instantons.69

Why would a dynamical system employ these instantons

in the first place? This is because, if one writes Eq. (3) in a

path-integral representation,71 the partition function of such

representation has an action functional, SEucl, which is of

topological character.72 As any physical system, the trajec-

tory chosen by the system is the one that renders such action

functional stationary.73 Instantons turn out to be those trajec-

tories that render the topological SEucl stationary
69,70

dSEuclðxclðt; rÞÞ ¼ 0: (19)

In reality, instantons define a family of classical trajecto-

ries (all related to each other via some symmetry transforma-

tion74) namely, there may be more than one path rendering

the action functional stationary. In addition, they are present

because the equations representing SOLCs are non-linear,

and they emerge only during the transient dynamics, namely,

before the system has reached a steady state.71

The microscopic dynamics of a SOLC then proceeds as

follows (see Fig. 6):68 the system starts from an arbitrary ini-

tial condition in the phase space, which is not necessarily a

critical point. It is then attracted by the closest unstable criti-

cal point (which is not unstable enough to repel the dynam-

ics). After the system reaches the first critical point, it can

only go through instantonic trajectories to make the action

SEucl stationary.

Therefore, the system “hops” from one critical point

(saddle point) to another with lower index (namely, more

stable), until it reaches the last critical point, the equilibrium

of the dynamics, which has only stable directions, and possi-

bly center manifolds. In fact, in doing so, the unstable direc-

tions have become center manifolds. The latter ones

represent the arbitrariness of the internal state variables

when the system has reached equilibrium.5 This is because,

the SOLGs (and corresponding SOLCs) have been designed

in such a way that they satisfy their logical proposition in

either voltages or currents.5 The internal state variables, ~x, in

Eqs. (1) and (2), representing memory, need only to provide

the extra degrees of freedom for the system to self-organize

into the correct solution. Once the latter has been reached,

the internal state variables lose their purpose, and the equi-

librium is stable irrespective of the values of those variables.

This is why, at equilibrium, the directions associated with

the internal state variables define center manifolds in the

phase space.

Note that the number of unstable directions can be at

most equal to the number of state variables. These, in turn,

grow only polynomially with the size of the corresponding

Boolean problem. Therefore, even if each instanton connects

critical points differing by only one unstable direction, the

number of “instantonic steps” necessary to reach equilibrium

can only be equal to or less than the number of state varia-

bles, namely, the dynamics employ a number of instantonic

steps growing at most polynomially with the size of the prob-

lem.5 This is another (topological) way of understanding the

polynomial requirements of SOLCs in solving hard

problems.

The transient (instantonic) phase of the dynamics is rem-

iniscent of an avalanche phenomenon, in which “energy” is

released in steps till the lowest “energy” is reached.75 This

analogy is not far-fetched since it has been shown that any

classical dynamical system (with and without noise) can be

expressed within a topological field theory.72 The topologi-

cal field theory that emerges is of a Witten type.76 Therefore,

any transient dynamics can be described within the same

instantonic formalism, where, of course, the critical points,

and the topological sector of the theory change according to

the physical system considered.

D. Long-range order

There is yet another important feature of the instantonic

(transient) phase worth stressing. If one computes matrix ele-

ments of certain (topological) observables on instantons, one

finds that those matrix elements are independent of both

space and time (they are topological invariants).71 This

means that the “tunneling” between critical points along

instantonic trajectories displays an ideal long-range order,

FIG. 6. Schematic of the microscopic dynamics in the phase space of a

SOLC representing a particular problem. Starting from an arbitrary initial

condition, the system “falls” into the closest critical point with some unsta-

ble directions (red parabolas) and stable directions (black parabolas), a sad-

dle point. The curvature of the unstable directions is much smaller, in

magnitude, than the curvature of the stable directions. The system then

evolves to another critical point (saddle point) with lower index (less unsta-

ble directions) along an instanton trajectory. This step is repeated till the sys-

tem ends up into a fully stable equilibrium point. Along the way, the

unstable directions of the critical points have evolved into center manifolds

(green straight lines) representing the memory degrees of freedom.

180901-12 M. Di Ventra and F. L. Traversa J. Appl. Phys. 123, 180901 (2018)



similar to entanglement in Quantum Mechanics. However,

note a fundamental difference between the instantonic long-

range order and entanglement. In the latter case, the quantum

entangled state is prepared by the experimentalist at the out-

set, namely, it is there at the beginning of the (entangled)

quantum dynamics. In the instantonic case, it takes some

time for the system to reach the first critical point from an

arbitrary initial condition, namely, it takes some time for the

system to reach a “rigid state”. In addition, quantum entan-

glement is destroyed by decoherence effects, an unwanted

eventuality. Instead, the long-range order of the instantonic

dynamics, once established, cannot be destroyed by noise or

perturbations (see also below).71 It naturally disappears once

the system has reached equilibrium.

For SOLCs, one type of topological observable is pre-

cisely the one that “detects” when voltages at every terminal

in the SOLC switch from a logical 1 to a logical 0, and vice

versa.71 This is the observable that is directly related to the

correlations between voltages at different terminals any-

where in the circuit. Therefore, if the instanton matrix ele-

ments on these topological observables are independent of

space and time, the correlations between voltages at different

terminals anywhere in the circuit must share a similar fea-

ture, which is what is found both analytically and

numerically.71

This is precisely the property we were after: the correla-

tions between voltages of all SOLGs of the Boolean circuit

representing a problem do not decay spatially. Therefore, if a

gate needs to satisfy its logical proposition, it can do so by

“exchanging” truth values with another gate arbitrarily far

away, despite the connections in the Boolean circuit repre-

senting the problem are local. The system becomes rigid.

This collective dynamical behavior is reminiscent of a phase

transition,35 or even the “edge of chaos.”77 However, unlike

those cases, where the spatial correlations are scale-free

(they decay as a power law), in SOLCs the correlations do

not decay at all.71

This last point explains why SOLCs can efficiently

tackle hard, non-convex problems, while standard algorithms

(relying only on local information) cannot. In the worst

cases, non-convex problems expressed in Boolean form as,

e.g., conjunctions of disjunctive clauses between variables,

are such that when a certain amount of satisfied clauses is

reached, any further improvement requires many simulta-

neous/correlated flips of variables (changing their values

from 0 to 1 or vice versa). This is a non-local (global) type

of assignment.3 Therefore, without a global knowledge of

the solution space, a standard combinatorial algorithm is

bounded to explore a vast number of possibilities, requiring

exponential resources to do so (which leads to the inapprox-

imability gap56 previously mentioned). Instead, by employ-

ing instantons, hence fundamentally non-local objects, a

dynamical system representing the same Boolean problem

can easily correlate variables anywhere they appear in the

problem specification.

The independence on time of the instantonic matrix ele-

ments on topological observables represents instead a strong

dependence of the trajectories connecting critical points on

initial conditions (but not of the critical points themselves).

This means that the system can follow completely different

trajectories to find the equilibrium points in the phase space,

according to the initial conditions assigned. This, however,

does not change the robustness of the solution search due to

the topological character of the critical points. The latter

indeed cannot be destroyed or changed even if one explicitly

adds noise to the internal state variables, unless that noise lit-

erally destroys the physical system itself. The ensuing

robustness of SOLCs with respect to noise and structural dis-

order was demonstrated explicitly in Ref. 68.

E. Instantons as oracles

Finally, let us make another interesting consideration.

We have discussed that once a Boolean problem is expressed

as a dynamical system in terms of SOLGs, the system is

guided towards the solution, and does so following specific

trajectories (instantons) connecting critical points of increas-

ing stability in the phase space. Due to the gigantic size of

the phase space (even for relatively “small” Boolean prob-

lems), there is no way for us to know a priori which path the

system will take, once an initial condition is assigned. The

physical system is too complex for us to infer its collective

properties from its elementary constituents (this is the very

definition of a complex system).

Therefore, even if the systems we consider are determin-

istic, their complexity is such that their actual internal work-

ings, which determine the dynamical paths that connect the

input and output, are not known down to their microscopic

details at every instance of time. We know which path the

machine has taken only after we have observed it (or calcu-

lated it). A machine of this type is what is known in com-

puter science as an oracle.3 In fact, an oracle is one that, via

some internal mechanism unknown to the user, is able to cor-

rectly “guess” the next step of a computation done by a

Turing machine, and guide that machine to the correct solu-

tion in polynomial time if the solution tree grows exponen-

tially with problem size.3 In a similar vein, instantons are

able to “guess” correctly the path they have to travel in the

phase space. Their “guess” is of course guided by physical

laws of motion and the principle of stationary action.

However, to an external observer, it would be difficult, if not

outright impossible, to know in advance the path they will

take. We can then interpret the instantonic phase of DMMs

as a physical realization of an oracle.

VIII. CONCLUSIONS

In this perspective, we have provided an overview of

digital (hence scalable) memcomputing machines,5 their

practical realization using a new type of logic framework

(self-organizing logic), and the Physics behind their dynam-

ics. We have discussed that their dynamical behavior pro-

ceeds via instantons: families of classical trajectories in the

phase space that connect critical points of increasing stabil-

ity. The topological character of these objects renders these

machines robust against noise and structural disorder. In

addition, the non-locality of instantons generates an ideal

long-range order reminiscent of entanglement in Quantum

Mechanics. It is this long-range order that allows these
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physical machines to correlate gates at arbitrary distance,

hence allowing an efficient non-local (global) search in the

solution space of the problem they are designed to solve.

Since the equations of motion describing the dynamics of

these non-quantum systems are just coupled ordinary differen-

tial equations, they can be efficiently simulated in software

using our modern computers. In addition, if implemented

using electronic components, these machines can be built

within CMOS technology offering a path to real-time comput-

ing for several applications of current interest, such as

machine learning,78 autonomous vehicles,79 robotics,80 etc.

Software simulations of these machines have already

shown a considerable advantage over traditional (algorithmic)

approaches. We have referred to several examples regarding

non-convex optimization problems that have already appeared

in the literature, where these advantages are particularly evi-

dent. In this perspective we have also shown the solution of

hard instances of a combinatorial problem, the subset-sum,

showing that simulations of these memcomputing machines

offer solutions to this problem in polynomial time vs. the

exponential requirements of standard approaches.

The problems we have tackled so far have been

restricted to the (albeit vast) space of Boolean problems for

which these machines are ideally suited. However, there are

several other problems that require continuous variables. The

most obvious way, although possibly not the most efficient,

to tackle these problems is to discretize the continuous varia-

bles into an approximate binary representation, and then

apply the same machines we have discussed here to that rep-

resentation.81 This is how these problems are represented

even in our modern computers. However, we believe there is

room for improvement if the self-organizing gates are

directly modified to account for such continuous-variable

instances.

Another interesting area of research is to apply these

machines to efficiently finding the ground state (or spectrum)

of quantum Hamiltonians. Finding the ground state (spec-

trum) of quantum Hamiltonians would have tremendous con-

sequences both for fundamental science, as well in disparate

practical applications, such as drug discovery and biotech-

nology,82–84 design of materials with desired properties,85

etc. Universal memcomputing machines have been shown to

be quantum-complete, meaning that they can, in principle,

simulate quantum machines.8 However, that result is merely

theoretical and does not specify the amount of resources

required for such a simulation. Therefore, an efficient map-

ping between the quantum problem and a non-quantum

Boolean solution needs to be found. Note that, in view of

what we have discussed, it is enough for us to find a mapping

that transforms the hard optimization problem of finding the

ground state of a quantum Hamiltonian into an equally hard

Boolean problem. More work in this direction is thus

necessary.

Irrespective, we have already shown that there exist engi-

neered dynamical systems that combine the power of physical

processes with the digital structure of the input and output,

thus allowing the design of machines that are easily scalable.

Once more, as in the case of quantum computing where one

may efficiently factor numbers on a quantum computer,

physics-based approaches to computation seem to offer bene-

fits that are difficult, if not impossible to obtain from only tra-

ditional, algorithmic approaches. We then hope this work will

motivate further research in this promising area of computing

with Physics, in particular memcomputing.
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